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Abstract:    Compared with complementary metal–oxide semiconductor (CMOS), the resonant tunneling device (RTD) has better 
performances; it is the most promising candidate for next-generation integrated circuit devices. The universal logic gate is an 
important unit circuit because of its powerful logic function, but there are few function synthesis algorithms that can implement an 
n-variable logical function by RTD-based universal logic gates. In this paper, we propose a new concept, i.e., the truth value matrix. 
With it a novel disjunctive decomposition algorithm can be used to decompose an arbitrary n-variable logical function into 
three-variable subset functions. On this basis, a novel function synthesis algorithm is proposed, which can implement arbitrary 
n-variable logical functions by RTD-based universal threshold logic gates (UTLGs), RTD-based three-variable XOR gates 
(XOR3s), and RTD-based three-variable universal logic gate (ULG3s). When this proposed function synthesis algorithm is used to 
implement an n-variable logical function, if the function is a directly disjunctive decomposition one, the circuit structure will be 
very simple, and if the function is a non-directly disjunctive decomposition one, the circuit structure will be simpler than when 
using only UTLGs or ULG3s. The proposed function synthesis algorithm is straightforward to program, and with this algorithm it 
is convenient to implement an arbitrary n-variable logical function by RTD-based universal logic gates. 
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1  Introduction 
 

With the improvement of integrated circuit, the 
complementary metal–oxide semiconductor (CMOS) 
technology is gradually approaching its physical lim-
itations. Compared with CMOS, the resonant tun-
neling device (RTD) has better performances, in-
cluding negative differential resistance, high-speed 
switching, self-latching, and low power consumption 
(Mazumder et al., 1998; Likharev, 2008; Iwai, 2013), 
so it is more likely to be the main electronic device of 

next-generation integrated circuits (Muramatsu et al., 
2005; Zheng and Huang, 2009). The universal logic 
gate, due to its powerful logic function, has become 
an important unit circuit for implementing the 
n-variable logical function, and RTD is more suitable 
for implementing the universal logic gate because of 
its negative differential resistance (Beiu et al., 2003; 
Zheng and Huang, 2009; Mirhoseini et al., 2010). 

Though using the universal logic gate to im-
plement an n-variable logical function can simplify 
the circuit, using different universal logic gates re-
quires different algorithms. Some function decom-
position algorithms have been proposed in the litera-
ture (Files and Perkowski, 2000; Ngwira and 
Tshabalala, 2002; Czajkowski and Brown, 2008; Liu 
et al., 2011; Altun and Riedel, 2012; Nikodem, 2013; 
Fan et al., 2014), but these algorithms cannot be  
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applied to the RTD-based universal threshold logic 
gate (UTLG) (Wei and Shen, 2011) or RTD-based 
three-variable universal logic gate (ULG3) (Yao et al., 
2015) to implement the n-variable logical function. 
By using the disjunctive decomposition algorithm 
(Kolodzinski and Hrynkiewicz, 2009; Hrynkiewicz 
and Kolodzinski, 2010; Falkowski and Kannurao, 
2001) to decompose the n-variable logical function, 
and combining the features of the RTD-based three-  
variable universal logic gate, an algorithm that can 
implement an arbitrary n-variable logical function by 
RTD-based three-variable universal threshold logic 
gates can be developed. Such an algorithm should 
have the following features: (1) It must be able to 
decompose an arbitrary n-variable logical function 
into three-variable subset functions which can be 
implemented by RTD-based three-variable universal 
logic gates; (2) The decomposition result must be 
relatively simple to simplify the circuit. 

In this study, a new concept ‘truth value matrix’ 
is proposed. With it a novel disjunctive decomposi-
tion algorithm is further proposed, which can de-
compose an arbitrary n-variable logical function into 
three- 
variable subset functions. Then, a novel function 
synthesis algorithm is proposed, which can imple-
ment the arbitrary n-variable logical function by 
UTLGs, ULG3s, and RTD-based three-variable XOR 
gates (XOR3) (Yao et al., 2015). The proposed func-
tion synthesis algorithm provides a new scheme for 
the design of integrated circuits by RTD devices. 

