
Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 583

A survey of malware behavior description and analysis*

Bo YU‡, Ying FANG, Qiang YANG, Yong TANG, Liu LIU
College of Computer, National University of Defense Technology, Changsha 410073, China

E-mail: yubo0615@nudt.edu.cn; fangying15@nudt.edu.cn; q.yang@nudt.edu.cn; ytang@nudt.edu.cn; hotmailliuliu@163.com

Received Nov. 26, 2016; Revision accepted Feb. 21, 2017; Crosschecked May 8, 2018

Abstract: Behavior-based malware analysis is an important technique for automatically analyzing and detecting malware, and it
has received considerable attention from both academic and industrial communities. By considering how malware behaves, we can
tackle the malware obfuscation problem, which cannot be processed by traditional static analysis approaches, and we can also
derive the as-built behavior specifications and cover the entire behavior space of the malware samples. Although there have been
several works focusing on malware behavior analysis, such research is far from mature, and no overviews have been put forward to
date to investigate current developments and challenges. In this paper, we conduct a survey on malware behavior description and
analysis considering three aspects: malware behavior description, behavior analysis methods, and visualization techniques. First,
existing behavior data types and emerging techniques for malware behavior description are explored, especially the goals, prin-
ciples, characteristics, and classifications of behavior analysis techniques proposed in the existing approaches. Second, the in-
adequacies and challenges in malware behavior analysis are summarized from different perspectives. Finally, several possible
directions are discussed for future research.

Key words: Malware behavior; Static analysis; Dynamic Analysis; Behavior data expression; Behavior analysis; Machine

learning; Semantics-based analysis; Behavior visualization; Malware evolution
https://doi.org/10.1631/FITEE.1601745 CLC number: TP309.5

1 Introduction

The quantity and complexity of malware sam-
ples have increased considerably over the past few
years. Recent malware samples appear to be highly
modular and less functionally typical. This develop-
ment has been further fueled by the introduction of
malware generation tools and the reuse of different
malware modules. The situation has become more
serious with the expansion of open source technology.
In response, there is an urgent need to facilitate new
malware analysis techniques to automatically identify
and characterize malware variants.

Malware analysis techniques can be generally
classified into two categories: static and dynamic.

Static approaches focus on binary file information
and disassembly codes from a malware sample, but
lack a sample execution. Thus, this approach is usu-
ally regarded as a lightweight method for malware
classification. In contrast, dynamic approaches ex-
tract behavioral data by executing the sample in a
virtual environment, and then analyze the malware
behavior based on logged behavior data. By providing
an intuitive understanding of the malware behavior,
dynamic approaches help analysts understand the
intentions behind the behavior and analyze trends in
behavioral evolution.

Over the long term, academia has paid attention
to malware analysis techniques for improving detec-
tion accuracy and efficiency. Recently much research
has been devoted to dynamic analysis, outperforming
static analysis methods by neutralizing the effects of
obfuscation and morphing techniques (Damodaran et
al., 2017). Most dynamic analysis techniques rely on
system call traces to analyze the malicious behaviors
of malware samples.

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (No. 61472437)

 ORCID: Bo YU, http://orcid.org/0000-0001-6576-5555
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2018

Review:

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601745&domain=pdf

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 584

The understanding of malware behavior analysis
in this paper is twofold: behavior analysis using dy-
namic behavior data and behavior analysis using
static behavior data. We have taken this approach
because both forms of behavioral data are the basis of
behavior analysis, and they can be used to understand
malware behaviors and for behavior-based malware
detection. The existing research demonstrates that a
combination of features from both dynamic and static
analysis can yield the best accuracy in behavior-based
malware analysis (Anderson et al., 2012; Alazab,
2015).

Malware behavior analysis aims to answer three
questions: (1) How can malware behavior data be
described in a general way? (2) How can malware
samples be detected and classified by leveraging
behavior data? (3) What kinds of malicious behavior
can malware samples really carry out? Thus, the main
contributions of related works typically include be-
havior data extraction and expression, and behavior-
based malware identification and analysis. Addition-
ally, we would argue that behavior visualization is
also an important part of behavior analysis because it
is useful in assisting the behavior analysis process and
understanding the behavior analysis results.

Much research has been carried out within the
scope of malware behavior analysis. Several virtual
environments have been designed for collecting be-
havior data, and many approaches have been pro-
posed for in-depth malware behavior analysis.
However, a global view of the related research is rare.
Egele et al. (2012) explored several dynamic malware
analysis techniques and tools. They focused on mal-
ware types, propagation modes, and collection
methods for behavior data, which are not of primary
importance in our work. Bayer et al. (2014) discussed
only the classification of system behaviors on the
Anubis platform. In contrast, we investigate an even
broader scope of behavior data types.

Another similar work (Razak et al., 2016) was
aimed to analyze the research trends in malware
analysis with a bibliometric method. To uncover the
global trends and frontiers in malware publications,
research articles are retrieved from Web of Science
and analyzed using the following criteria: impact
journals, highly cited articles, research areas,
productivity, keyword frequency, institutions, and
authors. Although Razak et al. (2016) presented an

overview of malware research trends, it does not
cover topics such as classification of behavior data
and behavior analysis methods, which are key topics
in our work.

Additionally, studies on behavior analysis of
Android malware fall in the scope of our discussions
in this survey, because analysis goals, analysis
methods, and behavior data types of existing studies
on Windows and Android platforms are the same.

2 Malware behavior analysis techniques

As discussed above, behavior data forms the
basis of analyzing malware behavior, and a well-
designed behavior expression is useful for improving
the efficiency and effectiveness of behavior analysis.
Thus, in this section, we discuss behavior data types
and behavior expression first, and then investigate
typical behavior analysis methods in recent works.

2.1 Malware behavior expression

2.1.1 Behavior data types

During the behavior data extraction phase, be-
havior data is collected in a static approach or dy-
namic approach and then formalized for storage and
subsequent analysis. The behavior data extracted
through a static approach includes function call name,
file structure information, import tables, strings, con-
trol flows, and so on. IDA Pro is a common tool to
assist in behavior data extraction from the disassem-
bly code of malware binaries. For example, Shi et al.
(2014) extracted dynamic link library information to
construct the feature space for malware samples.

However, in a dynamic analysis approach, a
virtual environment is needed to execute malware
samples and collect program traces. Sandboxes are
typical systems used for this purpose, including the
Cuckoo sandbox (Cuckoo, 2017), Anubis (Bayer et
al., 2006), and Ether (Dinaburg et al., 2008). These
monitoring systems have been discussed carefully in
the literature (Egele et al., 2012; Kruegel, 2014;
Bauman et al., 2015). To design a good hypervisor-
based monitoring system, Bauman et al. (2015) con-
ducted a survey that focuses on the practicality,
flexibility, coverage, and automation of existing vir-
tual monitors, and discussed different approaches to
tackle the semantic problems of observed behavior

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 585

data. In contrast, our survey discusses behavior data
types and popular techniques and tools for extracting
behavior data.

The common types of behavior data generated in
a dynamic approach include system call names, to-
gether with arguments, return values, and environ-
ment variables in context. In particular, data flow,
system call graphs, and system states are gathered.
dAnubis (Neugschwandtner et al., 2010) is a QEMU-
based system designed to monitor malicious behavior
in the system device driver. The behavior data gath-
ered by dAnubis includes kernel function calls, sys-
tem call table hooks, and device communications
data.

Kernel data and system states are also consid-
ered behavioral data in malware behavior analysis.
For example, Bailey et al. (2007) defined the behav-
ioral fingerprint of malware samples in terms of
non-transient state changes that the samples impose
on an operating system. With the extracted system
state data, the malware profiles of individual samples
are defined and malware samples are grouped ac-
cording to the differences between any two profiles.
Lanzi et al. (2009) used kernel data to monitor kernel
behavior on sensitive data manipulations.

In addition to traditional static analysis and dy-
namic monitoring systems, program analysis ap-
proaches have been used in recent works to assist in
malware behavior analysis, with the aim of automat-
ically generating full control flow and data flow in-
formation. Typical program analysis techniques in-
clude tainted analysis techniques (Moser et al., 2007;
Fratantonio et al., 2016), value set analysis techniques
(VSA) (Leder et al., 2009), and symbolic execution
techniques (Brumley et al., 2008; Yuan et al., 2014).

