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Abstract: Behavior-based malware analysis is an important technique for automatically analyzing and detecting malware, and it 
has received considerable attention from both academic and industrial communities. By considering how malware behaves, we can 
tackle the malware obfuscation problem, which cannot be processed by traditional static analysis approaches, and we can also 
derive the as-built behavior specifications and cover the entire behavior space of the malware samples. Although there have been 
several works focusing on malware behavior analysis, such research is far from mature, and no overviews have been put forward to 
date to investigate current developments and challenges. In this paper, we conduct a survey on malware behavior description and 
analysis considering three aspects: malware behavior description, behavior analysis methods, and visualization techniques. First, 
existing behavior data types and emerging techniques for malware behavior description are explored, especially the goals, prin-
ciples, characteristics, and classifications of behavior analysis techniques proposed in the existing approaches. Second, the in-
adequacies and challenges in malware behavior analysis are summarized from different perspectives. Finally, several possible 
directions are discussed for future research. 
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1  Introduction 
 

The quantity and complexity of malware sam-
ples have increased considerably over the past few 
years. Recent malware samples appear to be highly 
modular and less functionally typical. This develop-
ment has been further fueled by the introduction of 
malware generation tools and the reuse of different 
malware modules. The situation has become more 
serious with the expansion of open source technology. 
In response, there is an urgent need to facilitate new 
malware analysis techniques to automatically identify 
and characterize malware variants. 

Malware analysis techniques can be generally 
classified into two categories: static and dynamic. 

Static approaches focus on binary file information 
and disassembly codes from a malware sample, but 
lack a sample execution. Thus, this approach is usu-
ally regarded as a lightweight method for malware 
classification. In contrast, dynamic approaches ex-
tract behavioral data by executing the sample in a 
virtual environment, and then analyze the malware 
behavior based on logged behavior data. By providing 
an intuitive understanding of the malware behavior, 
dynamic approaches help analysts understand the 
intentions behind the behavior and analyze trends in 
behavioral evolution. 

Over the long term, academia has paid attention 
to malware analysis techniques for improving detec-
tion accuracy and efficiency. Recently much research 
has been devoted to dynamic analysis, outperforming 
static analysis methods by neutralizing the effects of 
obfuscation and morphing techniques (Damodaran et 
al., 2017). Most dynamic analysis techniques rely on 
system call traces to analyze the malicious behaviors 
of malware samples. 
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The understanding of malware behavior analysis 
in this paper is twofold: behavior analysis using dy-
namic behavior data and behavior analysis using 
static behavior data. We have taken this approach 
because both forms of behavioral data are the basis of 
behavior analysis, and they can be used to understand 
malware behaviors and for behavior-based malware 
detection. The existing research demonstrates that a 
combination of features from both dynamic and static 
analysis can yield the best accuracy in behavior-based 
malware analysis (Anderson et al., 2012; Alazab, 
2015). 

Malware behavior analysis aims to answer three 
questions: (1) How can malware behavior data be 
described in a general way? (2) How can malware 
samples be detected and classified by leveraging 
behavior data? (3) What kinds of malicious behavior 
can malware samples really carry out? Thus, the main 
contributions of related works typically include be-
havior data extraction and expression, and behavior- 
based malware identification and analysis. Addition-
ally, we would argue that behavior visualization is 
also an important part of behavior analysis because it 
is useful in assisting the behavior analysis process and 
understanding the behavior analysis results. 

Much research has been carried out within the 
scope of malware behavior analysis. Several virtual 
environments have been designed for collecting be-
havior data, and many approaches have been pro-
posed for in-depth malware behavior analysis. 
However, a global view of the related research is rare. 
Egele et al. (2012) explored several dynamic malware 
analysis techniques and tools. They focused on mal-
ware types, propagation modes, and collection 
methods for behavior data, which are not of primary 
importance in our work. Bayer et al. (2014) discussed 
only the classification of system behaviors on the 
Anubis platform. In contrast, we investigate an even 
broader scope of behavior data types.  

Another similar work (Razak et al., 2016) was 
aimed to analyze the research trends in malware 
analysis with a bibliometric method. To uncover the 
global trends and frontiers in malware publications, 
research articles are retrieved from Web of Science 
and analyzed using the following criteria: impact 
journals, highly cited articles, research areas, 
productivity, keyword frequency, institutions, and 
authors. Although Razak et al. (2016) presented an 

overview of malware research trends, it does not 
cover topics such as classification of behavior data 
and behavior analysis methods, which are key topics 
in our work. 

Additionally, studies on behavior analysis of 
Android malware fall in the scope of our discussions 
in this survey, because analysis goals, analysis 
methods, and behavior data types of existing studies 
on Windows and Android platforms are the same. 

 
 

2  Malware behavior analysis techniques 
 

As discussed above, behavior data forms the 
basis of analyzing malware behavior, and a well- 
designed behavior expression is useful for improving 
the efficiency and effectiveness of behavior analysis. 
Thus, in this section, we discuss behavior data types 
and behavior expression first, and then investigate 
typical behavior analysis methods in recent works. 

2.1  Malware behavior expression 

2.1.1  Behavior data types 

During the behavior data extraction phase, be-
havior data is collected in a static approach or dy-
namic approach and then formalized for storage and 
subsequent analysis. The behavior data extracted 
through a static approach includes function call name, 
file structure information, import tables, strings, con-
trol flows, and so on. IDA Pro is a common tool to 
assist in behavior data extraction from the disassem-
bly code of malware binaries. For example, Shi et al. 
(2014) extracted dynamic link library information to 
construct the feature space for malware samples. 

However, in a dynamic analysis approach, a 
virtual environment is needed to execute malware 
samples and collect program traces. Sandboxes are 
typical systems used for this purpose, including the 
Cuckoo sandbox (Cuckoo, 2017), Anubis (Bayer et 
al., 2006), and Ether (Dinaburg et al., 2008). These 
monitoring systems have been discussed carefully in 
the literature (Egele et al., 2012; Kruegel, 2014; 
Bauman et al., 2015). To design a good hypervisor- 
based monitoring system, Bauman et al. (2015) con-
ducted a survey that focuses on the practicality, 
flexibility, coverage, and automation of existing vir-
tual monitors, and discussed different approaches to 
tackle the semantic problems of observed behavior 
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data. In contrast, our survey discusses behavior data 
types and popular techniques and tools for extracting 
behavior data. 

The common types of behavior data generated in 
a dynamic approach include system call names, to-
gether with arguments, return values, and environ-
ment variables in context. In particular, data flow, 
system call graphs, and system states are gathered. 
dAnubis (Neugschwandtner et al., 2010) is a QEMU- 
based system designed to monitor malicious behavior 
in the system device driver. The behavior data gath-
ered by dAnubis includes kernel function calls, sys-
tem call table hooks, and device communications 
data. 

Kernel data and system states are also consid-
ered behavioral data in malware behavior analysis. 
For example, Bailey et al. (2007) defined the behav-
ioral fingerprint of malware samples in terms of 
non-transient state changes that the samples impose 
on an operating system. With the extracted system 
state data, the malware profiles of individual samples 
are defined and malware samples are grouped ac-
cording to the differences between any two profiles. 
Lanzi et al. (2009) used kernel data to monitor kernel 
behavior on sensitive data manipulations. 

In addition to traditional static analysis and dy-
namic monitoring systems, program analysis ap-
proaches have been used in recent works to assist in 
malware behavior analysis, with the aim of automat-
ically generating full control flow and data flow in-
formation. Typical program analysis techniques in-
clude tainted analysis techniques (Moser et al., 2007; 
Fratantonio et al., 2016), value set analysis techniques 
(VSA) (Leder et al., 2009), and symbolic execution 
techniques (Brumley et al., 2008; Yuan et al., 2014). 