 
 

2  Background 

2.1  Disjunctive decomposition algorithm  

Definition 1 (Disjunctive decomposition (Bertacco 
and Damiani, 1997))    If an n-variable logical func-
tion f(x1, x2, …, xn) can be decomposed into two 
functions, one is its subfunction g1, and the other is 
F(g1, xl, …, xn) which consists of the remaining var-
iables besides g1, it is called a ‘disjunctive decompo-
sition function’. The diagram of a disjunctive de-
composition function is shown in Fig. 1, where x1, 
x2, …, xl−1 are bound variables and xl, …, xn are free 
variables. We have f(x1, x2, …, xn)=F(g1, xl, …, xn). 
Definition 2 (Subset function)    If an n-variable logic 
function f(x1, x2, …, xn) is decomposed into some sub-  

functions by the disjunctive decomposition algorithm, 
the sub-functions are called ‘subset functions’. For 
example, in a five-variable function f(x1, x2, x3, x4, x5), 
x1, x2, and x3 are bound variables and x4, x5 are free 
variables. After decomposition, f(x1, x2, x3, x4, x5)= 
F(g1, x4, x5). F(g1, x4, x5) and g1(x1, x2, x3) are called 
‘three-variable subset functions’. 

 
 
 
 
 
 
 
 
 

2.2  Threshold logic 

A threshold logic gate is defined as a logic gate 
with a single binary output and n binary input varia-
bles, {xi} (i=1, 2, …, n). Its internal parameters are a 
set of n positive or negative integer weights, {wi} (i=1, 
2, …, n), and a threshold T, such that its input-output 
relationship can be expressed as 

 

1
1, if ,

0,    otherwise.

n

i i
i

w x T
y =


≥= 



∑                    (1) 

 
The threshold logic gate can also be presented as 

f=<w1x1+ w2x2+…+wnxn>T. 
If a logical function can be implemented with a 

single threshold logic gate, the function is called a 
‘threshold function’; otherwise, it is called a ‘non- 
threshold function’ (Zhang et al., 2005). 

 
 

3 Algorithm of n-variable logical function 
disjunctive decomposition 

 
In this section, the truth value matrix is intro-

duced, as well as an algorithm of n-variable logical 
function disjunctive decomposition with the truth 
value matrix. 

Disjunctive decomposition algorithms in the 
Reed-Muller spectral domain or the Walsh spectrum 
have been studied (Bertacco and Damiani, 1997; 
Falkowski and Kannurao, 2001; Kolodzinski and 

Fig. 1  Disjunctive decomposition function 
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Hrynkiewicz, 2009; Hrynkiewicz and Kolodzinski, 
2010), but they are not suitable for implementing an 
n-variable logical function by RTD-based universal 
logic gates. We propose a new algorithm in Boolean 
algebra, which can implement an n-variable logical 
function by RTD-based universal logic gates. This 
algorithm should meet two requirements: (1) The 
function should be easily expressed with an increas-
ing number of variables; (2) The algorithm should be 
suitable for all kinds of functions. 

3.1  Truth value matrix  

To satisfy the first request, a new matrix named 
the ‘truth value matrix (TM)’ is defined to express 
functions. According to the usual expression of ma-
trices, the truth value matrix of an n-variable logic 
function is defined as a matrix with [n/2] rows and 
[(n+1)/2] columns ([ ] represents integer notation). 
The elements of the matrix are assigned the values in 
a truth table first from left to right and then from top 
to bottom. The row coordinate indicates the sequence 
code of the first [n/2] variables, and the column co-
ordinate indicates the sequence code of the last 
[(n+1)/2] variables; e.g., for the three-variable func-
tion f(x1, x2, x3)= 1 2 3x x x + 1 2 3 1 2 3 1 2 3,x x x x x x x x x+ +  its 

truth value matrix is TM=
1 0 1 0

,
0 1 0 1
 
 
 

 the row co-

ordinate indicates x1: 0, 1, and the column coordinate 
indicates x2x3: 00, 01, 10, 11. 

3.2 Improved disjunctive decomposition algorithm 

To satisfy the second request, XOR decomposi-
tion is introduced and, according to the algorithm 
proposed by Bertacco and Damiani (1997), we also 
divide the n-variable function into two categories: one 
is the directly disjunctive decomposition function, 
and its corresponding truth value matrix has only one 
or two different columns or rows; the other is the 
non-directly disjunctive decomposition function, and 
its corresponding truth value matrix has three or more 
different columns or rows. 

Note that if the variables of a function are in a 
different order, the corresponding truth value matrix 
of the function will be different; thus, as a 
three-variable function f(x1, x2, x3)=x1x2x3, it can be 
expressed as f(x1, x2, x3)=x3x2x1. The corresponding 
truth value matrices of these two expressions are 

different, so the same function may belong to a dif-
ferent type of function because the variables of the 
function are in a different order. Hrynkiewicz and 
Kolodzinski (2010) proposed an algorithm that can be 
used to choose the optimal variable order of a func-
tion.  