Symbolic execution techniques are used to cap-
ture full function call sequences, while tainted analy-
sis techniques combined with a full system emulation
approach obtain the complete data flow. For example,
Leder et al. (2009) leveraged VSA techniques to ex-
tract sets of characteristic values for detecting and
classifying metamorphic malware. In a similar work,
Brumley et al. (2008) employed symbolic execution
to explore full paths and find trigger-based behavior.
The results of the work show that the system can
capture the full range of malware behaviors and
identify all actions along the different paths. Moser
et al. (2007) presented a system based on a tainted

analysis technique to explore multiple execution
paths in Windows executables, the goal of which was
to obtain a more comprehensive overview of the ac-
tions that an unknown sample could perform. Addi-
tionally, the system automatically provided the in-
formation for conditions under which a malicious
action would be triggered.

2.1.2 Malware behavior description

Behavior description encompasses behavioral
data at different levels and forms the basis for mal-
ware behavior analysis. Malware-behavior descrip-
tion methods include XML-based formats, semantic
description methods (e.g., ontology-based), several
well-defined description languages, and several con-
cepts based on formal description and information-
sharing specifications for threat intelligence.

The XML-based format, which is a common
type to express structural information, can also be
used to express program traces such as function call
traces. However, the different levels of XML are in-
adequate when it comes to expressing behavior data.
For example, the semantic behavioral data, such as
semantics-related system call paths and semantics-
related control flows, cannot be expressed well in
XML. As a result, several abstract description lan-
guages have been proposed for this purpose.

To bridge the semantic gap in malware behaviors,
Huang et al. (2011) leveraged fuzzy ontology (FO)
and fuzzy markup language (FML) to assist in a se-
mantic understanding of malware behaviors, and pre-
sented a semantic methodology to develop a know-
ledge model related to malware behaviors and design
an intelligent system for behavior identification.

The malware instruction set (MIST) (Trinius et
al., 2011) is a new representation of system calls with
input and output arguments. This representation is
optimized for effective and efficient behavior analysis
with machine learning techniques, and can also be
used as a meta language to unify behavior reports.

Malware attribute enumeration and characteri-
zation (MEAC) (Kirillov et al., 2011) is another be-
havior representation approach that attempts to de-
velop a legally defensible definition of malware, and
it can be used to define the groups of behaviors and
attributes that have the potential to be malicious based
on executions of the malware.

Abstract malicious behavioral language (AMBL)

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 586

(Deschamps, 2008; Jacob et al., 2009) is a specifica-
tion language that provides a platform- and
language-agnostic framework for the detection of
malware samples. AMBL is well formed, thus guar-
anteeing a possible order for semantic attribute valu-
ation. The behavioral signatures declared in AMBL
make it easy to build efficient and resilient parsing
automata for malware detection.

Malware analysis intermediate language (MAIL),
a language presented by Alam et al. (2015), can be
used to express an annotated control flow graph of
malware samples. With the support of MAIL, mal-
ware detection is achieved by subgraph and pattern
matching on annotated control flow graphs.

The behavior specification unit (BSU) (Pleszkoch
and Linger, 2015) is an abstraction language proposed
by the Oak Ridge National Laboratory, which offers a
higher level of program behavior so that non-
practitioners can easily understand it. BSUs are gen-
eral and implementation-independent specifications
that can be applied to malware analysis.

The behavior specification language (BSL)
(Martignoni et al., 2008) is a language that consists of
a set of primitives that can be used to define addi-
tional behaviors. In creating compositions of some
basic primitives, BSLs can specify and then identify
novel semantically meaningful behaviors.

The signature specification language (SSL)
(Feng et al., 2014) is a language presented to define
the semantic properties of complex behavior data
such as control flow and data flow. SSL consists of
three kinds of predicates to express component type,
control-flow relationship, and data-flow relationship
separately, and it can provide a new form to construct
a high-level representation of malware behavior
signatures.

Besides these languages, some new concepts
have been proposed to express malware behavior,
including the behavior profile (Bayer et al., 2009),
behavior patterns (Beaucamps et al., 2010), and
common behavior template (Shan and Wang, 2014).
The behavior profile concept (Bayer et al., 2009) can
accurately describe fine-grained system call events.
The operation objects of a system call can vary sig-
nificantly even when the samples exhibit the same
behavior. A behavior profile includes not only a set of
actions (such as read, write, and create), but also op-
eration objects, as well as the type of operations and

the dependences. To formally describe malware be-
havior, Beaucamps et al. (2010, 2012) presented a
malware analysis approach based on first-order linear
temporal logic (FOLTL). The behavior pattern con-
cept is defined as a regular language that describes
high-level properties or a relevant behavior sequence.
In this approach, the defined term, algebras, consists
of Trace, Action, and Data extracted from program
traces, and a program behavior is defined by a set of
traces that satisfies a closed FOLTL formula. For the
common behavior concept, the template (Shan and
Wang, 2014) is formed by a set of discrete behaviors
that enable the behavior matching process to occur
more quickly and also the storage space to be smaller
and fixed. This approach is accurate since it identifies
a malware based on combined behaviors.

These proposed description languages and con-
cepts provide a rich expression of behavior data, and
facilitate the design of behavioral analysis methods.
Some information-sharing specifications have also
been proposed for cybersecurity situational awareness,
real-time network defense, and sophisticated threat
analysis. For example, TAXII (Haass et al., 2015),
STIX (Barnum, 2012), and CybOX (Kokkonen et al.,
2016) are community-driven technical specifications
designed to enable automated information sharing
and they can help in standardizing threat information.

2.2 Behavior analysis method

According to the emphasis of different analysis
processes, we can classify existing behavior analysis
methods into two classes, machine-learning-based
analysis approaches and semantics-based behavior
analysis approaches. The former focuses on feature
extraction and automatic learning, and is a frequently
used technique to detect or classify malware samples
based on malware behavior. In contrast, the latter
focuses on identifying malware behavior through a
semantic understanding of the behavior data, and
provides the ability to determine the capabilities (also
called ‘malicious functionality’) of malware samples.
Although syntactic-based analysis approaches are
common in malware analysis (Feng et al., 2017), they
are rarely used for behavior-based malware analysis.

Compared to machine learning based analysis
approaches, semantics-based analysis approaches
benefit from several advantages, and a prominent one
is that the analysis process and result are easy to

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 587

interpret. However, semantic rules must be defined
manually by a trained security analyst. In the next few
paragraphs, the typical process and categories of both
approaches are discussed in detail.

2.2.1 Machine learning based behavior analysis

Given the massive quantities of malware sam-
ples, approaches based on machine learning play an
important role in automatic behavior analysis. By
extracting behavior features from the behavior data,
machine learning based approaches can learn feature
models automatically. Existing research results show
that machine learning approaches can perform well in
detecting malware accurately and in a lightweight
manner (Rieck et al., 2008; Bayer et al., 2009). An
outline of machine learning based behavior analysis
approaches is discussed in the following basic steps:

1. Feature extraction. Features consist of be-
havior data with a high-dimensional vector space.
Through feature extraction, behavior data is trans-
formed into digital values using techniques such as
N-grams.

Additionally, feature selection is necessary for
acquiring excellent feature sets for model training and
reducing the dimension of the original feature set.
Some typical statistical analysis methods have been
used for feature selection, such as principal compo-
nent analysis (PCA) (Mithal et al., 2016), information
gain (IG) (Moonsamy et al., 2012), and the chi-square
test (CHI) (Belaoued and Mazouzi, 2015).

2. Model construction and training. Based on an
extracted feature set, analysts construct behavior
models with machine learning algorithms and train
the model with training data. Support vector machines
(SVMs) and decision trees (DTs) have been widely
used to set up behavior models based on the behavior
features.

3. Evaluation and comparison. Test data is used
to examine and analyze the effectiveness of the
trained model. Comparing test results, analysts can
optimize the model by adjusting related arguments.

In the following part, common types of behavior
feature and feature extraction approaches in the liter-
ature are discussed in detail.

System call features are commonly used to ex-
press the behavior characteristics of malware samples.
For example, Kirat and Vigna (2015) presented
MalGene, a bioinformatics-inspired system that ex-

tracts system call traces and uses inverse document
frequency (IDF) to filter out the common execution
events. Rieck et al. (2011) proposed a behavior anal-
ysis system in which system call sequences are ex-
tracted and represented with MIST instructions. Then
an N-gram method is used to generate a feature set
based on the collected system call data. Naval et al.
(2015) extracted system call traces by monitoring
malware execution and transforming the traces into
ordered system-call graphs (OSCGs). In addition, in
our previous studies (Wang et al., 2015; Liu et al.,
2016), system call frequencies and import functions
were used as features to cluster malware samples into
groups, and then a shared nearest neighbor (SNN)
method was leveraged to compute the distance of two
samples.