Symbolic execution techniques are used to cap-
ture full function call sequences, while tainted analy-
sis techniques combined with a full system emulation 
approach obtain the complete data flow. For example, 
Leder et al. (2009) leveraged VSA techniques to ex-
tract sets of characteristic values for detecting and 
classifying metamorphic malware. In a similar work, 
Brumley et al. (2008) employed symbolic execution 
to explore full paths and find trigger-based behavior. 
The results of the work show that the system can 
capture the full range of malware behaviors and 
identify all actions along the different paths. Moser  
et al. (2007) presented a system based on a tainted 

analysis technique to explore multiple execution 
paths in Windows executables, the goal of which was 
to obtain a more comprehensive overview of the ac-
tions that an unknown sample could perform. Addi-
tionally, the system automatically provided the in-
formation for conditions under which a malicious 
action would be triggered. 

2.1.2  Malware behavior description 

Behavior description encompasses behavioral 
data at different levels and forms the basis for mal-
ware behavior analysis. Malware-behavior descrip-
tion methods include XML-based formats, semantic 
description methods (e.g., ontology-based), several 
well-defined description languages, and several con-
cepts based on formal description and information- 
sharing specifications for threat intelligence. 

The XML-based format, which is a common 
type to express structural information, can also be 
used to express program traces such as function call 
traces. However, the different levels of XML are in-
adequate when it comes to expressing behavior data. 
For example, the semantic behavioral data, such as 
semantics-related system call paths and semantics- 
related control flows, cannot be expressed well in 
XML. As a result, several abstract description lan-
guages have been proposed for this purpose. 

To bridge the semantic gap in malware behaviors, 
Huang et al. (2011) leveraged fuzzy ontology (FO) 
and fuzzy markup language (FML) to assist in a se-
mantic understanding of malware behaviors, and pre-
sented a semantic methodology to develop a know- 
ledge model related to malware behaviors and design 
an intelligent system for behavior identification. 

The malware instruction set (MIST) (Trinius et 
al., 2011) is a new representation of system calls with 
input and output arguments. This representation is 
optimized for effective and efficient behavior analysis 
with machine learning techniques, and can also be 
used as a meta language to unify behavior reports. 

Malware attribute enumeration and characteri-
zation (MEAC) (Kirillov et al., 2011) is another be-
havior representation approach that attempts to de-
velop a legally defensible definition of malware, and 
it can be used to define the groups of behaviors and 
attributes that have the potential to be malicious based 
on executions of the malware. 

Abstract malicious behavioral language (AMBL) 
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(Deschamps, 2008; Jacob et al., 2009) is a specifica-
tion language that provides a platform- and  
language-agnostic framework for the detection of 
malware samples. AMBL is well formed, thus guar-
anteeing a possible order for semantic attribute valu-
ation. The behavioral signatures declared in AMBL 
make it easy to build efficient and resilient parsing 
automata for malware detection. 

Malware analysis intermediate language (MAIL), 
a language presented by Alam et al. (2015), can be 
used to express an annotated control flow graph of 
malware samples. With the support of MAIL, mal-
ware detection is achieved by subgraph and pattern 
matching on annotated control flow graphs. 

The behavior specification unit (BSU) (Pleszkoch 
and Linger, 2015) is an abstraction language proposed 
by the Oak Ridge National Laboratory, which offers a 
higher level of program behavior so that non- 
practitioners can easily understand it. BSUs are gen-
eral and implementation-independent specifications 
that can be applied to malware analysis. 

The behavior specification language (BSL) 
(Martignoni et al., 2008) is a language that consists of 
a set of primitives that can be used to define addi-
tional behaviors. In creating compositions of some 
basic primitives, BSLs can specify and then identify 
novel semantically meaningful behaviors. 

The signature specification language (SSL) 
(Feng et al., 2014) is a language presented to define 
the semantic properties of complex behavior data 
such as control flow and data flow. SSL consists of 
three kinds of predicates to express component type, 
control-flow relationship, and data-flow relationship 
separately, and it can provide a new form to construct 
a high-level representation of malware behavior  
signatures. 

Besides these languages, some new concepts 
have been proposed to express malware behavior, 
including the behavior profile (Bayer et al., 2009), 
behavior patterns (Beaucamps et al., 2010), and 
common behavior template (Shan and Wang, 2014). 
The behavior profile concept (Bayer et al., 2009) can 
accurately describe fine-grained system call events. 
The operation objects of a system call can vary sig-
nificantly even when the samples exhibit the same 
behavior. A behavior profile includes not only a set of 
actions (such as read, write, and create), but also op-
eration objects, as well as the type of operations and 

the dependences. To formally describe malware be-
havior, Beaucamps et al. (2010, 2012) presented a 
malware analysis approach based on first-order linear 
temporal logic (FOLTL). The behavior pattern con-
cept is defined as a regular language that describes 
high-level properties or a relevant behavior sequence. 
In this approach, the defined term, algebras, consists 
of Trace, Action, and Data extracted from program 
traces, and a program behavior is defined by a set of 
traces that satisfies a closed FOLTL formula. For the 
common behavior concept, the template (Shan and 
Wang, 2014) is formed by a set of discrete behaviors 
that enable the behavior matching process to occur 
more quickly and also the storage space to be smaller 
and fixed. This approach is accurate since it identifies 
a malware based on combined behaviors. 

These proposed description languages and con-
cepts provide a rich expression of behavior data, and 
facilitate the design of behavioral analysis methods. 
Some information-sharing specifications have also 
been proposed for cybersecurity situational awareness, 
real-time network defense, and sophisticated threat 
analysis. For example, TAXII (Haass et al., 2015), 
STIX (Barnum, 2012), and CybOX (Kokkonen et al., 
2016) are community-driven technical specifications 
designed to enable automated information sharing 
and they can help in standardizing threat information. 

2.2  Behavior analysis method 

According to the emphasis of different analysis 
processes, we can classify existing behavior analysis 
methods into two classes, machine-learning-based 
analysis approaches and semantics-based behavior 
analysis approaches. The former focuses on feature 
extraction and automatic learning, and is a frequently 
used technique to detect or classify malware samples 
based on malware behavior. In contrast, the latter 
focuses on identifying malware behavior through a 
semantic understanding of the behavior data, and 
provides the ability to determine the capabilities (also 
called ‘malicious functionality’) of malware samples. 
Although syntactic-based analysis approaches are 
common in malware analysis (Feng et al., 2017), they 
are rarely used for behavior-based malware analysis. 

Compared to machine learning based analysis 
approaches, semantics-based analysis approaches 
benefit from several advantages, and a prominent one 
is that the analysis process and result are easy to  
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interpret. However, semantic rules must be defined 
manually by a trained security analyst. In the next few 
paragraphs, the typical process and categories of both 
approaches are discussed in detail. 

2.2.1  Machine learning based behavior analysis 

Given the massive quantities of malware sam-
ples, approaches based on machine learning play an 
important role in automatic behavior analysis. By 
extracting behavior features from the behavior data, 
machine learning based approaches can learn feature 
models automatically. Existing research results show 
that machine learning approaches can perform well in 
detecting malware accurately and in a lightweight 
manner (Rieck et al., 2008; Bayer et al., 2009). An 
outline of machine learning based behavior analysis 
approaches is discussed in the following basic steps: 

1. Feature extraction. Features consist of be-
havior data with a high-dimensional vector space. 
Through feature extraction, behavior data is trans-
formed into digital values using techniques such as 
N-grams. 

Additionally, feature selection is necessary for 
acquiring excellent feature sets for model training and 
reducing the dimension of the original feature set. 
Some typical statistical analysis methods have been 
used for feature selection, such as principal compo-
nent analysis (PCA) (Mithal et al., 2016), information 
gain (IG) (Moonsamy et al., 2012), and the chi-square 
test (CHI) (Belaoued and Mazouzi, 2015). 

2. Model construction and training. Based on an 
extracted feature set, analysts construct behavior 
models with machine learning algorithms and train 
the model with training data. Support vector machines 
(SVMs) and decision trees (DTs) have been widely 
used to set up behavior models based on the behavior 
features. 

3. Evaluation and comparison. Test data is used 
to examine and analyze the effectiveness of the 
trained model. Comparing test results, analysts can 
optimize the model by adjusting related arguments. 