Before we discuss the decomposition algorithm 
of these two kinds of function, some concepts of the 
algorithm should be defined: 
Definition 3 (Basic and non-basic columns or rows) 
The columns or rows of the truth value matrix which 
are used to compare with other columns or rows, if the 
function is a directly disjunctive decomposition one. 
Definition 4 (Reference row ri and non-reference row 

ir )    Reference row ri is the row of the truth value 
matrix used to compare with other rows, if the func-
tion is a non-directly disjunctive decomposition one. 
All the values of ir  elements are the NOT of the val-
ues of the corresponding ri elements, e.g., ri=[0 1] and 

ir =[1 0]. 
Definition 5 (XOR of two matrices)    The XOR of 
two matrices is a matrix with its elements being the 
XOR of the corresponding elements of the two ma-

trices. For example, when 
0 0
1 1
 

=  
 

A , 
0 1
0 1
 

=  
 

B , 

the XOR of A and B is 
0 1
1 0
 

⊕ =  
 

A B . 

1. For the directly disjunctive decomposition 
function whose corresponding truth value matrix has 
only one or two different columns (Bertacco and 
Damiani, 1997), we propose the following decompo-
sition algorithm:  

(1) Write the truth value matrix TM of f(x1, 
x2, …, xn). 

(2) Select the basic and non-basic columns: If the 
columns of TM are all the same, select any one of 
them as the basic column, and construct the column 
whose element values are all 0’s as the non-basic 
column. If TM has two different columns, select the 
column which repeats the most times in TM as the 
basic column, and the other as the non-basic column; 
if two different columns of TM repeat the same 
number of times, select the column that has more 1’s 
as the basic column, and the other as the non-basic 
column. If the number of 1’s is the same in the two 
different columns, select either of them as the basic 
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column, and the other as the non-basic column. 
(3) Construct transition matrices M1 and M2: 

Decompose f(x1, x2, …, xn)=f(x1, x2, …, xm, g), where 
g is an [(n+1)/2]-variable function g(xm+1, xm+2, …, xn). 
M1 is the matrix of f(x1, x2, …, xm, g) with [n/2] rows 
and two columns. Its row coordinate is the same as 
TM, and its column coordinate is g: 0, 1. Fill in the 
first column of M1 with the basic column, and the 
second column of M1 with the non-basic column. M2 
is the matrix of g(xm+1, xm+2, …, xn) with one row and 
[(n+1)/2] columns. Its column coordinate is the same 
as TM, and its row coordinate expresses that each 
column is the basic or non-basic one. According to 
TM, to fill in M2, if the column is the basic column in 
TM, fill in the corresponding column of M2 with 0, 
and if the column is the non-basic column in TM, fill 
in the corresponding column of M2 with 1. 

(4) Construct truth value matrices TM1 and TM2: 
TM1 is the matrix with [l/2] rows and [(l+1)/2] col-
umns (l=[n/2]+1), and TM2 is the matrix with [h/2] 
rows and [(h+1)/2] columns (h=[(n+1)/2]). Fill in 
TM1 and TM2 with M1 and M2 from left to right and 
then from top to bottom. 

(5) The function can be decomposed into f(x1, 
x2, …, xm, g), f(x1, x2, …, xn)=f(x1, x2, …, xm, g), where 
g is g(xm+1, xm+2, …, xn). f(x1, x2, …, xm, g) and g(xm+1, 
xm+2, …, xn) are the corresponding functions of TM1 
and TM2. 

If the truth value matrix of the directly disjunc-
tive decomposition function has only one or two dif-
ferent rows, using the proposed directly disjunctive 
decomposition algorithm we need only to replace 
column with row during the decomposition process. 
Example 1    Decompose the four-variable function  

 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

( , , , )
.

f x x x x x x x x x x x x x x x x
x x x x x x x x x x x x

= + +

+ + +
 

 

The truth value matrix of the function is 
 

1 1 1 1
0 0 0 0
0 0 0 0
1 1 0 0

 
 
 =
 
 
 

TM . 

 
TM has only two kinds of different columns, so 

the function is a directly disjunctive decomposition 
one: 

1
0
0
1

 
 
 =
 
 
 

A , 

1
0
0
0

 
 
 =
 
 
 

B . 

 
A and B repeat the same number of times, and A 

has more 1’s than B. A is selected as the basic column, 
and B the non-basic column. Then, M1 and M2 are 

 

1

1 1
0 0
0 0
1 0

 
 
 =
 
 
 

M , 2 [0 0 1 1]=M . 

 
The row coordinate of M1 is x1x2: 00, 01, 10, 11; 

the column coordinate of M1 is g: 0, 1. The column 
coordinate of M2 is x3x4: 00, 01, 10, 11.  

The truth value matrix TM1 of f(x1, x2, g) is 
 

1

1 1 0 0
0 0 1 0
 

=  
 

TM . 