The second kind of behavior feature is a control
flow feature, where a graph containing various exe-
cution paths can be taken from the malware samples.
Recently, control flow graphs with different repre-
sentations have been used.

Zhao et al. (2014) extracted the opcode se-
quences of each block according to the control flow
structure of malware samples, and then computed
with a hash function to form the feature space. Then,
the features were selected with IDF and used to find
classification rules between malicious and benign
samples.

Ding et al. (2014) translated the control flow
graph of malware samples into an execution tree to
obtain execution paths. They concatenated all possi-
ble paths to form an opcode stream and used an
N-gram method to extract behavior features. In addi-
tion, IG and DF were used to select the behavior
features.

The feature space in Cesare et al. (2014) is a
decomposition of a set of control flow graphs into
either fixed-size k-subgraphs or N-gram strings. The
feature selection approach counts the number of times
each feature occurs, and the top 500 are reserved as
the selected features.

The function call feature is the third type of be-
havior feature, extracted using static analysis tech-
niques and often regarded as an effective feature in
malware behavior analysis.

Cen et al. (2015) proposed an approach which
extracts function call information from the disas-

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 588

sembly code of malware samples. Using statistical
techniques, the frequencies of API calls are counted,
and then truncated into either 0 or 1 with a pre-defined
threshold to simplify the feature representation. Fi-
nally, to reduce the dimensions of the feature space,
IG and CHI techniques are used for feature selection.

Zhang et al. (2014) proposed a malware classi-
fication system called DroidSIFT. The system in-
cludes graph databases from function call APIs and
produces graph-based feature vectors, which bear a
non-zero similarity score in one element only if the
corresponding graph is the best match with one of the
graphs.

Ding et al. (2013) extracted function call APIs
from the PE file and selected APIs according to the
following criteria: (1) choose the APIs that have high
distribution values; (2) choose the APIs that have a
strong ability for classification. Finally, features are
reduced via an objective-oriented association mining
algorithm that can mine the strong discrimination
power association rules.

A data flow feature is also used for behavior
features in existing approaches. Based on data flow
information, Wüchner et al. (2015) proposed a new
graph called the ‘quantitative data flow graph
(QDFG)’. QDFGs are incrementally built on relevant
data flow system events. The features are computed
by mapping a QDFG node to a real number and cal-
culating the number through statistic methods.

Several works use hybrid features, which con-
tain many different types of feature behavior data, to
enhance the expression ability of behavior features.

Yerima et al. (2015) considered two kinds of
features, critical API calls and the applied application
permissions. Shan and Wang (2014) clustered mal-
ware samples using features defined on atomic be-
haviors and correlated suspicious objects. Watson et
al. (2016) proposed an online cloud anomaly detec-
tion approach. In this approach, the first feature is the
system-level data including memory usage, peak
memory usage, and the number of threads and han-
dles. The second is network-level data including
packets, bytes, and flows per address pair. For each
feature, the authors use mean, variance, and standard
deviation approaches to build statistical meta-features.
Mohaisen and Alrawi (2015) proposed a behavior-
based automatic approach in which the features
consist of behaviors in three groups: file system,

registry, and network activities.
While the features are extracted and selected,

machine learning models and algorithms for behavior
analysis need to be built. Typically, there are two
categories for the machine learning model, i.e., su-
pervised learning for malware detection and classifi-
cation with a labeled malware sample set, and unsu-
pervised learning for malware clustering without
labels.

Supervised learning is often used for malware
classification. This kind of model is built upon fea-
tures and labels for malware samples. SVM (Watson
et al., 2016), naive Bayes (Zhang et al., 2016), and
neural networks (Dahl et al., 2013) are general algo-
rithms of supervised learning. In contrast, unsuper-
vised learning models group behavior features based
on the similarity of each feature vector. K-nearest
neighbor (KNN) (Ding et al., 2014) and locality sen-
sitive hashing based clustering (Bayer et al., 2009) are
examples.

For the last step in machine learning approaches,
some evaluation and comparison metrics are used to
validate the effectiveness of behavior features and the
machine learning model. The common evaluation
indices include true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). TP is the
number of malware (benign) samples that are classi-
fied as malware. TN is the number of benign (mal-
ware) samples that are classified as benign. Accuracy
and F-measure (Wüchner et al., 2015) are two indices
used to evaluate the performance of the proposed
analysis approaches. ROC curve, a two-dimensional
graph, is a comprehensive approach to express the
relationships between the TP and FP indices. It de-
picts relative tradeoffs between TP and FP (Elhadi et
al., 2014). The area under the ROC curve can be
calculated as a single value between 0 and 1.0. The
closer the value to 1.0, the higher the TP rate, and the
lower the FP rate.

The classification of machine learning based
behavior analysis approaches in existing works will
be discussed in Section 3.1.

2.2.2 Semantics-based behavior identification

Semantics-based behavior analysis has recently
attracted more attention, and it plays an important role
in behavior-based malware detection. The goal of
semantics-based behavior analysis is to identify

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 589

malicious behavior based on a semantic understand-
ing of the extracted behavior data. To achieve that
goal, some works focus on defining semantic rules
and behavioral knowledge, which are summarized
from the manual analysis process. In addition, there
are some works that focus on identifying what kinds
of malicious behavior a malware sample has.

According to various behavior data types, sev-
eral kinds of semantic rules have already been defined,
such as system call grouping rules (Das et al., 2016),
system call association rules (Naval et al., 2015), and
malicious behavior decision rules (Das et al., 2016).
Semantically, a decision rule for self-extraction be-
havior can be explained as actions that read the con-
tent of an owned file and write it to another executable
file which is regarded as malicious. However, the
purposes of these semantic rules are various. The
semantic rules on behavior data aim to eliminate the
semantic difference in behavior data with the same
meaning but different function names, or arguments.
Moreover, the semantic rules for complex behavior
aim to provide a global view of behavior capabilities
for a given malware sample.

To understand malware behavior, Alazab et al.
(2010) and Alazab (2015) presented an automatic
method to understand the malicious purpose of mal-
ware samples. By mapping the API from the MSDN
library to meaningful behaviors, such as search files,
delete files, and change files, the malicious behavior
can be identified based on a statistical analysis of
function call sequences.

Comparetti et al. (2010) presented a system to
determine the malicious functionality of malware
samples. By extracting genotype models from dy-
namic program traces, new malware samples can be
identified with a well-designed genotype-matching
algorithm.

Jacob et al. (2009) proposed an attribute-
grammar-based behavior analysis model. The work is
a part of the worldwide observatory of malicious
behaviors and attack threats (WOMBAT) research
project, and is supported by the seventh framework
programme of the European Community. In that
model, a detection layer is designed to define associ-
ation rules between behavior attributes and works as a
behavior automata to infer behavior capabilities over
behavior data, and a profiling layer to profile the
behavior capabilities of each malware family.

Thomson et al. (2015) leveraged the ACT-R tool
with cognitively inspired inference mechanisms to
identify high-level behavior capabilities of a malware
sample. Behavior attributes for each malware sample
are identified and some association rules are defined
to infer the high-level behavior capabilities of each
malware family. The results showed that in total 30
behavior capabilities were identified. Two kinds of
ACT-R cognitive models, instance-based (Lebiere
et al., 2015) and rule-based (Nunes et al., 2015), are
adopted to generate the probability distribution over a
set of malware families, and to infer a set of likely
high-level behavior capabilities based upon that
distribution.

Huang HD et al. (2011, 2014) also presented an
approach to assist semantic understanding of malware
behavior based on semantic technologies and com-
putational intelligence methods. In their approach,
fuzzy ontology and fuzzy markup language (FML)
are integrated to bridge the semantic gap between
behavior data and malware behavior.

Many studies have been conducted to identify
malware behaviors on Windows and Android plat-
forms. Several kinds of malware behaviors have been
studied recently. The typical malicious behaviors
include spyware-like behaviors (Kirda et al., 2006),
rootkit behaviors (Yin et al., 2008), evasive behaviors
(Sun et al., 2011; Kirat et al., 2014; Kirat and Vigna,
2015; Zhang et al., 2015), environment-sensitive
behaviors (also called ‘trigger-based behaviors’)
(Martignoni et al., 2009; Lindorfer et al., 2011), and
network scan behaviors (Inoue et al., 2009). These
malware behaviors have good interpretability when
analyzing and detecting malware samples.