In the following part, common types of behavior 
feature and feature extraction approaches in the liter-
ature are discussed in detail. 

System call features are commonly used to ex-
press the behavior characteristics of malware samples. 
For example, Kirat and Vigna (2015) presented 
MalGene, a bioinformatics-inspired system that ex-

tracts system call traces and uses inverse document 
frequency (IDF) to filter out the common execution 
events. Rieck et al. (2011) proposed a behavior anal-
ysis system in which system call sequences are ex-
tracted and represented with MIST instructions. Then 
an N-gram method is used to generate a feature set 
based on the collected system call data. Naval et al. 
(2015) extracted system call traces by monitoring 
malware execution and transforming the traces into 
ordered system-call graphs (OSCGs). In addition, in 
our previous studies (Wang et al., 2015; Liu et al., 
2016), system call frequencies and import functions 
were used as features to cluster malware samples into 
groups, and then a shared nearest neighbor (SNN) 
method was leveraged to compute the distance of two 
samples. 

The second kind of behavior feature is a control 
flow feature, where a graph containing various exe-
cution paths can be taken from the malware samples. 
Recently, control flow graphs with different repre-
sentations have been used. 

Zhao et al. (2014) extracted the opcode se-
quences of each block according to the control flow 
structure of malware samples, and then computed 
with a hash function to form the feature space. Then, 
the features were selected with IDF and used to find 
classification rules between malicious and benign 
samples. 

Ding et al. (2014) translated the control flow 
graph of malware samples into an execution tree to 
obtain execution paths. They concatenated all possi-
ble paths to form an opcode stream and used an 
N-gram method to extract behavior features. In addi-
tion, IG and DF were used to select the behavior 
features. 

The feature space in Cesare et al. (2014) is a 
decomposition of a set of control flow graphs into 
either fixed-size k-subgraphs or N-gram strings. The 
feature selection approach counts the number of times 
each feature occurs, and the top 500 are reserved as 
the selected features. 

The function call feature is the third type of be-
havior feature, extracted using static analysis tech-
niques and often regarded as an effective feature in 
malware behavior analysis. 

Cen et al. (2015) proposed an approach which 
extracts function call information from the disas-
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sembly code of malware samples. Using statistical 
techniques, the frequencies of API calls are counted, 
and then truncated into either 0 or 1 with a pre-defined 
threshold to simplify the feature representation. Fi-
nally, to reduce the dimensions of the feature space, 
IG and CHI techniques are used for feature selection. 

Zhang et al. (2014) proposed a malware classi-
fication system called DroidSIFT. The system in-
cludes graph databases from function call APIs and 
produces graph-based feature vectors, which bear a 
non-zero similarity score in one element only if the 
corresponding graph is the best match with one of the 
graphs. 

Ding et al. (2013) extracted function call APIs 
from the PE file and selected APIs according to the 
following criteria: (1) choose the APIs that have high 
distribution values; (2) choose the APIs that have a 
strong ability for classification. Finally, features are 
reduced via an objective-oriented association mining 
algorithm that can mine the strong discrimination 
power association rules. 

A data flow feature is also used for behavior 
features in existing approaches. Based on data flow 
information, Wüchner et al. (2015) proposed a new 
graph called the ‘quantitative data flow graph 
(QDFG)’. QDFGs are incrementally built on relevant 
data flow system events. The features are computed 
by mapping a QDFG node to a real number and cal-
culating the number through statistic methods. 

Several works use hybrid features, which con-
tain many different types of feature behavior data, to 
enhance the expression ability of behavior features. 

Yerima et al. (2015) considered two kinds of 
features, critical API calls and the applied application 
permissions. Shan and Wang (2014) clustered mal-
ware samples using features defined on atomic be-
haviors and correlated suspicious objects. Watson et 
al. (2016) proposed an online cloud anomaly detec-
tion approach. In this approach, the first feature is the 
system-level data including memory usage, peak 
memory usage, and the number of threads and han-
dles. The second is network-level data including 
packets, bytes, and flows per address pair. For each 
feature, the authors use mean, variance, and standard 
deviation approaches to build statistical meta-features. 
Mohaisen and Alrawi (2015) proposed a behavior- 
based automatic approach in which the features 
consist of behaviors in three groups: file system, 

registry, and network activities. 
While the features are extracted and selected, 

machine learning models and algorithms for behavior 
analysis need to be built. Typically, there are two 
categories for the machine learning model, i.e., su-
pervised learning for malware detection and classifi-
cation with a labeled malware sample set, and unsu-
pervised learning for malware clustering without 
labels.  

Supervised learning is often used for malware 
classification. This kind of model is built upon fea-
tures and labels for malware samples. SVM (Watson 
et al., 2016), naive Bayes (Zhang et al., 2016), and 
neural networks (Dahl et al., 2013) are general algo-
rithms of supervised learning. In contrast, unsuper-
vised learning models group behavior features based 
on the similarity of each feature vector. K-nearest 
neighbor (KNN) (Ding et al., 2014) and locality sen-
sitive hashing based clustering (Bayer et al., 2009) are 
examples. 

For the last step in machine learning approaches, 
some evaluation and comparison metrics are used to 
validate the effectiveness of behavior features and the 
machine learning model. The common evaluation 
indices include true positive (TP), false positive (FP), 
true negative (TN), and false negative (FN). TP is the 
number of malware (benign) samples that are classi-
fied as malware. TN is the number of benign (mal-
ware) samples that are classified as benign. Accuracy 
and F-measure (Wüchner et al., 2015) are two indices 
used to evaluate the performance of the proposed 
analysis approaches. ROC curve, a two-dimensional 
graph, is a comprehensive approach to express the 
relationships between the TP and FP indices. It de-
picts relative tradeoffs between TP and FP (Elhadi et 
al., 2014). The area under the ROC curve can be 
calculated as a single value between 0 and 1.0. The 
closer the value to 1.0, the higher the TP rate, and the 
lower the FP rate. 

The classification of machine learning based 
behavior analysis approaches in existing works will 
be discussed in Section 3.1. 

2.2.2  Semantics-based behavior identification 

Semantics-based behavior analysis has recently 
attracted more attention, and it plays an important role 
in behavior-based malware detection. The goal of 
semantics-based behavior analysis is to identify  
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malicious behavior based on a semantic understand-
ing of the extracted behavior data. To achieve that 
goal, some works focus on defining semantic rules 
and behavioral knowledge, which are summarized 
from the manual analysis process. In addition, there 
are some works that focus on identifying what kinds 
of malicious behavior a malware sample has. 

According to various behavior data types, sev-
eral kinds of semantic rules have already been defined, 
such as system call grouping rules (Das et al., 2016), 
system call association rules (Naval et al., 2015), and 
malicious behavior decision rules (Das et al., 2016). 
Semantically, a decision rule for self-extraction be-
havior can be explained as actions that read the con-
tent of an owned file and write it to another executable 
file which is regarded as malicious. However, the 
purposes of these semantic rules are various. The 
semantic rules on behavior data aim to eliminate the 
semantic difference in behavior data with the same 
meaning but different function names, or arguments. 
Moreover, the semantic rules for complex behavior 
aim to provide a global view of behavior capabilities 
for a given malware sample.  

To understand malware behavior, Alazab et al. 
(2010) and Alazab (2015) presented an automatic 
method to understand the malicious purpose of mal-
ware samples. By mapping the API from the MSDN 
library to meaningful behaviors, such as search files, 
delete files, and change files, the malicious behavior 
can be identified based on a statistical analysis of 
function call sequences. 

Comparetti et al. (2010) presented a system to 
determine the malicious functionality of malware 
samples. By extracting genotype models from dy-
namic program traces, new malware samples can be 
identified with a well-designed genotype-matching 
algorithm. 

Jacob et al. (2009) proposed an attribute- 
grammar-based behavior analysis model. The work is 
a part of the worldwide observatory of malicious 
behaviors and attack threats (WOMBAT) research 
project, and is supported by the seventh framework 
programme of the European Community. In that 
model, a detection layer is designed to define associ-
ation rules between behavior attributes and works as a 
behavior automata to infer behavior capabilities over 
behavior data, and a profiling layer to profile the 
behavior capabilities of each malware family. 