 
The row coordinate of TM1 is x1: 0, 1; the col-

umn coordinate of TM1 is x2g: 00, 01, 10, 11. The 
truth value matrix TM2 of g(x3, x4) is 

 

2

0 0
1 1
 

=  
 

TM . 

 
The row coordinate of TM2 is x3: 0, 1; the col-

umn coordinate of TM2 is x4: 0, 1. Then, f(x1, x2, x3, x4) 
in Example 1 can be decomposed as 1 2( , , )f g x x =  

1 2 1 2 1 2 ,x x g x x g x x g+ +  3 4 3 4 3 4( , )g x x x x x x= + . 
2. For the non-directly disjunctive decomposi-

tion function whose corresponding truth value matrix 
has three or more different columns or rows (Bertacco 
and Damiani, 1997), we propose the following de-
composition algorithm:  

(1) Write the truth value matrix TM of f(x1, 
x2, …, xn). 

(2) Select reference row r1 and non-reference 
row 1r : If TM has the same rows, select the row that 
repeats the most number of times as reference row r1; 
if TM has two different rows that repeat the same 
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number of times, select the row that has more 1’s as 
reference row r1, and if the number of 1’s is the same 
in the two different rows, select any one of them as 
reference row r1; if all the rows in TM are different, 
select the row that has the most 1’s as reference row r1, 
and if there are some rows with the same number of 
1’s, select any one of them as reference row r1. Write 
the corresponding non-reference row 1r  of r1. 

(3) First XOR decomposition: Construct a new 
truth value matrix TM1 that has the same structure as 
TM. Comparing all the rows of TM with r1 and 1r , 
TM1 is constructed as follows: (i) If a row of TM has 
more elements identical to their counterparts in r1, fill 
in the corresponding row of TM1 with r1; else, fill in 
the corresponding row of TM1 with 1r . (ii) If a row of 
TM has an equal number of elements identical to 
those in r1 and 1r , fill in the corresponding row of 

TM1 with the row that has more 1’s in r1 or 1r . (iii) If 

the number of 1’s is the same in r1 and 1r , the corre-
sponding row of TM1 can be filled in with either r1 or 

1r . Calculate the new truth value matrix TM11 by 
TM11=TM1⊕TM. 

(4) Step 1 of the second XOR decomposition: If 
TM11 has the same number of rows except the row 
whose element values are all 0’s, select this row as 
reference row r2, and select the row whose element 
values are all 0’s as the other reference row r0; if the 
rows of TM11 are all different except the row whose 
element values are all 0’s, select the row that has the 
most 1’s as reference row r2; if there are two or more 
different rows that have the same number of 1’s, se-
lect any of them as reference row r2, and the other 
reference row is still r0. 

(5) Step 2 of the second XOR decomposition: 
Construct a new truth value matrix TM2 which has 
the same structure as TM11, by comparing all the rows 
of TM11 with r2 and r0. If a row of TM11 has more 
elements identical to their counterparts in r2, fill in the 
corresponding row of TM2 with r2; else, fill in the 
corresponding row of TM2 with r0. If a row of TM11 
has an equal number of elements that are identical to 
their counterparts in r2 and r0, fill in the corresponding 
row of TM2 with r2. Calculate the new truth value 
matrix TM22 by TM22=TM2⊕TM11. 

(6) Repeat steps (4) and (5) until the calculated 
truth value matrix has only two different rows. 

(7) The function can be decomposed into the 
XOR of multiple directly disjunctive decomposition 
functions, i.e., f(x1, x2, …, xn)=f1(x1, x2, …, xn)⊕f2(x1, 
x2, …, xn)⊕…⊕fi(x1, x2, …, xn). TM1, TM2, …, TMi 
are the corresponding truth value matrices of f1, f2, …, 
fi. 
Example 2    Decompose the four-variable function  

 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

( , , , )
.

f x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x

= + +

+ + + + +
 

 
The truth value matrix of f(x1, x2, x3, x4) is 
 

1 1 0 1
0 1 0 1
0 1 0 1
1 0 0 0

 
 
 =
 
 
 

TM . 

 
So, the function is a non-directly disjunctive de-
composition one. Select row r1=[0 1 0 1] as the ref-
erence row, which is repeated twice in TM, and 
non-reference row 1r =[1 0 1 0]. Constructing the new 
truth value matrix TM1, and comparing all the rows of 
TM with r1 and 1r , it is noted that the first row has 
three elements identical to their counterparts in r1, and 
the fourth row has three elements identical to their 
counterparts in 1r .Thus, TM1 is filled in with r1 and 

1r  as  

1

0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0

 
 
 =
 
 
 

TM . 