To identify spyware-like behaviors, Kirda et al.
(2006) proposed a spyware detection system based on
COM browser functions and Windows API calls from
both dynamic analysis and static analysis. Some sus-
picious API calls about user privacy and resource
consumption were derived and used to characterize
spyware-like behaviors.

Naval et al. (2015) adopted the asymptotic
equipartition property (AEP) for program semantic
analysis to extract semantically relevant paths,
providing the ability to semantically understand sys-
tem call sequences. By constructing an ordered
system-call graph (OSCG) and its transition proba-
bility matrix (TPM) from a program execution trace,

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 590

the work can identify the suspicious behavior of
malware binaries. The results showed that the pro-
posed detection model can obtain high detection ac-
curacy and is less vulnerable to call-injection attacks.

UNVEIL (Kharraz et al., 2016) is an automatic
system built on top of the Cuckoo sandbox to detect
ransomware. A monitoring driver is designed in
UNVEIL to obtain file system I/O activities from
existing ransomware families, and three main I/O
access patterns are identified. With these malicious
behavior patterns, suspicious file system activities
can be detected. The experimental results show that
UNVEIL has performed better than existing AV
scanners, and can also be used to detect zero-day
ransomware.

Poeplau et al. (2014) proposed a static analysis
approach to automatically detect dynamic code
loading behavior in Android applications. Five kinds
of code loading techniques, including class loader,
package context, native code, runtime execution, and
APK installation, are carefully analyzed, and the
common method invocations in these techniques are
identified. Some heuristics are implemented to look
for invocations of methods that are associated with
the respective techniques. Finally, the suspicious
method invocation, together with its parameters, is
used to conclude whether an application will load
external code.

MALT (Zhang et al., 2015) is a bare-metal de-
bugging system that employs a system management
mode to transparently analyze armored malware. As a
hardware-assisted debugging system, MALT is im-
mune to hypervisor attacks and can analyze and de-
bug hypervisor-based rootkits and OS kernels. The
experimental results demonstrate that MALT remains
transparent in the presence of all tested packers, anti-
debugging, anti-virtualization, and anti-emulation
techniques.

MineSweeper (Brumley et al., 2008) is an
automatic analysis system proposed to identify trigger-
based behaviors. By leveraging mixed concrete and
symbolic execution to automatically and iteratively
explore different code paths, MineSweeper can detect
the existence of trigger-based behavior and find the
conditions that trigger such hidden behaviors.

PolyUnpack (Royal et al., 2006) is another
system whose aim is to extract the hidden code of
unpack malware. The unpack-executing behaviors are

formally defined, and an algorithm is also presented
to identify and extract its hidden code by monitoring
changes in the malware binary during its execution.

TriggerScope (Fratantonio et al., 2016) is a sys-
tem based on program analysis techniques to detect
malicious application logic executed or triggered
under certain circumstances. A trigger analysis tech-
nique is proposed to automatically identify the logic
bomb triggers in Android applications. First, a sym-
bolic execution technique is used in TriggerScope to
recover a CFG annotated with block predicates and
abstract program states at all program points. Second,
full path predicates are recovered and checked for
whether they represent potential triggers for mali-
cious behavior. Finally, suspicious trigger conditions
for logic bombs that guard potentially sensitive func-
tionality are identified.

Martignoni et al. (2008) proposed a layered ar-
chitecture for detecting malicious behaviors. The
architecture uses hierarchical behavior graphs to infer
high-level behaviors from the composition of low-
level system calls. With the embedded data-flow
analysis technique, the meaningful malicious behav-
iors, and especially with behaviors such as evasive
malware behavior, the alternative sequences of events
that achieve the same goal are also detected. The
experimental results show that the architecture can
thoroughly identify high-level behaviors. In Martig-
noni et al. (2009), a cloud-based framework was
presented for analyzing trigger-based malicious be-
havior. By monitoring Windows system calls and
their outputs in multiple execution environments,
their framework can reveal all the possible trigger
conditions of malicious programs.

Targetdroid (Suarez-Tangil et al., 2014) is a new
system which can identify targeted malware and
trigger malicious behaviors. In the system, a set of
program activities is used to characterize malware
behavior. In particular, a behavior-triggering stochas-
tic model is developed based on Markov chains to
express control flow. The typical triggering condi-
tions, including user presence, location, time, and
hardware, are carefully considered in the system.

To reveal malicious behaviors that are typically
exhibited during malware execution, Christodorescu
and his team presented several methods (Christodo-
rescu et al., 2008; Fredrikson et al., 2010) to
automatically mine specifications of malicious

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 591

behavior. For example, HOLMES (Fredrikson et al.,
2010) is a behavior-based malware detector, which
defines a new form of discriminative specification for
describing the unique properties of malware samples,
and combines graph mining with synthesized dis-
criminative specification. A behavior mining tech-
nique is introduced in HOLMES to find a set of be-
haviors that maximizes the quantity over the given
malware samples, by analyzing the dependence
graphs from a positive subset and a negative set and
identifying the subgraphs that are most useful in
uniquely characterizing the programs in the positive
subset.

Rootkit behavior is a typical malicious behavior
(Wang et al., 2008; Riley et al., 2009). By altering the
legitimate kernel behavior of an operating system, a
kernel rootkit provides the capability of hiding mali-
cious activities for user-level malware programs.
Generally, it is difficult to discover rootkit behaviors
with traditional monitoring systems. Several works
focus on identifying the hooking behavior of kernel-
level rootkits.

K-Tracer (Lanzi et al., 2009) is a kernel rootkit
analysis system built on top of the whole-system
emulator QEMU. To obtain the behavior data for
rootkits, K-Tracer contains a trace extractor engine to
trace the execution of event handling code and gather
machine-level instructions and memory access in the
Windows kernel. Furthermore, an offline slicing en-
gine is designed to analyze data flow, in which a dy-
namic slicing technique is used to identify malicious
data manipulation activities.

SigGENE (Shosha et al., 2012) is another rootkit
analysis system which monitors the kernel objects,
profiles malicious kernel objects in the malware
sample, and determines invariant kernel-object fea-
ture values during malware execution. SigGENE
gathers behavior data by monitoring kernel function
calls and kernel data objects in the virtual machine
monitor (VMM). To generate an evasion-resistant
malware signature, the system uses kernel object
profiles developed during dynamic monitoring and
introspection of malware execution and determines
invariant values over the kernel object’s features.

To reveal malicious network activities, Inoue et
al. (2009) proposed a malware analysis system which
contains a black hole sandbox using coordinated
movements of the dummy DNS and a packet filter to

observe the unadulterated scan activity.
Special attention is paid to security-sensitive

behaviors in Android applications. Beaucamps et al.
(2010, 2012) proposed a malware analysis system,
which uses a model checking technique to identify
high-level behaviors, such as information leak be-
haviors. In the system, a program behavior is formally
defined as an infinite subset of a sequence of library
calls, and a set of behavior patterns with semantic
understanding are expressed using first-order linear
temporal logic (FOLTL) formulas. AppContext (Yang
et al., 2015) is another analysis system that aims to
differentiate malicious and benign mobile applica-
tions behaviors. AppContext extracts the contexts of
security-sensitive behaviors and performs static
analysis to locate the security-sensitive behaviors.
Apposcopy (Feng et al., 2014) and ASTROID (Feng
et al., 2017) are two semantics-based approaches for
identifying a prevalent class of Android malware that
steals private user information. With a new form of
program representation called the ‘inter-component
call graph (ICCG)’ and malware signatures that de-
scribe semantic characteristics of malware families,
Apposcopy can efficiently detect Android applica-
tions that have certain control- and data-flow
properties.

2.2.3 Hybrid approach

Specifically, hybrid approaches based on both
machine learning and semantics are designed to en-
hance detection capabilities. By performing a seman-
tic analysis on the behavior data first, a corresponding
feature extraction method can be designed with a
better understanding of the behavior data.

Cao et al. (2013), together with the derivative
work by Miao et al. (2016), presented a behavior
abstraction method based on function calls. The func-
tion name, string type arguments, and pre-defined
system constants in the Windows system were all
abstracted with fine-grained abstraction rules. Terms
that have the same meaning or functionality were
grouped into one abstract description. Based on these
rules, 443 minimal security-relevant behaviors were
abstracted. Then, the abstracted minimal security-
relevant behaviors were used to construct a feature
space. Compared with the existing function call API
2-gram approach, the experimental results showed
that the proposed method can achieve better classifi-

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 592

cation accuracy and AUC in most machine learning
algorithms.