Thomson et al. (2015) leveraged the ACT-R tool 
with cognitively inspired inference mechanisms to 
identify high-level behavior capabilities of a malware 
sample. Behavior attributes for each malware sample 
are identified and some association rules are defined 
to infer the high-level behavior capabilities of each 
malware family. The results showed that in total 30 
behavior capabilities were identified. Two kinds of 
ACT-R cognitive models, instance-based (Lebiere  
et al., 2015) and rule-based (Nunes et al., 2015), are 
adopted to generate the probability distribution over a 
set of malware families, and to infer a set of likely 
high-level behavior capabilities based upon that  
distribution. 

Huang HD et al. (2011, 2014) also presented an 
approach to assist semantic understanding of malware 
behavior based on semantic technologies and com-
putational intelligence methods. In their approach, 
fuzzy ontology and fuzzy markup language (FML) 
are integrated to bridge the semantic gap between 
behavior data and malware behavior. 

Many studies have been conducted to identify 
malware behaviors on Windows and Android plat-
forms. Several kinds of malware behaviors have been 
studied recently. The typical malicious behaviors 
include spyware-like behaviors (Kirda et al., 2006), 
rootkit behaviors (Yin et al., 2008), evasive behaviors 
(Sun et al., 2011; Kirat et al., 2014; Kirat and Vigna, 
2015; Zhang et al., 2015), environment-sensitive 
behaviors (also called ‘trigger-based behaviors’) 
(Martignoni et al., 2009; Lindorfer et al., 2011), and 
network scan behaviors (Inoue et al., 2009). These 
malware behaviors have good interpretability when 
analyzing and detecting malware samples. 

To identify spyware-like behaviors, Kirda et al. 
(2006) proposed a spyware detection system based on 
COM browser functions and Windows API calls from 
both dynamic analysis and static analysis. Some sus-
picious API calls about user privacy and resource 
consumption were derived and used to characterize 
spyware-like behaviors. 

Naval et al. (2015) adopted the asymptotic  
equipartition property (AEP) for program semantic 
analysis to extract semantically relevant paths, 
providing the ability to semantically understand sys-
tem call sequences. By constructing an ordered  
system-call graph (OSCG) and its transition proba-
bility matrix (TPM) from a program execution trace, 



Yu et al. / Front Inform Technol Electron Eng   2018 19(5):583-603 590

the work can identify the suspicious behavior of 
malware binaries. The results showed that the pro-
posed detection model can obtain high detection ac-
curacy and is less vulnerable to call-injection attacks. 

UNVEIL (Kharraz et al., 2016) is an automatic 
system built on top of the Cuckoo sandbox to detect 
ransomware. A monitoring driver is designed in 
UNVEIL to obtain file system I/O activities from 
existing ransomware families, and three main I/O 
access patterns are identified. With these malicious 
behavior patterns, suspicious file system activities 
can be detected. The experimental results show that 
UNVEIL has performed better than existing AV 
scanners, and can also be used to detect zero-day 
ransomware. 

Poeplau et al. (2014) proposed a static analysis 
approach to automatically detect dynamic code 
loading behavior in Android applications. Five kinds 
of code loading techniques, including class loader, 
package context, native code, runtime execution, and 
APK installation, are carefully analyzed, and the 
common method invocations in these techniques are 
identified. Some heuristics are implemented to look 
for invocations of methods that are associated with 
the respective techniques. Finally, the suspicious 
method invocation, together with its parameters, is 
used to conclude whether an application will load 
external code. 

MALT (Zhang et al., 2015) is a bare-metal de-
bugging system that employs a system management 
mode to transparently analyze armored malware. As a 
hardware-assisted debugging system, MALT is im-
mune to hypervisor attacks and can analyze and de-
bug hypervisor-based rootkits and OS kernels. The 
experimental results demonstrate that MALT remains 
transparent in the presence of all tested packers, anti- 
debugging, anti-virtualization, and anti-emulation 
techniques. 

MineSweeper (Brumley et al., 2008) is an 
automatic analysis system proposed to identify trigger- 
based behaviors. By leveraging mixed concrete and 
symbolic execution to automatically and iteratively 
explore different code paths, MineSweeper can detect 
the existence of trigger-based behavior and find the 
conditions that trigger such hidden behaviors. 

PolyUnpack (Royal et al., 2006) is another 
system whose aim is to extract the hidden code of 
unpack malware. The unpack-executing behaviors are 

formally defined, and an algorithm is also presented 
to identify and extract its hidden code by monitoring 
changes in the malware binary during its execution. 

TriggerScope (Fratantonio et al., 2016) is a sys-
tem based on program analysis techniques to detect 
malicious application logic executed or triggered 
under certain circumstances. A trigger analysis tech-
nique is proposed to automatically identify the logic 
bomb triggers in Android applications. First, a sym-
bolic execution technique is used in TriggerScope to 
recover a CFG annotated with block predicates and 
abstract program states at all program points. Second, 
full path predicates are recovered and checked for 
whether they represent potential triggers for mali-
cious behavior. Finally, suspicious trigger conditions 
for logic bombs that guard potentially sensitive func-
tionality are identified. 

Martignoni et al. (2008) proposed a layered ar-
chitecture for detecting malicious behaviors. The 
architecture uses hierarchical behavior graphs to infer 
high-level behaviors from the composition of low- 
level system calls. With the embedded data-flow 
analysis technique, the meaningful malicious behav-
iors, and especially with behaviors such as evasive 
malware behavior, the alternative sequences of events 
that achieve the same goal are also detected. The 
experimental results show that the architecture can 
thoroughly identify high-level behaviors. In Martig- 
noni et al. (2009), a cloud-based framework was 
presented for analyzing trigger-based malicious be-
havior. By monitoring Windows system calls and 
their outputs in multiple execution environments, 
their framework can reveal all the possible trigger 
conditions of malicious programs. 

Targetdroid (Suarez-Tangil et al., 2014) is a new 
system which can identify targeted malware and 
trigger malicious behaviors. In the system, a set of 
program activities is used to characterize malware 
behavior. In particular, a behavior-triggering stochas-
tic model is developed based on Markov chains to 
express control flow. The typical triggering condi-
tions, including user presence, location, time, and 
hardware, are carefully considered in the system. 

To reveal malicious behaviors that are typically 
exhibited during malware execution, Christodorescu 
and his team presented several methods (Christodo- 
rescu et al., 2008; Fredrikson et al., 2010) to 
automatically mine specifications of malicious 
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behavior. For example, HOLMES (Fredrikson et al., 
2010) is a behavior-based malware detector, which 
defines a new form of discriminative specification for 
describing the unique properties of malware samples, 
and combines graph mining with synthesized dis-
criminative specification. A behavior mining tech-
nique is introduced in HOLMES to find a set of be-
haviors that maximizes the quantity over the given 
malware samples, by analyzing the dependence 
graphs from a positive subset and a negative set and 
identifying the subgraphs that are most useful in 
uniquely characterizing the programs in the positive 
subset. 

Rootkit behavior is a typical malicious behavior 
(Wang et al., 2008; Riley et al., 2009). By altering the 
legitimate kernel behavior of an operating system, a 
kernel rootkit provides the capability of hiding mali-
cious activities for user-level malware programs. 
Generally, it is difficult to discover rootkit behaviors 
with traditional monitoring systems. Several works 
focus on identifying the hooking behavior of kernel- 
level rootkits. 

K-Tracer (Lanzi et al., 2009) is a kernel rootkit 
analysis system built on top of the whole-system 
emulator QEMU. To obtain the behavior data for 
rootkits, K-Tracer contains a trace extractor engine to 
trace the execution of event handling code and gather 
machine-level instructions and memory access in the 
Windows kernel. Furthermore, an offline slicing en-
gine is designed to analyze data flow, in which a dy-
namic slicing technique is used to identify malicious 
data manipulation activities. 