 
Calculate TM11 by 111 ⊕= TMTM TM : 

 

11

1 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 
 
 =
 
 
 

TM . 

 
For the second decomposition, selecting refer-

ence row r2=[1 0 0 0] and the other reference row 
r0=[0 0 0 0], the truth value matrix TM2 is 
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2

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 
 
 =
 
 
 

TM . 

 

Calculate TM22 by 22 2 11= ⊕TM TM TM  as 
 

22

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 
 
 =
 
 
 

TM . 

 
Thus, we have TM3=TM22. Then 1 2 3 4( , , , )f x x x x =  

1 1 2 3 4 2 1 2 3 1 2 3 4( , , , ) ( , ,..., ) ( , , , ),nf x x x x f x x x f x x x x⊕ ⊕  and 
TM1, TM2, TM3 are the corresponding truth value 
matrices of f1, f2, f3, with 1 1 2 4 1 4 2 4f x x x x x x x= + + , 

2 1 2 3 4f x x x x= , 3 1 2 3 4f x x x x= .  

3.3  Algorithm of n-variable logical function dis-
junctive decomposition 

Because ULG3 has a powerful logical function 
and its circuit is not very complex, it is an ideal uni-
versal logic gate (Yao et al., 2015). We now propose 
the function synthesis algorithm that can be used to 
implement an arbitrary n-variable function by the 
RTD-based universal threshold logic gates (UTLGs) 
(Wei and Shen, 2011) and ULG3 (Yao et al., 2015). 
According to the proposed improved disjunctive de-
composition algorithm, we propose the algorithm that 
can be used to decompose the n-variable function into 
three-variable subset functions, and the decomposi-
tion process is as follows:  

1. Write the truth value matrix TM of f(x1, x2, …, 
xn). 

2. Judge whether the function is a directly dis-
junctive decomposition one. 

3. If the function is a directly disjunctive de-
composition one, use the improved disjunctive de-
composition algorithm to decompose it, and we have 
f(x1, x2, …, xn)=f(x1, x2, …, xm, g), where g is g(xm+1, 
xm+2, …, xn). 

4. If the function is a non-directly disjunctive 
decomposition one, use the improved disjunctive 
decomposition algorithm to decompose it, and we 
have f(x1, x2, …, xn)=f1(x1, x2, …, xn)⊕f2(x1, x2, …, xn) 
⊕…⊕fi(x1, x2, …, xn). 

5. If executing step 3, reassess whether f(x1, 
x2, …, xm, g) and g(xm+1, xm+2, …, xn) are directly 
disjunctive decomposition functions; if executing 
step 4, rejudge whether f1, f2, …, fi are directly dis-
junctive decomposition functions. 

6. Repeat steps 3–5 until all the subset functions 
f(x1, x2, …, xm, g), g(xm+1, xm+2, …, xn) and f1, f2, …, fi 
are decomposed into three-variable subset functions. 

 
 

4  Circuit design of an n-variable function 
 
In this section, we propose a function synthesis 

algorithm that can be used to implement an arbitrary 
n-variable logical function by UTLGs, XOR3s, and 
ULG3s. 

4.1  UTLG, ULG3, and XOR3 

Wei and Shen (2011) proposed an RTD-based 
universal threshold logic gate (UTLG), which can 
implement all the three-variable threshold functions 
with one UTLG. Fig. 2 shows the schematic and 
symbol of UTLG, where only input bits need to be 
reconfigured and there is no need to change the pa-
rameters of RTD or MOSFET while implementing a 
threshold function with UTLG. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yao et al. (2015) proposed an RTD-based three- 

variable universal logic gate (ULG3), which can im-
plement all the three-variable functions with one 
ULG3. The circuit in which all the three-variable 

CLK

AA A 2A

1.5AA A 2A

C3 C2 C1

C6 C5 C4

f

(a) 

2

1

1

-2

-1

-1

1 f
C3

C2

C1

C6

C5

C4

(b) 

Fig. 2  Universal threshold logic gate (UTLG): (a) sche-
matic; (b) symbol 
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non-threshold functions are implemented by a ULG3 
is relatively simple, but if the function is a three- 
variable threshold one, it is better to choose UTLG. 
Fig. 3 shows the schematic and symbol of ULG3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yao et al. (2015) also proposed an RTD-based 

three-variable XOR gate (XOR3). All the three-  
variable XOR functions can be implemented with 
XOR3. Fig. 4 shows the schematic and symbol of 
XOR3. 

4.2  Function synthesis algorithm for an n-variable 
logical function 

All the n-variable functions can be implemented 
by ULG3, but after decomposition its sub-functions 
may have some threshold functions, and using the 
UTLG to implement them will be simpler. So, we 
propose a function synthesis algorithm of the 
n-variable logical function by ULG3s, UTLGs, and 
XOR3s. 