CrowdSoucre (Saxe et al., 2014), a system pro-
posed by Invincea Labs, is a statistical natural lan-
guage processing system for inferring behavior func-
tionality of malware samples. CrowdSource learns
mapping rules between low-level APIs and high-level
software functionality by leveraging millions of
online technical documents. An inference module is
proposed in the CrowdSource system to extract func-
tion call information and compute the probability of
behavior capabilities. The research results showed
that at least 14 high-level malware capabilities can be
identified in unpacked malware samples. Moreover,
CrowdSource includes a Bayesian network model to
compute the final probabilities of high-level capabil-
ities for given malware samples.

Lee et al. (2015) presented a malware detection
approach based on the N-gram features of system
calls. The system call names, together with the pa-
rameter type, critical value, and parameter code, are
all considered behavior features. An algorithm is also
proposed for automatically grouping malware sam-
ples with similar behavior data. They used the local
clustering coefficient to analyze the closeness of a
malware sample to a malware family.

GuardOL (Das et al., 2016) is a hardware-
enhanced architecture, whose aim is to capture the
high-level semantics of malicious behaviors. GuardOL
defines four types of semantic rules on system calls
and uses a frequency-centric model to construct fea-
tures using system call patterns of known malware
and benign samples. In comparison with other similar
work, GuardOL can learn a frequency-centralized
model (FCM) on malware semantics behavior, and
has a lower false positive rate.

To derive the behavior that a family of malware
samples has in common, Park et al. (2013) proposed a
graph clustering method to extract a subgraph, which
stands for the common behavior of the malware
samples. In this method, a graph is developed to
represent kernel objects and their attributes for each
malware sample.

DREBIN (Arp et al., 2014) is a lightweight
method for detection of Android malware that enables
identifying malicious applications. By performing a
static analysis and gathering the broad features of
Android applications, typical behavior patterns can be

automatically identified and used to explain the
analysis results of DREBIN. The experimental results
showed that DREBIN enables efficiently scanning
large amounts of applications and that it can be ap-
plied directly on mobile phones to protect users from
installing applications from untrusted sources.

DroidMat (Wu et al., 2012) is a static feature-
based method for detecting Android malware.
DroidMat extracts information from the manifest file
and API calls, and applies a K-means algorithm that
enhances the capability of recognizing different in-
tentions. Finally, DroidMat uses a KNN algorithm to
classify the applications as benign or malicious.

DroidMiner (Yang et al., 2014) is another static
analysis system, which automatically mines mali-
cious behavior patterns from known Android mal-
ware and seeks out the behavior patterns in other
unknown Android applications. Based on behavior
graph generation and machine learning techniques,
DroidMiner can automatically discover and extract
malware behavior patterns for malware detection and
classification.

Chuang and Wang (2015) proposed a malware
detection system based on static analysis and machine
learning techniques. In the system, a hybrid-model
classifier, combining the normal behavior model and
malicious behavior model, is built to improve detec-
tion accuracy. The experimental results showed that
the proposed hybrid-model classifier can label 79.4%
applications with a false positive of zero in the la-
beling process.

2.3 Visualization techniques of behavior analysis

Visualization techniques have been introduced
by several works to support intuitive understanding of
type, quantity, and the relationships of malware be-
havior data. Based on visualization techniques, the
structural characteristics of behavior data are easier to
discover and investigate. Existing visualization tech-
niques, such as the similarity map, sequence graph,
and tree-map, are used to explore behavior relation-
ships between malware samples, aiding malware
analysis in a visual way.

Josh et al. from Invincea Labs proposed two
visualization methods within an interactive display
that present information as a graphical result (Saxe et
al., 2012). The first viewing method is a map-like
visualization of similarity among malware samples

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 593

based on lower dimensional projection of a similarity
matrix. The second provides insight into similarities
and differences between samples in terms of system
call sequences. The proposed visualization ap-
proaches allow users to understand the overall struc-
tural similarity of a malware family, and inspect how
behavioral traits are distributed over the family.

Yavvari et al. (2012) presented a behavioral map
represented as a bitmap of projections. These projec-
tions can be viewed as shared traits and are repre-
sented by rows and arranged according to clusters.
Each row shows the shared behavior data of one
malware sample with respect to the reference. An
additional column on the map also visualizes how
much of the behavior data for a malware sample is
shared with the reference.

Grégio et al. (2012) presented a visualization
framework to aid security analysts in observing
malware behavior data. Two interactive visualization
tools, behavioral spiral, and malicious timeline, are
developed to express malicious chains of behavior
events and to spot interesting actions. The goal of the
behavioral spiral tool is to represent temporal actions.
The spiral representation is useful in illustrating the
big picture covering sample behavior and allowing
quick visual comparisons between behavior data
when there are various malware samples.

Trinius et al. (2009) used a visualization tech-
nique to enhance understanding of malware behavior.
They used tree maps and thread graphs to display the
actions of malware samples and to help analysts
identify malicious behavior.

3 Discussion and suggestions for behavior
analysis

3.1 Analysis and discussion

In this section, we will discuss the categorization
of related works from several perspectives: (1) the
goal of the work, (2) what kind of behavior data are
obtained, and (3) which analysis techniques are used
for a specific behavior-analysis goal.

3.1.1 Classification of analysis goals

The goals of existing behavior analysis ap-
proaches fall into three general categories: (1) mal-
ware detection, which provides the ability to dis-
criminate malware from benign samples, (2) malware
classification, which can determine to which classes
the given samples belong, and (3) malware evolution,
revealing the ancestor-descendant relationship of
malware samples within a family. Table 1 shows the
categories of analysis goals within related works.

Current research in the field focuses on both
malware detection and classification, and both efforts
try to group malware samples according to similar
behavior data. Based on the number of different
classes in the sample set, detection and classification
techniques are chosen according to actual needs.
Generally speaking, malware classification is a multi-
classification issue, and malware detection can be
considered a two-class classification issue. Moreover,
analysis methods, behavior data, and evaluation in-
dicators in the two techniques are nearly identical.

Table 1 Comparison of different analysis goals

Analysis goal Related works
Detection Kirda et al., 2006; Brumley et al., 2008; Martignoni et al., 2008, 2009; Rieck et al., 2008; Wang et al.,

2008; Yin et al., 2008; Inoue et al., 2009; Jacob et al., 2009; Lanzi et al., 2009; Riley et al., 2009;
Alazab et al., 2010; Beaucamps et al., 2010; Comparetti et al., 2010; Fredrikson et al., 2010; Huang HD
et al., 2011, 2014; Lindorfer et al., 2011; Sun et al., 2011; Babić et al., 2012; Beaucamps et al., 2012;
Shosha et al., 2012; Wu et al., 2012; Bos, 2013; Cao et al., 2013; Palahan et al., 2013; Park et al., 2013;
Arp et al., 2014; Ding et al., 2014; Feng et al., 2014; Kirat et al., 2014; Poeplau et al., 2014; Saxe et al.,
2014; Shan and Wang, 2014; Shi et al., 2014; Sirinda, 2014; Suarez-Tangil et al., 2014; Yang C et al.,
2014; Alazab, 2015; Cen et al., 2015; Kirat and Vigna, 2015; Lebiere et al., 2015; Naval et al., 2015;
Nunes et al., 2015; Thomson et al., 2015; Wüchner et al., 2015; Yang W et al., 2015; Yerima et al.,
2015; Das et al., 2016; Fratantonio et al., 2016; Galal et al., 2016; Kharraz et al., 2016; Miao et al.,
2016; Watson et al., 2016; Feng et al., 2017

Classification Rieck et al., 2008; Bayer et al., 2009; Cao et al., 2013; Dahl et al., 2013; Ding et al., 2013; Cesare et al.,
2014; Shi et al., 2014; Yang C et al., 2014; Zhang M et al., 2014; Alazab, 2015; Chuang and Wang,
2015; Mohaisen and Alrawi, 2015; Wang et al., 2015

Evolution Bailey et al., 2007; Dumitras and Neamtiu, 2011; Jang et al., 2013; Anderson et al., 2014; Lee et al., 2015

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 594

However, for malware evolution, there are some
differences. In malware evolution research, the rela-
tionships considered between different samples in-
clude not only similarity, but also the degree of sim-
ilarity as well as the order of malware samples in a
family evolution graph. Thus, behavior data is used to
compute the similarity, distance, and likelihood or-
ders of two samples. The malware evolution rela-
tionship can provide extremely useful information in
many security scenarios. For example, it can help
analysts understand trends over time and make in-
formed decisions about which malware samples to
analyze first. This is particularly important since the
order in which the variants of a malware family are
captured does not necessarily mirror the evolution of
the malware.