SigGENE (Shosha et al., 2012) is another rootkit 
analysis system which monitors the kernel objects, 
profiles malicious kernel objects in the malware 
sample, and determines invariant kernel-object fea-
ture values during malware execution. SigGENE 
gathers behavior data by monitoring kernel function 
calls and kernel data objects in the virtual machine 
monitor (VMM). To generate an evasion-resistant 
malware signature, the system uses kernel object 
profiles developed during dynamic monitoring and 
introspection of malware execution and determines 
invariant values over the kernel object’s features. 

To reveal malicious network activities, Inoue et 
al. (2009) proposed a malware analysis system which 
contains a black hole sandbox using coordinated 
movements of the dummy DNS and a packet filter to 

observe the unadulterated scan activity. 
Special attention is paid to security-sensitive 

behaviors in Android applications. Beaucamps et al. 
(2010, 2012) proposed a malware analysis system, 
which uses a model checking technique to identify 
high-level behaviors, such as information leak be-
haviors. In the system, a program behavior is formally 
defined as an infinite subset of a sequence of library 
calls, and a set of behavior patterns with semantic 
understanding are expressed using first-order linear 
temporal logic (FOLTL) formulas. AppContext (Yang 
et al., 2015) is another analysis system that aims to 
differentiate malicious and benign mobile applica-
tions behaviors. AppContext extracts the contexts of 
security-sensitive behaviors and performs static 
analysis to locate the security-sensitive behaviors. 
Apposcopy (Feng et al., 2014) and ASTROID (Feng 
et al., 2017) are two semantics-based approaches for 
identifying a prevalent class of Android malware that 
steals private user information. With a new form of 
program representation called the ‘inter-component 
call graph (ICCG)’ and malware signatures that de-
scribe semantic characteristics of malware families, 
Apposcopy can efficiently detect Android applica-
tions that have certain control- and data-flow  
properties. 

2.2.3  Hybrid approach 

Specifically, hybrid approaches based on both 
machine learning and semantics are designed to en-
hance detection capabilities. By performing a seman-
tic analysis on the behavior data first, a corresponding 
feature extraction method can be designed with a 
better understanding of the behavior data. 

Cao et al. (2013), together with the derivative 
work by Miao et al. (2016), presented a behavior 
abstraction method based on function calls. The func-
tion name, string type arguments, and pre-defined 
system constants in the Windows system were all 
abstracted with fine-grained abstraction rules. Terms 
that have the same meaning or functionality were 
grouped into one abstract description. Based on these 
rules, 443 minimal security-relevant behaviors were 
abstracted. Then, the abstracted minimal security- 
relevant behaviors were used to construct a feature 
space. Compared with the existing function call API 
2-gram approach, the experimental results showed 
that the proposed method can achieve better classifi-
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cation accuracy and AUC in most machine learning 
algorithms. 

CrowdSoucre (Saxe et al., 2014), a system pro-
posed by Invincea Labs, is a statistical natural lan-
guage processing system for inferring behavior func-
tionality of malware samples. CrowdSource learns 
mapping rules between low-level APIs and high-level 
software functionality by leveraging millions of 
online technical documents. An inference module is 
proposed in the CrowdSource system to extract func-
tion call information and compute the probability of 
behavior capabilities. The research results showed 
that at least 14 high-level malware capabilities can be 
identified in unpacked malware samples. Moreover, 
CrowdSource includes a Bayesian network model to 
compute the final probabilities of high-level capabil-
ities for given malware samples. 

Lee et al. (2015) presented a malware detection 
approach based on the N-gram features of system 
calls. The system call names, together with the pa-
rameter type, critical value, and parameter code, are 
all considered behavior features. An algorithm is also 
proposed for automatically grouping malware sam-
ples with similar behavior data. They used the local 
clustering coefficient to analyze the closeness of a 
malware sample to a malware family. 

GuardOL (Das et al., 2016) is a hardware- 
enhanced architecture, whose aim is to capture the 
high-level semantics of malicious behaviors. GuardOL 
defines four types of semantic rules on system calls 
and uses a frequency-centric model to construct fea-
tures using system call patterns of known malware 
and benign samples. In comparison with other similar 
work, GuardOL can learn a frequency-centralized 
model (FCM) on malware semantics behavior, and 
has a lower false positive rate. 

To derive the behavior that a family of malware 
samples has in common, Park et al. (2013) proposed a 
graph clustering method to extract a subgraph, which 
stands for the common behavior of the malware 
samples. In this method, a graph is developed to 
represent kernel objects and their attributes for each 
malware sample. 

DREBIN (Arp et al., 2014) is a lightweight 
method for detection of Android malware that enables 
identifying malicious applications. By performing a 
static analysis and gathering the broad features of 
Android applications, typical behavior patterns can be 

automatically identified and used to explain the 
analysis results of DREBIN. The experimental results 
showed that DREBIN enables efficiently scanning 
large amounts of applications and that it can be ap-
plied directly on mobile phones to protect users from 
installing applications from untrusted sources. 

DroidMat (Wu et al., 2012) is a static feature- 
based method for detecting Android malware. 
DroidMat extracts information from the manifest file 
and API calls, and applies a K-means algorithm that 
enhances the capability of recognizing different in-
tentions. Finally, DroidMat uses a KNN algorithm to 
classify the applications as benign or malicious. 

DroidMiner (Yang et al., 2014) is another static 
analysis system, which automatically mines mali-
cious behavior patterns from known Android mal-
ware and seeks out the behavior patterns in other 
unknown Android applications. Based on behavior 
graph generation and machine learning techniques, 
DroidMiner can automatically discover and extract 
malware behavior patterns for malware detection and 
classification. 

Chuang and Wang (2015) proposed a malware 
detection system based on static analysis and machine 
learning techniques. In the system, a hybrid-model 
classifier, combining the normal behavior model and 
malicious behavior model, is built to improve detec-
tion accuracy. The experimental results showed that 
the proposed hybrid-model classifier can label 79.4% 
applications with a false positive of zero in the la-
beling process.  

2.3  Visualization techniques of behavior analysis 

Visualization techniques have been introduced 
by several works to support intuitive understanding of 
type, quantity, and the relationships of malware be-
havior data. Based on visualization techniques, the 
structural characteristics of behavior data are easier to 
discover and investigate. Existing visualization tech-
niques, such as the similarity map, sequence graph, 
and tree-map, are used to explore behavior relation-
ships between malware samples, aiding malware 
analysis in a visual way. 

Josh et al. from Invincea Labs proposed two 
visualization methods within an interactive display 
that present information as a graphical result (Saxe et 
al., 2012). The first viewing method is a map-like 
visualization of similarity among malware samples 
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based on lower dimensional projection of a similarity 
matrix. The second provides insight into similarities 
and differences between samples in terms of system 
call sequences. The proposed visualization ap-
proaches allow users to understand the overall struc-
tural similarity of a malware family, and inspect how 
behavioral traits are distributed over the family. 

Yavvari et al. (2012) presented a behavioral map 
represented as a bitmap of projections. These projec-
tions can be viewed as shared traits and are repre-
sented by rows and arranged according to clusters. 
Each row shows the shared behavior data of one 
malware sample with respect to the reference. An 
additional column on the map also visualizes how 
much of the behavior data for a malware sample is 
shared with the reference. 

Grégio et al. (2012) presented a visualization 
framework to aid security analysts in observing 
malware behavior data. Two interactive visualization 
tools, behavioral spiral, and malicious timeline, are 
developed to express malicious chains of behavior 
events and to spot interesting actions. The goal of the 
behavioral spiral tool is to represent temporal actions. 
The spiral representation is useful in illustrating the 
big picture covering sample behavior and allowing 
quick visual comparisons between behavior data 
when there are various malware samples. 