The function synthesis algorithm that can im-
plement an arbitrary n-variable logical function by 
UTLGs, XOR3s, and ULG3s is as follows: 

1. Use the proposed algorithm of n-variable 
logical function disjunctive decomposition to de-
compose the n-variable function f(x1, x2, …, xn) into 
three-variable subset functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Judge all the three-variable subset functions. 

If the three-variable subset function is the threshold 
function, it will be implemented by UTLG; if the 
three-variable subset function is a non-threshold 
function except the two special functions f=x1⊕x2⊕x3 
and 1 2 3,f x x x= ⊕ ⊕  it will be implemented by 
ULG3; if the three-variable subset function is the 
XOR function, it will be implemented by XOR3. 
Example 3    Implement the five-variable function 

f(x1, x2, x3, x4, x5)= i
i

m∑ ,   i=0, 2, 3, 5, 6, 9,  

12, 15, 24, 25, 26, 27, 28, 29, 30, 31, 
 
where mi is the minimum item of the function. 

The truth value matrix of f(x1, x2, x3, x4, x5) is 
 

1 0 1 1 0 1 1 0
0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

 
 
 =
 
 
 

TM . 

 
f(x1, x2, x3, x4, x5) has only two different columns 

and it is a directly disjunctive decomposition function. 
Select these two columns as basic column A and 
non-basic column B: 

A

x3

x2

x1

A A

A 1.5A

CLK

x1 x2 x3

x3 x3

x2

x2
x1

x1

f

(a) 

XOR3

x3

x2

x1

f

(b) 

Fig. 4  Three-variable XOR gate (XOR3): (a) schematic; 
(b) symbol 

f

c1
c2

...

c12
c13

...

(b) 

Fig. 3  Three-variable universal logic gate (ULG3): (a) 
schematic; (b) symbol 
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1
0
0
1

 
 
 =
 
 
 

A , 

0
1
0
1

 
 
 =
 
 
 

B . 

M1 and M2 are 
 

1

1 0
0 1
0 0
1 1

 
 
 =
 
 
 

M , 2 [0 1 0 0 1 0 0 1]=M . 

 
The row coordinate of M1 is x1x2: 00, 01, 10, 11; 

the column coordinate of M1 is g: 0, 1. The column 
coordinate of M2 is x3x4x5: 000, 001, 010, 011, 100, 
101, 110, 111. The truth value matrix TM1 of f(x1, x2, 
g) is 

 

1

1 0 0 1
0 0 1 1
 

=  
 

TM . 

 
The row coordinate of TM1 is x1: 0, 1; the col-

umn coordinate of TM1 is x2g: 00, 01, 10, 11. The 
truth value matrix TM2 of g(x3, x4, x5) is  

 

2

0 1 0 0
1 0 0 1
 

=  
 

TM . 

 
The row coordinate of TM2 is x3: 0, 1; the col-

umn coordinate of TM2 is x4x5: 00, 01, 10, 11. 
Then, f(x1, x2, x3, x4, x5) can be decomposed into 
 

1 2 1 2 1 2 1 2 1 2( , , )f x x g x x g x x g x x g x x g= + + + , 

3 4 5 3 4 5 3 4 5 3 4 5( , , )g x x x x x x x x x x x x= + + . 
 
f(x1, x2, g) and g(x3, x4, x5) are three-variable 

non-threshold functions. They can be implemented by 
ULG3s. To determine the inputs of ULG3s, we can 
decompose f(x1, x2, g) into the XOR of two threshold 
functions (Yao et al., 2015), i.e., f(x1, x2, g)=f1⊕f2, 
f1=<g–x1–2x2>0, f2=<2g+x1+x2>2, and decompose 
g(x3, x4, x5) into the XOR of two threshold functions 
g(x3, x4, x5)=f3⊕f4, f3=<2x3–x4+x5>2, f4=<–x4+x5>1. 
Then, f(x1, x2, x3, x4, x5) can be implemented by two 
ULG3s. Fig. 5 shows the ULG3 implementation of 
this function.  