Generally, malware evolution is considered a
special case in software evolution. In the literature
malware evolution is treated as a composition of the
code transformations (Walenstein and Lakhotia,
2012). However, the scope of behavior-based mal-
ware evolution analysis is broader than that for soft-
ware evolution. The behavior characteristics, such as
similarity of function call APIs, branches in control
flow graphs, and high-level semantic behavior, can be
considered the key factors for behavior changes
throughout the malware evolution process. Although
only a few studies focus on behavior-based evolution
analysis, some achievements have been achieved. For
example, Lee et al. (2015) leveraged the cosine sim-
ilarity method to compute the cosine similarities be-
tween API sequence subsets, and they used a local
clustering coefficient method to calculate the close-
ness of a malware sample to a family. Thus, the evo-
lution relationships can be reconstructed using these
metrics.

Jang et al. (2013) systematically studied soft-
ware lineage inference based on dynamic analysis. A
system called the ‘ILINE system’ proposed in the
work can automatically infer the software lineage of
malware samples. The experiment results revealed
that partial-order mismatches and graph-arc edit dis-
tance often yield the most meaningful comparisons.

Anderson et al. (2014) presented a novel algo-
rithm based on a graphical lasso to analyze malware
evolution using both static and dynamic data. With
the graphical lasso, the behavior data, which contains
the dynamic instruction traces and the dynamic sys-

tem call traces, is used to create an evolution graph.
The evolution graph offers analysts a better under-
standing of how a malware sample has evolved by
clearly illustrating the lineage of its family.

Dumitras and Neamtiu (2011) proposed an
evolutionary analysis approach to reconstruct the
evolution trees using control-flow graphs, the idea for
which was inspired from software evolution theories.
The approach can convert control flow graphs into
time series, where each data point corresponds to a
node in the graph and the time it was observed, and
the amplitude for each data point corresponds to the
node’s topological rank in a control flow graph. The
techniques based on time-series similarity can prevent
zero-day attacks because if the time series of an un-
known sample is similar to the time series of a known
malware sample, the sample could possibly be a new,
previously unknown strain of an existing malware
family.

3.1.2 Classification of behavior data levels

One interesting aspect of malware behavior
analysis is that different levels of behavior data are
collected or extracted in existing studies. Given the
scope of the different kinds of behavior data, we can
classify behavior data types into different levels (Ta-
ble 2).

The first level of behavior data contains the
original behavior data obtained from both dynamic
and static analyses, such as system calls and function
calls. For example, in some studies (Babić et al., 2011,
2012; Palahan et al., 2013; Sirinda, 2014), system call
APIs from program execution are collected by the
proposed systems to group malware samples. How-
ever, in other related works, the contexts of malware
execution, such as function argument and environ-
ment variables, and even the program execution sys-
tem states, are collected as factors that are related to
malware behavior.

The second level contains control flow and data
flow data, which are more complex than the original
behavior data. At this level, the relationships of API
calls, such as sequence, branch, and loop, are also
considered. The behavior model extracted from both
control flow and data flow is more useful for compu-
ting the similarity of different malware samples.

The third level covers the behavior attributes of
security-critical system resources. Behavior attributes

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 595

performed on system resources, such as File, Registry,
Process, and Network, are self-explanatory. For ex-
ample, a delete action means that an existing file or
directory is deleted. In contrast to the original be-
havior data, behavior attributes leverage the meaning
of function APIs on system resources, and thus the
basic functionalities of the malware samples can be
understood, which is useful in understanding malware
behavior.

The last level is a higher level of abstraction
behavior. For example, malware abstraction behav-
iors, such as Keylogger and Exfiltrator, can be used to
detect malicious content in the behaviors of malware
samples. With a semantic understanding of abstrac-
tion behaviors, malware behaviors can be shown
clearly and intuitively, and the effectiveness of mal-
ware detection is significantly improved with clear
boundaries that indicate the malware behavior
specifications.

Choosing behavior data depends on the analysis
goals, malware confusion techniques, and analysis
methods. For example, Anderson et al. (2014) used
six different types of behavior data with the aim of
covering the most popular data views. The reason is

that different malware families leverage different
obfuscation techniques, which limits the information
on a single data view. Table 2 also demonstrates that
the behavior data extracted from both dynamic anal-
ysis and static analysis, or behavior data in the dif-
ferent levels, can be used for behavior-based malware
analysis.

3.1.3 Classification of analysis techniques

As discussed in Section 2.2, several kinds of
machine learning models can be used for behavior
analysis. Some basic algorithms, such as naive Bayes,
decision tree, and random forest, are usually used for
malware classification. The categories of learning
algorithms in the existing behavior analysis ap-
proaches are shown in Table 3.

Although typical algorithms provide good de-
tection results, some deep learning algorithms, such
as multilayer perceptrons and neural networks, are
also used to enhance the stability of machine learning
based behavior analysis approaches and reduce the
workload for feature engineering in traditional ma-
chine learning approaches. For example, Dahl et al.
(2013) presented a malware classification approach

Table 2 Comparison of different levels of behavior data

Behavior data level Related works
Origin system call data from dynamic

analysis (arguments and context
information included)

Bailey et al., 2007; Rieck et al., 2008; Bayer et al., 2009; Inoue et al., 2009;
Jacob et al., 2009; Lanzi et al., 2009; Martignoni et al., 2009; Riley et al., 2009;
Beaucamps et al., 2010; Comparetti et al., 2010; Huang HD et al., 2011, 2014;
Lindorfer et al., 2011; Beaucamps et al., 2012; Bos, 2013; Dahl et al., 2013;
Kirat et al., 2014; Shan and Wang, 2014; Suarez-Tangil et al., 2014; Kirat and
Vigna, 2015; Lee et al., 2015; Yang W et al., 2015; Das et al., 2016; Galal et al.,
2016

Origin system call data from dynamic
analysis (arguments and context
information NOT included)

Martignoni et al., 2008; Babicć et al., 2011, 2012; Dumitras and Neamtiu, 2011;
Sun et al., 2011; Palahan et al., 2013; Anderson et al., 2014; Sirinda, 2014;
Naval et al., 2015; Wang et al., 2015; Kharraz et al., 2016

Origin function call data and program
information from static analysis

Brumley et al., 2008; Fredrikson et al., 2010; Wu et al., 2012; Cao et al., 2013;
Ding et al., 2013; Arp et al., 2014; Yang C et al., 2014; Saxe et al., 2014;
Feng et al., 2014, 2017; Poeplau et al., 2014; Shi et al., 2014; Cen et al., 2015;
Chuang and Wang, 2015; Yerima et al., 2015; Fratantonio et al., 2016;
Miao et al., 2016

Origin data from both dynamic and
static analysis

Kirda et al., 2006; Alazab et al., 2010; Alazab, 2015

Kernel function call and hard-
ware-level system states from
dynamic analysis

Yin et al., 2008; Wang et al., 2008; Lanzi et al., 2009; Neugschwandtner et al.,
2010; Shosha et al., 2012; Park et al., 2013; Watson et al., 2016

Data flow Martignoni et al., 2009; Fredrikson et al., 2010; Feng et al., 2014; Yuan et al.,
2014; Wüchner et al., 2015

Control flow Comparetti et al., 2010; Cesare et al., 2014; Ding et al., 2014; Zhao et al., 2014

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 596

using random projections to reduce the dimension of
the original input space. The experimental results
showed that an error rate of 0.42% can be achieved.

Besides, the ensemble method is a popular be-
havior analysis approach. Its idea is to generate mul-
tiple predictors used in combination to classify new
unseen samples, and its goal is to obtain better pre-
dictive performance compared with any of the con-
stituent learning algorithms alone. For example,
Yerima et al. (2015) used NB, DT, and RF methods to
provide comprehensive results for malware analysis.
Galal et al. (2016) proposed a detection framework
which employs various classification techniques to
evaluate the accuracy.