Trinius et al. (2009) used a visualization tech-
nique to enhance understanding of malware behavior. 
They used tree maps and thread graphs to display the 
actions of malware samples and to help analysts 
identify malicious behavior. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Discussion and suggestions for behavior 
analysis 

3.1  Analysis and discussion 

In this section, we will discuss the categorization 
of related works from several perspectives: (1) the 
goal of the work, (2) what kind of behavior data are 
obtained, and (3) which analysis techniques are used 
for a specific behavior-analysis goal. 

3.1.1  Classification of analysis goals 

The goals of existing behavior analysis ap-
proaches fall into three general categories: (1) mal-
ware detection, which provides the ability to dis-
criminate malware from benign samples, (2) malware 
classification, which can determine to which classes 
the given samples belong, and (3) malware evolution, 
revealing the ancestor-descendant relationship of 
malware samples within a family. Table 1 shows the 
categories of analysis goals within related works. 

Current research in the field focuses on both 
malware detection and classification, and both efforts 
try to group malware samples according to similar 
behavior data. Based on the number of different 
classes in the sample set, detection and classification 
techniques are chosen according to actual needs. 
Generally speaking, malware classification is a multi- 
classification issue, and malware detection can be 
considered a two-class classification issue. Moreover, 
analysis methods, behavior data, and evaluation in-
dicators in the two techniques are nearly identical. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Comparison of different analysis goals 

Analysis goal Related works 
Detection Kirda et al., 2006; Brumley et al., 2008; Martignoni et al., 2008, 2009; Rieck et al., 2008; Wang et al., 

2008; Yin et al., 2008; Inoue et al., 2009; Jacob et al., 2009; Lanzi et al., 2009; Riley et al., 2009; 
Alazab et al., 2010; Beaucamps et al., 2010; Comparetti et al., 2010; Fredrikson et al., 2010; Huang HD 
et al., 2011, 2014; Lindorfer et al., 2011; Sun et al., 2011; Babić et al., 2012; Beaucamps et al., 2012; 
Shosha et al., 2012; Wu et al., 2012; Bos, 2013; Cao et al., 2013; Palahan et al., 2013; Park et al., 2013; 
Arp et al., 2014; Ding et al., 2014; Feng et al., 2014; Kirat et al., 2014; Poeplau et al., 2014; Saxe et al., 
2014; Shan and Wang, 2014; Shi et al., 2014; Sirinda, 2014; Suarez-Tangil et al., 2014; Yang C et al., 
2014; Alazab, 2015; Cen et al., 2015; Kirat and Vigna, 2015; Lebiere et al., 2015; Naval et al., 2015; 
Nunes et al., 2015; Thomson et al., 2015; Wüchner et al., 2015; Yang W et al., 2015; Yerima et al., 
2015; Das et al., 2016; Fratantonio et al., 2016; Galal et al., 2016; Kharraz et al., 2016; Miao et al., 
2016; Watson et al., 2016; Feng et al., 2017 

Classification Rieck et al., 2008; Bayer et al., 2009; Cao et al., 2013; Dahl et al., 2013; Ding et al., 2013; Cesare et al., 
2014; Shi et al., 2014; Yang C et al., 2014; Zhang M et al., 2014; Alazab, 2015; Chuang and Wang, 
2015; Mohaisen and Alrawi, 2015; Wang et al., 2015 

Evolution Bailey et al., 2007; Dumitras and Neamtiu, 2011; Jang et al., 2013; Anderson et al., 2014; Lee et al., 2015
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However, for malware evolution, there are some 
differences. In malware evolution research, the rela-
tionships considered between different samples in-
clude not only similarity, but also the degree of sim-
ilarity as well as the order of malware samples in a 
family evolution graph. Thus, behavior data is used to 
compute the similarity, distance, and likelihood or-
ders of two samples. The malware evolution rela-
tionship can provide extremely useful information in 
many security scenarios. For example, it can help 
analysts understand trends over time and make in-
formed decisions about which malware samples to 
analyze first. This is particularly important since the 
order in which the variants of a malware family are 
captured does not necessarily mirror the evolution of 
the malware. 

Generally, malware evolution is considered a 
special case in software evolution. In the literature 
malware evolution is treated as a composition of the 
code transformations (Walenstein and Lakhotia, 
2012). However, the scope of behavior-based mal-
ware evolution analysis is broader than that for soft-
ware evolution. The behavior characteristics, such as 
similarity of function call APIs, branches in control 
flow graphs, and high-level semantic behavior, can be 
considered the key factors for behavior changes 
throughout the malware evolution process. Although 
only a few studies focus on behavior-based evolution 
analysis, some achievements have been achieved. For 
example, Lee et al. (2015) leveraged the cosine sim-
ilarity method to compute the cosine similarities be-
tween API sequence subsets, and they used a local 
clustering coefficient method to calculate the close-
ness of a malware sample to a family. Thus, the evo-
lution relationships can be reconstructed using these 
metrics. 

Jang et al. (2013) systematically studied soft-
ware lineage inference based on dynamic analysis. A 
system called the ‘ILINE system’ proposed in the 
work can automatically infer the software lineage of 
malware samples. The experiment results revealed 
that partial-order mismatches and graph-arc edit dis-
tance often yield the most meaningful comparisons. 

Anderson et al. (2014) presented a novel algo-
rithm based on a graphical lasso to analyze malware 
evolution using both static and dynamic data. With 
the graphical lasso, the behavior data, which contains 
the dynamic instruction traces and the dynamic sys-

tem call traces, is used to create an evolution graph. 
The evolution graph offers analysts a better under-
standing of how a malware sample has evolved by 
clearly illustrating the lineage of its family. 

Dumitras and Neamtiu (2011) proposed an 
evolutionary analysis approach to reconstruct the 
evolution trees using control-flow graphs, the idea for 
which was inspired from software evolution theories. 
The approach can convert control flow graphs into 
time series, where each data point corresponds to a 
node in the graph and the time it was observed, and 
the amplitude for each data point corresponds to the 
node’s topological rank in a control flow graph. The 
techniques based on time-series similarity can prevent 
zero-day attacks because if the time series of an un-
known sample is similar to the time series of a known 
malware sample, the sample could possibly be a new, 
previously unknown strain of an existing malware 
family. 

3.1.2  Classification of behavior data levels 

One interesting aspect of malware behavior 
analysis is that different levels of behavior data are 
collected or extracted in existing studies. Given the 
scope of the different kinds of behavior data, we can 
classify behavior data types into different levels (Ta-
ble 2). 

The first level of behavior data contains the 
original behavior data obtained from both dynamic 
and static analyses, such as system calls and function 
calls. For example, in some studies (Babić et al., 2011, 
2012; Palahan et al., 2013; Sirinda, 2014), system call 
APIs from program execution are collected by the 
proposed systems to group malware samples. How-
ever, in other related works, the contexts of malware 
execution, such as function argument and environ-
ment variables, and even the program execution sys-
tem states, are collected as factors that are related to 
malware behavior. 

The second level contains control flow and data 
flow data, which are more complex than the original 
behavior data. At this level, the relationships of API 
calls, such as sequence, branch, and loop, are also 
considered. The behavior model extracted from both 
control flow and data flow is more useful for compu-
ting the similarity of different malware samples. 

The third level covers the behavior attributes of 
security-critical system resources. Behavior attributes  
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performed on system resources, such as File, Registry, 
Process, and Network, are self-explanatory. For ex-
ample, a delete action means that an existing file or 
directory is deleted. In contrast to the original be-
havior data, behavior attributes leverage the meaning 
of function APIs on system resources, and thus the 
basic functionalities of the malware samples can be 
understood, which is useful in understanding malware 
behavior. 

The last level is a higher level of abstraction 
behavior. For example, malware abstraction behav-
iors, such as Keylogger and Exfiltrator, can be used to 
detect malicious content in the behaviors of malware 
samples. With a semantic understanding of abstrac-
tion behaviors, malware behaviors can be shown 
clearly and intuitively, and the effectiveness of mal-
ware detection is significantly improved with clear 
boundaries that indicate the malware behavior  
specifications. 