 
 
 
 
 
 
 
From this example, we can find that if the func-

tion is a directly disjunctive decomposition one, the 
circuit of the function will be very simple by applying 
the proposed algorithm of n-variable logical function 
disjunctive decomposition.  
Example 4    Implement the five-variable function 
 

f(x1, x2, x3, x4, x5)= i
i

m∑ ,  i=7, 11, 13, 14, 15,  

19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 
 

where mi is the minimum item of the function. 
The truth value matrix of f(x1, x2, x3, x4, x5) is 
 

0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 1

.
0 0 0 1 0 1 1 1
0 1 1 1 1 1 1 1

 
 
 =
 
 
 

TM  

 
f(x1, x2, x3, x4, x5) is a non-directly disjunctive 

decomposition function, and we use the proposed 
algorithm of n-variable logical function disjunctive 
decomposition to decompose the function into three- 
variable subset functions. So, the truth value matrices 
of the subset functions are 

 

1

0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 1 0 1 1 1
1 1 1 1 1 1 1 1

 
 
 =
 
 
 

TM , 

2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

 
 
 =
 
 
 

TM , 

3

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 
 
 =
 
 
 

TM . 

ULG3 ULG3

3x 5x4x 10 2x1x 0 1

f
g

Fig. 5  The circuit for Example 3 
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Then, f(x1, x2, x3, x4, x5) is decomposed into 
 

1 2 3 4 5 1 1 2 3 4 5

2 1 2 3 4 5 3 1 2 3 4 5

( , , , , ) ( , , , , )
( , , , , ) ( , , , , ).

f x x x x x f x x x x x
f x x x x x f x x x x x

=

⊕ ⊕
 

 
Continue to decompose functions f1, f2, f3. We have 

1 1 2 1 1 2 1 1 2 1 1 2 1,f x x g x x g x x g x x g= + + + 1 3 4 5 3 4 5g x x x x x x= +  

3 4 5 3 4 5 ,x x x x x x+ +  f2=x1x2g2, 2 3 4 5 ,g x x x=  3 1 2 3,f x x g=  
g3=x3x4x5. 

All the three-variable subset functions are 
threshold ones: f1=<x1+x2–g1>1, g1=<–x3–x4–x5>–1, 
f2=<x1+x2+g2>3, g2=<–x3–x4–x5>0, f3=<–x1–x2+g3>1, 
g3=<x3+x4+x5>3. Then, f(x1, x2, x3, x4, x5) can be im-
plemented by six UTLGs and one XOR3. Fig. 6a 
shows the UTLG and XOR3 implementations of this 
function. The function can also be implemented by 
eight UTLGs (Wei and Shen, 2011). Fig. 6b shows the 
UTLGs implementation of this function. 

From this example we can see that if the function 
is a non-directly disjunctive decomposition one, the 
circuit of this function will be simpler when the 
function is implemented by UTLGs, ULG3s, and 
XOR3 than when it is implemented by only UTLGs 
or ULG3s. 
Example 5    Implement the six-variable function 

1 2 3 4 5 6( , , , , , ) ,

0,2,3,5,6,9,10,11,12,14,15,16,17,20,22,
25,26,27,29,31,32,34,35,37,38,40,41,43,44,
45,47,48,50,51,53,54,57,60,61,

i
i

f x x x x x x m

i

=

=

∑
 

 
where mi is the minimum item of the function. 

The truth value matrix of f(x1, x2, x3, x4, x5 x6) is 
 

1 0 1 1 0 1 1 0
0 1 1 1 1 0 1 1
1 1 0 0 1 0 1 0
0 1 1 1 0 1 0 1

.
1 0 1 1 0 1 1 0
1 1 0 1 1 1 0 1
1 0 1 1 0 1 1 0
0 1 0 0 1 1 0 0

 
 
 
 
 
 =  
 
 
 
 
  

TM  

 
f(x1, x2, x3, x4, x5 x6) is a non-directly disjunctive 

decomposition function. Using the proposed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

algorithm of n-variable logical function disjunctive 
decomposition to decompose the function into three- 
variable subset functions, the truth value matrices of 
the subset functions are 
 

1

1 0 1 1 0 1 1 0
0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1
1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0
0 1 0 0 1 0 0 1
1 0 1 1 0 1 1 0
0 1 0 0 1 0 0 1

 
 
 
 
 
 =  
 
 
 
 
  

TM ,

2
1
1

-2
-1
-1
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2
1
1
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1
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1
1
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-1
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1
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1
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Fig. 6  The circuit for Example 4: (a) UTLG and XOR3 
implementation; (b) UTLGs implementation 
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2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 
 
 
 
 
 =  
 
 
 
 
  

TM ,

3

0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 
 
 
 
 
 =  
 
 
 
 
  

TM ,

4

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 
 
 
 
 
 =  
 
 
 
 
  

TM , 

5

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1

 
 
 
 
 
 =  
 
 
 
 
  

TM , 

6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 
 
 
 
 
 =  
 
 
 
 
  

TM . 