Table 4 shows a comparison of different analysis
techniques in the existing investigations. Both ma-
chine learning based and semantics-based approaches
have attracted wide attention in academia. As dis-
cussed in Section 2.2, semantics-based approaches
use semantic rules or behavior knowledge to provide
an in-depth understanding of malware behaviors. A
prominent advantage of a semantics-based approach

is that it has a wide range for adaptation and may be
used to analyze malware samples on different plat-
forms, such as a Windows platform with PE format,
Linux platform with ELF format, and Android plat-
form with DEX format. The Android platform is an
emerging field constantly threatened by malware.

3.2 Challenges and suggestions

Based on the discussion and analysis in Section
3.1, we can summarize several considerable chal-
lenges and suggestions. Although there are many
works on malware behavior analysis, more efforts are
still needed for better effectiveness and accuracy. The
challenges under consideration are as follows.

3.2.1 Coverage of behavior data

Although behavior analysis based on program
execution traces has been widely studied, a prominent
problem of dynamic trace extraction is that the cov-
erage of dynamic traces will be affected by conditions
in virtual environments. Various dynamic traces can
be obtained in different virtual environments and

Table 3 Statistics from machine learning algorithms

Learning algorithm Related works

DBM-tree Cesare et al., 2014

Objective-oriented association mining (OOA) Ding et al., 2013

Hidden Markov model (HMM) Canfora et al., 2016

Multilayer perceptron (MLP) Mohaisen and Alrawi, 2015; Das et al., 2016

Naive Bayes (NB) Cao et al., 2013; Yang C et al., 2014; Zhang M et al., 2014; Cen et al.,
2015; Yerima et al., 2015; Zhang H et al., 2016

Decision tree (DT) Dube et al., 2012; Yang C et al., 2014; Ding et al., 2014; Zhao et al., 2014;
Yerima et al., 2015; Galal et al., 2016

Support vector machine (SVM) Rieck et al., 2008; Cao et al., 2013; O’Kane et al., 2013; Arp et al., 2014;
Yang C et al., 2014; Ding et al., 2014; Chuang and Wang, 2015; Mo-
haisen and Alrawi, 2015; Galal et al., 2016; Zhang H et al., 2016; Miao
et al., 2016; Watson et al., 2016

K-nearest neighbor (KNN) Wu et al., 2012; Ding et al., 2014; Alazab, 2015; Cen et al., 2015; Mo-
haisen and Alrawi, 2015; Wang et al., 2015

Bayesian network (BN) Cao et al., 2013; Zhang H et al., 2016

Self-defined cluster algorithm Bayer et al., 2009; Wu et al., 2012; Shan and Wang, 2014

Random forest (RF)/random tree (RT) Cao et al., 2013; Yang C et al., 2014; Zhao et al., 2014; Wüchner et al.,
2015; Yerima et al., 2015; Galal et al., 2016

Hierarchical clustering Bailey et al., 2007; Shi et al., 2014; Kirat and Vigna, 2015

Self-defined cluster and classification
algorithm

Rieck et al., 2011; Lee et al., 2015

Logistic regression (LR) Mohaisen and Alrawi, 2015; Yerima et al., 2015

Principal component analysis (PCA) Cesare et al., 2014

Neural network (NN) Dahl et al., 2013

J48 Cao et al., 2013

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 597

different contexts. On the other hand, malware sam-
ples may use evasion techniques to avoid being de-
tected. Thus, the behavior traces for different variants
of the same malware family may be different, which
will affect the effectiveness of the behavior analysis
approaches.

A better solution is to combine dynamic and
static analyses to obtain behavior data from multiple
sources and employ multiple learning algorithms to
find a weighted combination of the data sources,
which yields the best detection accuracy in behavior
analysis.

Another solution is to obtain the full behavioral
dependency graph of a malware sample using a
tainted analysis technique (Yuan et al., 2014) and
symbolic execution technique (Fratantonio et al.,
2016). With the powerful computing and storage
capabilities of modern computers, these advanced
program analysis techniques are becoming increas-
ingly popular and practical. The full behavior infor-
mation can be obtained using advanced program
analysis techniques without regard to the evasions on
the part of malware behaviors.

3.2.2 Unknown behavior detection

The detection of unknown samples is a goal of
malware behavior analysis. It is known that an in-
herent problem of signature-based detection tech-
niques is the inability to detect unknown threats.

On the contrary, by abstracting semantic representa-
tions of malware behaviors, unknown samples can be
detected even for a previously unknown family. To
achieve this, behavior analysis techniques must de-
fine semantic rules and construct semantic inference
models. Aiming at unknown malware detection, con-
trol flow based and semantics-based behavior analy-
sis approaches are optional solutions to model mal-
ware behaviors. With semantic concepts such as be-
havior profiles and behavior capabilities, a high-level
understanding of malware behaviors can be obtained
and then detection rules based on the semantic con-
cepts can be well designed.

According to the discussion in Section 2.2.2,
there are several semantics-based analysis methods,
for example, semantically relevant path analysis
(Naval et al., 2015) and high-level semantic analysis
of system calls (Das et al., 2016). These techniques
can capture the high-level semantics of malicious
behaviors; therefore, they are well suited for captur-
ing new and syntactically different but semantically
similar unknown malware samples.

3.2.3 Malware adversarial behavior

Adversarial machine learning is an emerging
field of study against an adversarial opponent (Huang
L et al., 2011). By attacking machine learning algo-
rithms, feature space, training and test data, adver-
sarial machine learning can affect the effectiveness of

Table 4 Comparison of different analysis techniques

Analysis techniques Related works

Learning-based approaches Bailey et al., 2007; Rieck et al., 2008; Bayer et al., 2009; Martignoni et al., 2009; Dumitras and
Neamtiu, 2011; Sun et al., 2011; Dahl et al., 2013; Ding et al., 2013; Anderson et al., 2014;
Arp et al., 2014; Kirat et al., 2014; Saxe et al., 2014; Shan and Wang, 2014; Shi et al., 2014;
Zhang M et al., 2014; Alazab, 2015; Cen et al., 2015; Mohaisen and Alrawi, 2015; Naval et
al., 2015; Wang et al., 2015; Wüchner et al., 2015; Yerima et al., 2015; Galal et al., 2016;
Watson et al., 2016

Semantic-based approaches Jacob et al., 2009; Alazab et al., 2010; Babić et al., 2011, 2012; Bos, 2013; Palahan et al.,
2013; Sirinda, 2014

Semantic-based approaches Kirda et al., 2006; Brumley et al., 2008; Yin et al., 2008; Wang et al., 2008; Bayer et al., 2009;
Inoue et al., 2009; Lanzi et al., 2009; Riley et al., 2009; Beaucamps et al., 2010, 2012;
Comparetti et al., 2010; Fredrikson et al., 2010; Neugschwandtner et al., 2010; Dumitras
and Neamtiu, 2011; Lindorfer et al., 2011; Shosha et al., 2012; Jang et al., 2013; Huang HD
et al., 2014; Shan and Wang, 2014; Poeplau et al., 2014; Lebiere et al., 2015; Naval et al.,
2015; Thomson et al., 2015; Yang W et al., 2015; Kharraz et al., 2016; Fratantonio et al.,
2016

Hybrid approaches Lindorfer et al., 2011; Wu et al., 2012; Cao et al., 2013; Park et al., 2013; Arp et al., 2014;
Saxe et al., 2014; Yang C et al., 2014; Chuang and Wang, 2015; Kirat and Vigna, 2015; Lee
et al., 2015; Das et al., 2016; Miao et al., 2016

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 598

machine learning based approaches (Biggio et al.,
2014). The test data can be carefully manipulated by a
malicious adversary to exploit specific vulnerabilities
of learning algorithms. In fact, in the process of ma-
chine learning based behavior analysis, behavior data,
such as system call traces, system call arguments, and
dynamic instruction traces, is easily distorted by
modifying the malware sample and inserting forging
code segments.

For example, Ming et al. (2015, 2017) presented
a new attack method called the ‘replacement attack’,
which operates by concealing similar behaviors
among malware samples to poison the behavior data.
Two categories of attack strategies are designed to
modify system call flows, including inserting redun-
dant dependency and system call dependency graph
mutations. The experimental results showed that a
replacement attack can not only subvert approaches
based on behavior similarity measurement, such as
the graph edit distance and the Jaccard index, but also
impede behavior-based malware clustering ap-
proaches, such as locality-sensitive hashing and
single-linkage hierarchical clustering.

A countermeasure is to unify the behavior pat-
terns with semantic equivalent rules before any clas-
sification or clustering approach is applied to the
behavior data. Another possible solution is to replace
traditional machine learning algorithms with deep
learning algorithms in the behavior analysis process,
because the latter are more resistant to adversarial
attacks.