Choosing behavior data depends on the analysis 
goals, malware confusion techniques, and analysis 
methods. For example, Anderson et al. (2014) used 
six different types of behavior data with the aim of 
covering the most popular data views. The reason is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
that different malware families leverage different 
obfuscation techniques, which limits the information 
on a single data view. Table 2 also demonstrates that 
the behavior data extracted from both dynamic anal-
ysis and static analysis, or behavior data in the dif-
ferent levels, can be used for behavior-based malware 
analysis. 

3.1.3  Classification of analysis techniques 

As discussed in Section 2.2, several kinds of 
machine learning models can be used for behavior 
analysis. Some basic algorithms, such as naive Bayes, 
decision tree, and random forest, are usually used for 
malware classification. The categories of learning 
algorithms in the existing behavior analysis ap-
proaches are shown in Table 3.  

Although typical algorithms provide good de-
tection results, some deep learning algorithms, such 
as multilayer perceptrons and neural networks, are 
also used to enhance the stability of machine learning 
based behavior analysis approaches and reduce the 
workload for feature engineering in traditional ma-
chine learning approaches. For example, Dahl et al. 
(2013) presented a malware classification approach  

Table 2  Comparison of different levels of behavior data 

Behavior data level Related works 
Origin system call data from dynamic 

analysis (arguments and context 
information included) 

Bailey et al., 2007; Rieck et al., 2008; Bayer et al., 2009; Inoue et al., 2009;  
Jacob et al., 2009; Lanzi et al., 2009; Martignoni et al., 2009; Riley et al., 2009; 
Beaucamps et al., 2010; Comparetti et al., 2010; Huang HD et al., 2011, 2014; 
Lindorfer et al., 2011; Beaucamps et al., 2012; Bos, 2013; Dahl et al., 2013; 
Kirat et al., 2014; Shan and Wang, 2014; Suarez-Tangil et al., 2014; Kirat and 
Vigna, 2015; Lee et al., 2015; Yang W et al., 2015; Das et al., 2016; Galal et al., 
2016 

Origin system call data from dynamic 
analysis (arguments and context 
information NOT included) 

Martignoni et al., 2008; Babicć et al., 2011, 2012; Dumitras and Neamtiu, 2011; 
Sun et al., 2011; Palahan et al., 2013; Anderson et al., 2014; Sirinda, 2014; 
Naval et al., 2015; Wang et al., 2015; Kharraz et al., 2016 

Origin function call data and program 
information from static analysis 

Brumley et al., 2008; Fredrikson et al., 2010; Wu et al., 2012; Cao et al., 2013; 
Ding et al., 2013; Arp et al., 2014; Yang C et al., 2014; Saxe et al., 2014;  
Feng et al., 2014, 2017; Poeplau et al., 2014; Shi et al., 2014; Cen et al., 2015; 
Chuang and Wang, 2015; Yerima et al., 2015; Fratantonio et al., 2016;  
Miao et al., 2016 

Origin data from both dynamic and 
static analysis 

Kirda et al., 2006; Alazab et al., 2010; Alazab, 2015 

Kernel function call and hard-
ware-level system states from  
dynamic analysis 

Yin et al., 2008; Wang et al., 2008; Lanzi et al., 2009; Neugschwandtner et al., 
2010; Shosha et al., 2012; Park et al., 2013; Watson et al., 2016 

Data flow Martignoni et al., 2009; Fredrikson et al., 2010; Feng et al., 2014; Yuan et al., 
2014; Wüchner et al., 2015 

Control flow Comparetti et al., 2010; Cesare et al., 2014; Ding et al., 2014; Zhao et al., 2014 
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using random projections to reduce the dimension of 
the original input space. The experimental results 
showed that an error rate of 0.42% can be achieved. 

Besides, the ensemble method is a popular be-
havior analysis approach. Its idea is to generate mul-
tiple predictors used in combination to classify new 
unseen samples, and its goal is to obtain better pre-
dictive performance compared with any of the con-
stituent learning algorithms alone. For example, 
Yerima et al. (2015) used NB, DT, and RF methods to 
provide comprehensive results for malware analysis. 
Galal et al. (2016) proposed a detection framework 
which employs various classification techniques to 
evaluate the accuracy. 

Table 4 shows a comparison of different analysis 
techniques in the existing investigations. Both ma-
chine learning based and semantics-based approaches 
have attracted wide attention in academia. As dis-
cussed in Section 2.2, semantics-based approaches 
use semantic rules or behavior knowledge to provide 
an in-depth understanding of malware behaviors. A 
prominent advantage of a semantics-based approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

is that it has a wide range for adaptation and may be 
used to analyze malware samples on different plat-
forms, such as a Windows platform with PE format, 
Linux platform with ELF format, and Android plat-
form with DEX format. The Android platform is an 
emerging field constantly threatened by malware. 

3.2  Challenges and suggestions 

Based on the discussion and analysis in Section 
3.1, we can summarize several considerable chal-
lenges and suggestions. Although there are many 
works on malware behavior analysis, more efforts are 
still needed for better effectiveness and accuracy. The 
challenges under consideration are as follows. 

3.2.1  Coverage of behavior data 

Although behavior analysis based on program 
execution traces has been widely studied, a prominent 
problem of dynamic trace extraction is that the cov-
erage of dynamic traces will be affected by conditions 
in virtual environments. Various dynamic traces can 
be obtained in different virtual environments and 

Table 3  Statistics from machine learning algorithms

Learning algorithm Related works 

DBM-tree Cesare et al., 2014 

Objective-oriented association mining (OOA) Ding et al., 2013 

Hidden Markov model (HMM) Canfora et al., 2016 

Multilayer perceptron (MLP) Mohaisen and Alrawi, 2015; Das et al., 2016 

Naive Bayes (NB) Cao et al., 2013; Yang C et al., 2014; Zhang M et al., 2014; Cen et al., 
2015; Yerima et al., 2015; Zhang H et al., 2016  

Decision tree (DT) Dube et al., 2012; Yang C et al., 2014; Ding et al., 2014; Zhao et al., 2014; 
Yerima et al., 2015; Galal et al., 2016   

Support vector machine (SVM) Rieck et al., 2008; Cao et al., 2013; O’Kane et al., 2013; Arp et al., 2014; 
Yang C et al., 2014; Ding et al., 2014; Chuang and Wang, 2015; Mo-
haisen and Alrawi, 2015; Galal et al., 2016; Zhang H et al., 2016; Miao 
et al., 2016; Watson et al., 2016 

K-nearest neighbor (KNN) Wu et al., 2012; Ding et al., 2014; Alazab, 2015; Cen et al., 2015; Mo-
haisen and Alrawi, 2015; Wang et al., 2015  

Bayesian network (BN) Cao et al., 2013; Zhang H et al., 2016 

Self-defined cluster algorithm Bayer et al., 2009; Wu et al., 2012; Shan and Wang, 2014 

Random forest (RF)/random tree (RT) Cao et al., 2013; Yang C et al., 2014; Zhao et al., 2014; Wüchner et al., 
2015; Yerima et al., 2015; Galal et al., 2016  

Hierarchical clustering Bailey et al., 2007; Shi et al., 2014; Kirat and Vigna, 2015 

Self-defined cluster and classification  
algorithm 

Rieck et al., 2011; Lee et al., 2015 

Logistic regression (LR) Mohaisen and Alrawi, 2015; Yerima et al., 2015 

Principal component analysis (PCA) Cesare et al., 2014 

Neural network (NN) Dahl et al., 2013 

J48 Cao et al., 2013 



Yu et al. / Front Inform Technol Electron Eng   2018 19(5):583-603 597

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

different contexts. On the other hand, malware sam-
ples may use evasion techniques to avoid being de-
tected. Thus, the behavior traces for different variants 
of the same malware family may be different, which 
will affect the effectiveness of the behavior analysis 
approaches. 

A better solution is to combine dynamic and 
static analyses to obtain behavior data from multiple 
sources and employ multiple learning algorithms to 
find a weighted combination of the data sources, 
which yields the best detection accuracy in behavior 
analysis. 