Then, f(x1, x2, x3, x4, x5, x6) is decomposed into 
f(x1, x2, x3, x4, x5, x6)=f1⊕f2⊕f3⊕f4⊕f5⊕f6, 1 2 3 1f x x g=  

2 3 1 1 3 1 1 3 1 1 2 3 1 1 2 3 1+ + + + + ,x x g x x g x x g x x x g x x x g  1 3 4 5g x x x=  

3 4 5 3 4 5 ,x x x x x x+ +  2 1 3 2 ,f x x g=  2 3 4 3 4 ,g x x x x= +  f3= 

1 2 3 3 ,x x x g  3 3 4 4 5 ,g x x x x= +  4 1 2 3 4 ,f x x x g=  4 3 4 5g x x x=  

3 4 5 3 4 5 ,x x x x x x+ +  5 1 2 3 5 ,f x x x g=  g5=x3x5, 6 1 2 3 6 ,f x x x g=  

6 3 4 5g x x x= . 
The three-variable subset functions g1, g2, and g4 

are non-threshold functions and can be implemented 
by ULG3s: g1=f11⊕f12, f11=<x3+x4–2x5>1, f12=<x3+ 
x4>2, g2=f21⊕f22, f21=<x3+2x4–x5>1, f22=<2x3+x4+x5>3, 
g4=f41⊕f42, f41=<x3+x4–x5>1, f42=<x3+x4–x5>0. The 
three-variable subset functions g3, g5, and g6 are 
three-variable threshold functions and can be imple-
mented by UTLGs, g3=<–x3+2x4–x5>1, g5=<x3+x5>2, 
g6=<–x3–x4+x5>1. 

Continue to decompose f1, f2, f3, f4, f5, f6: 

1 2 7 1 2 7 ,f x g x x g= +  g7=g1, 2 1 2 8 ,f x x g=  8 3 2g x g= +  

3 2 ,x g  3 1 2 9 ,f x x g=  g9=x3g3, 4 1 2 10 ,f x x g=  g10=x3g4, f5= 

x1x2g11, g11=x3g5, 6 1 2 12 ,f x x g=  12 3 6.g x g=  The three- 
variable subset function f1 is a non-threshold one. It 
can be implemented by ULG3, f1=f13⊕f14, f13=<–g7>0, 
f14=<–x1+2x2–g7>2. The three-variable subset func-
tions f2, f3, f4, f5, f6 are threshold ones and can be im-
plemented by UTLGs, f2=<–x1+x2–g8>1, f3=<–x1–x2+ 
g9>1, f4=<x1–x2+g10>2, f5=<x1+x2+g11>3, f6=<–x1+x2+ 
g12>2. The three-variable subset function g8 is a 
non-threshold one and can be implemented by ULG3, 
g8=f81⊕f82, f81=<x3+g2>1, f82=<x3+g2>2. The three- 
variable subset functions g7, g9, g10, g11, g12 are 
threshold ones and can be implemented by UTLGs, 
g7=<g1>1, g9=<x3+g3>2, g10=<x3+g4>2, g11=<x3+g5>2, 
g12=<–x3+g6>1. 

Finally the six-variable function f(x1, x2, x3, x4, x5, 
x6) can be implemented by 5 ULG3s, 13 UTLGs, and 
3 XOR3s. 

The proposed algorithm can implement arbitrary 
n-variable logical functions, and the circuit imple-
mented by UTLGs, ULG3s, and XOR3s is simpler 
than by only UTLGs or ULG3s. When the n-variable 
function is implemented with the proposed algorithm, 
we need only to judge the function and decompose it. 
The processing of this algorithm for an arbitrary 
n-variable logical function is the same, so the algo-
rithm is straightforward to program, providing a 
simpler algorithm for implementing an arbitrary 
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n-variable logical function by RTD-based universal 
logic gates. 

 
 

5  Conclusions 
 
A novel function synthesis algorithm is proposed 

which can implement an arbitrary n-variable logical 
function using RTD-based universal logic gates. First, 
a new concept of ‘truth value matrix’ is introduced. 
With the truth value matrix, a novel disjunctive de-
composition algorithm is proposed, which can de-
compose an arbitrary n-variable logical function into 
three-variable subset functions. Then, a novel func-
tion synthesis algorithm is proposed, which can im-
plement an arbitrary n-variable logical function by 
UTLGs, ULG3s, and XOR3s. When this proposed 
function synthesis algorithm is used to implement an 
n-variable function, if the n-variable logical function 
is a directly disjunctive decomposition one, the circuit 
structure will be very simple, and if the n-variable 
logical function is a non-directly disjunctive decom-
position one, the circuit structure will be simpler than 
when using only UTLGs or ULG3s to implement the 
n-variable logic function. The proposed algorithm 
provides a new solution to implement an arbitrary 
n-variable logical function by RTD-based universal 
logic gates. 
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