Another solution is to obtain the full behavioral 
dependency graph of a malware sample using a 
tainted analysis technique (Yuan et al., 2014) and 
symbolic execution technique (Fratantonio et al., 
2016). With the powerful computing and storage 
capabilities of modern computers, these advanced 
program analysis techniques are becoming increas-
ingly popular and practical. The full behavior infor-
mation can be obtained using advanced program 
analysis techniques without regard to the evasions on 
the part of malware behaviors. 

3.2.2  Unknown behavior detection 

The detection of unknown samples is a goal of 
malware behavior analysis. It is known that an in-
herent problem of signature-based detection tech-
niques is the inability to detect unknown threats.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the contrary, by abstracting semantic representa-
tions of malware behaviors, unknown samples can be 
detected even for a previously unknown family. To 
achieve this, behavior analysis techniques must de-
fine semantic rules and construct semantic inference 
models. Aiming at unknown malware detection, con-
trol flow based and semantics-based behavior analy-
sis approaches are optional solutions to model mal-
ware behaviors. With semantic concepts such as be-
havior profiles and behavior capabilities, a high-level 
understanding of malware behaviors can be obtained 
and then detection rules based on the semantic con-
cepts can be well designed. 

According to the discussion in Section 2.2.2, 
there are several semantics-based analysis methods, 
for example, semantically relevant path analysis 
(Naval et al., 2015) and high-level semantic analysis 
of system calls (Das et al., 2016). These techniques 
can capture the high-level semantics of malicious 
behaviors; therefore, they are well suited for captur-
ing new and syntactically different but semantically 
similar unknown malware samples. 

3.2.3  Malware adversarial behavior 

Adversarial machine learning is an emerging 
field of study against an adversarial opponent (Huang 
L et al., 2011). By attacking machine learning algo-
rithms, feature space, training and test data, adver-
sarial machine learning can affect the effectiveness of 

Table 4  Comparison of different analysis techniques 

Analysis techniques Related works 

Learning-based approaches Bailey et al., 2007; Rieck et al., 2008; Bayer et al., 2009; Martignoni et al., 2009; Dumitras and 
Neamtiu, 2011; Sun et al., 2011; Dahl et al., 2013; Ding et al., 2013; Anderson et al., 2014; 
Arp et al., 2014; Kirat et al., 2014; Saxe et al., 2014; Shan and Wang, 2014; Shi et al., 2014; 
Zhang M et al., 2014; Alazab, 2015; Cen et al., 2015; Mohaisen and Alrawi, 2015; Naval et 
al., 2015; Wang et al., 2015; Wüchner et al., 2015; Yerima et al., 2015; Galal et al., 2016; 
Watson et al., 2016 

Semantic-based approaches Jacob et al., 2009; Alazab et al., 2010; Babić et al., 2011, 2012; Bos, 2013; Palahan et al., 
2013; Sirinda, 2014  

Semantic-based approaches Kirda et al., 2006; Brumley et al., 2008; Yin et al., 2008; Wang et al., 2008; Bayer et al., 2009; 
Inoue et al., 2009; Lanzi et al., 2009; Riley et al., 2009; Beaucamps et al., 2010, 2012; 
Comparetti et al., 2010; Fredrikson et al., 2010; Neugschwandtner et al., 2010; Dumitras 
and Neamtiu, 2011; Lindorfer et al., 2011; Shosha et al., 2012; Jang et al., 2013; Huang HD 
et al., 2014; Shan and Wang, 2014; Poeplau et al., 2014; Lebiere et al., 2015; Naval et al., 
2015; Thomson et al., 2015; Yang W et al., 2015; Kharraz et al., 2016; Fratantonio et al., 
2016 

Hybrid approaches Lindorfer et al., 2011; Wu et al., 2012; Cao et al., 2013; Park et al., 2013; Arp et al., 2014; 
Saxe et al., 2014; Yang C et al., 2014; Chuang and Wang, 2015; Kirat and Vigna, 2015; Lee 
et al., 2015; Das et al., 2016; Miao et al., 2016 
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machine learning based approaches (Biggio et al., 
2014). The test data can be carefully manipulated by a 
malicious adversary to exploit specific vulnerabilities 
of learning algorithms. In fact, in the process of ma-
chine learning based behavior analysis, behavior data, 
such as system call traces, system call arguments, and 
dynamic instruction traces, is easily distorted by 
modifying the malware sample and inserting forging 
code segments. 

For example, Ming et al. (2015, 2017) presented 
a new attack method called the ‘replacement attack’, 
which operates by concealing similar behaviors 
among malware samples to poison the behavior data. 
Two categories of attack strategies are designed to 
modify system call flows, including inserting redun-
dant dependency and system call dependency graph 
mutations. The experimental results showed that a 
replacement attack can not only subvert approaches 
based on behavior similarity measurement, such as 
the graph edit distance and the Jaccard index, but also 
impede behavior-based malware clustering ap-
proaches, such as locality-sensitive hashing and  
single-linkage hierarchical clustering. 

A countermeasure is to unify the behavior pat-
terns with semantic equivalent rules before any clas-
sification or clustering approach is applied to the 
behavior data. Another possible solution is to replace 
traditional machine learning algorithms with deep 
learning algorithms in the behavior analysis process, 
because the latter are more resistant to adversarial 
attacks. 

3.2.4  Malware evolution analysis 

The role of malware evolution analysis is two-
fold. First, the evolutionary history of a captured 
malware sample can speed up the security response to 
attack events. Second, evolutionary trends enable 
proactive development of defenses (Gupta et al., 
2009). Understanding the evolution direction and 
degree could yield new techniques for detecting and 
classifying unknown attacks. 

Rigorous experiments and empirical studies 
have demonstrated the demand for better approaches 
for malware evolution. For example, Zhou and Jiang 
(2012) revealed that malware families are evolving 
rapidly to circumvent detection by existing security 
solutions. The experimental results showed that the 
maximum detection rate of malware variants is 79.6% 

and the minimum is 20.2%. This result clearly illus-
trates a strong need for a better understanding of the 
malware evolution history and a better examination of 
the evolutionary trends in malware families. 

Unfortunately, many challenges stand in the way, 
for example, the lack of sufficient contextual data 
(such as the contextual information about a malware 
attack), the lack of metadata about the collection 
process of existing sample sets, the lack of ground 
truth, and the difficulty in developing tools and 
methods for rigorous data analysis. From another 
point of view, the rise in open source projects has 
greatly improved the complexity and range of mal-
ware evolutions by using or sharing open-source 
malware modules. 

We believe that the changes in malware samples, 
such as updating patches, adding new functionality 
modules, and forking and modifying open source 
modules, will affect the frequency of the behavior 
types, structural characteristics of control flow graphs, 
structural characteristics of system call graphs, high- 
level behavior attributes, etc. The frequency and 
characteristics are effective proof of malware evolu-
tion. Furthermore, these behavior proofs will be more 
stable and abundant than file structure proof from 
static analysis. Another advantage of behavior-based 
evolution research is that the behavior trends that 
malware variants have in common can be revealed. 

Another argument is that cluster-based machine 
learning can be used to cluster malware samples with 
similar behavioral characteristics to form malware 
associations. Thus, cluster-based techniques can as-
sist in the evolution analysis process. 

 
 

4  Conclusions 
 
Malware behavior analysis is one of the most 

important measures in the security response to mal-
ware threats in cyberspace. Although many studies 
have been conducted for malware behavior analysis, 
more efforts are still needed to understand the mecha-
nisms, regularity, and trends in malware behavior. 

In this paper, we aim to provide insight into the 
status of behavior analysis techniques. We have per-
formed a comprehensive review of the latest malware 
behavior analysis techniques and discussed the ex-
isting research classified from five different perspec-
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tives, clearly showing the advantages and disad-
vantages of existing analysis methods. Additionally, 
we have discussed some inadequacies and challenges 
that are currently not solved as well as several possi-
ble solutions to address the current shortcomings. It is 
important to understand the characteristics and trends 
in various malware behaviors to promote the devel-
opment of efficient and accurate malware behavior 
analysis techniques. 
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