3.2.4 Malware evolution analysis

The role of malware evolution analysis is two-
fold. First, the evolutionary history of a captured
malware sample can speed up the security response to
attack events. Second, evolutionary trends enable
proactive development of defenses (Gupta et al.,
2009). Understanding the evolution direction and
degree could yield new techniques for detecting and
classifying unknown attacks.

Rigorous experiments and empirical studies
have demonstrated the demand for better approaches
for malware evolution. For example, Zhou and Jiang
(2012) revealed that malware families are evolving
rapidly to circumvent detection by existing security
solutions. The experimental results showed that the
maximum detection rate of malware variants is 79.6%

and the minimum is 20.2%. This result clearly illus-
trates a strong need for a better understanding of the
malware evolution history and a better examination of
the evolutionary trends in malware families.

Unfortunately, many challenges stand in the way,
for example, the lack of sufficient contextual data
(such as the contextual information about a malware
attack), the lack of metadata about the collection
process of existing sample sets, the lack of ground
truth, and the difficulty in developing tools and
methods for rigorous data analysis. From another
point of view, the rise in open source projects has
greatly improved the complexity and range of mal-
ware evolutions by using or sharing open-source
malware modules.

We believe that the changes in malware samples,
such as updating patches, adding new functionality
modules, and forking and modifying open source
modules, will affect the frequency of the behavior
types, structural characteristics of control flow graphs,
structural characteristics of system call graphs, high-
level behavior attributes, etc. The frequency and
characteristics are effective proof of malware evolu-
tion. Furthermore, these behavior proofs will be more
stable and abundant than file structure proof from
static analysis. Another advantage of behavior-based
evolution research is that the behavior trends that
malware variants have in common can be revealed.

Another argument is that cluster-based machine
learning can be used to cluster malware samples with
similar behavioral characteristics to form malware
associations. Thus, cluster-based techniques can as-
sist in the evolution analysis process.

4 Conclusions

Malware behavior analysis is one of the most

important measures in the security response to mal-
ware threats in cyberspace. Although many studies
have been conducted for malware behavior analysis,
more efforts are still needed to understand the mecha-
nisms, regularity, and trends in malware behavior.

In this paper, we aim to provide insight into the
status of behavior analysis techniques. We have per-
formed a comprehensive review of the latest malware
behavior analysis techniques and discussed the ex-
isting research classified from five different perspec-

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 599

tives, clearly showing the advantages and disad-
vantages of existing analysis methods. Additionally,
we have discussed some inadequacies and challenges
that are currently not solved as well as several possi-
ble solutions to address the current shortcomings. It is
important to understand the characteristics and trends
in various malware behaviors to promote the devel-
opment of efficient and accurate malware behavior
analysis techniques.

References
Alam S, Horspool RN, Traore I, et al., 2015. A framework for

metamorphic malware analysis and real-time detection.
Comput Secur, 48:212-233.
https://doi.org/10.1016/j.cose.2014.10.011

Alazab M, 2015. Profiling and classifying the behavior of
malicious codes. J Syst Softw, 100:91-102.
https://doi.org/10.1016/j.jss.2014.10.031

Alazab M, Venkataraman S, Watters P, 2010. Towards
Understanding malware behaviour by the extraction of
API calls. Proc 2nd Cybercrime and Trustworthy
Computing Workshop, p.52-59.
https://doi.org/10.1109/CTC.2010.8

Anderson B, Storlie C, Lane T, 2012. Improving malware
classification: Bridging the static/dynamic gap. Proc 5th
ACM Workshop on Security and Artificial Intelligence,
p.3-14. https://doi.org/10.1145/2381896.2381900

Anderson B, Lane T, Hash C, 2014. Malware phylogenetics
based on the multiview graphical lasso. Proc 13th Int
Symposium on Advances in Intelligent Data Analysis
XIII, p.1-12.
https://doi.org/10.1007/978-3-319-12571-8_1

Arp D, Spreitzenbarth M, Hübner M, et al., 2014. DREBIN:
effective and explainable detection of Android malware
in your pocket. Proc 17th Network and Distributed System
Security Symp, p.1-16.
https://doi.org/10.14722/ndss.2014.23247

Babić D, Reynaud D, Song DW, 2011. Malware analysis with
tree automata inference. Proc 23rd Int Conf on Computer
Aided Verification, p.116-131.
https://doi.org/10.1007/978-3-642-22110-1_10

Babić D, Reynaud D, Song DW, 2012. Recognizing malicious
software behaviors with tree automata inference. Form
Methods Syst Des, 41(1):107-128.
https://doi.org/10.1007/s10703-012-0149-1

Bailey M, Oberheide J, Andersen J, et al., 2007. Automated
classification and analysis of Internet malware. Proc 10th
Int Symp on Recent Advances in Intrusion Detection,
p.178-197.
https://doi.org/10.1007/978-3-540-74320-0_10

Barnum S, 2012. Standardizing cyber threat intelligence
information with the structured threat information
eXpression (STIXTM). https://www.mitre.org/sites/default/
files/publications/stix.pdf

Bauman E, Ayoade G, Lin ZQ, 2015. A survey on hypervisor-
based monitoring: approaches, applications, and evolutions.
ACM Comput Surv, 48(1), Article 10.

 https://doi.org/10.1145/2775111
Bayer U, Kruegel C, Kirda E, 2006. TTAnalyze: a tool for

analyzing malware. Proc 15th Annual Conf of the
European Institute for Computer Antivirus Research,
p.180-192.

Bayer U, Comparetti PM, Hlauscheck C, et al., 2009. Scalable,
behavior-based malware clustering. Proc 16th Symp on
Network and Distributed System Security, p.1-21.

Bayer U, Habibi I, Balzarotti D, et al., 2014. A view on current
malware behaviors. Proc 2nd USENIX Conf on Large-
Scale Exploits and Emergent Threats: Botnets, Spyware,
Worms, and More, p.8.

Beaucamps P, Gnaedig I, Marion JY, 2010. Behavior
abstraction in malware analysis. Proc 1st Int Conf on
Runtime Verification, p.168-182.
https://doi.org/10.1007/978-3-642-16612-9_14

Beaucamps P, Gnaedig I, Marion JY, 2012. Abstraction-based
malware analysis using rewriting and model checking.
Proc 17th European Symp on Research in Computer
Security, p.806-823.
https://doi.org/10.1007/978-3-642-33167-1_46

Belaoued M, Mazouzi S, 2015. A real-time pe-malware
detection system based on CHI-square test and pe-file
features. Proc 5th IFIP TC 5 Int Conf on Science and Its
Applications, p.416-425.
https://doi.org/10.1007/978-3-319-19578-0_34

Biggio B, Rieck K, Ariu D, et al., 2014. Poisoning behavioral
malware clustering. Proc Workshop on Artificial
Intelligent and Security Workshop, p.27-36.
https://doi.org/10.1145/2666652.2666666

Bos H, 2013. Analysis report of behavioral features.
http://www.wombat-project.eu/2010/07/wombat-delivera
ble-d16d42-anal.html

Brumley D, Hartwig C, Liang ZK, et al., 2008. Automatically
identifying trigger-based behavior in malware. In: Lee W,
Wang C, Dagon D (Eds.), Botet Detection. Springer,
Boston, MA, p.65-88.
https://doi.org/10.1007/978-0-387-68768-1_4

Canfora G, Mercaldo F, Visaggio CA, 2016. An hmm and
structural entropy based detector for Android malware: an
empirical study. Comput Secur, 61:1-18.
https://doi.org/10.1016/j.cose.2016.04.009

Cao Y, Miao QG, Liu JC, et al., 2013. Abstracting minimal
security-relevant behaviors for malware analysis. J
Comput Virol Hack Tech, 9(4):193-204.
https://doi.org/10.1007/s11416-013-0186-3

Cen L, Gates CS, Si L, et al., 2015. A probabilistic
discriminative model for Android malware detection with
decompiled source code. IEEE Trans Depend Sec
Comput, 12(4):400-412.
https://doi.org/10.1109/TDSC.2014.2355839

Cesare S, Xiang Y, Zhou WL, 2014. Control flow-based
malware variant detection. IEEE Trans Depend Sec

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 600

Comput, 11(4):307-317.
https://doi.org/10.1109/TDSC.2013.40

Chandramohan M, Tan HBK, Shar LK, 2012. Scalable
malware clustering through coarse-grained behavior
modeling. Proc ACM SIGSOFT 20th Int Symp on the
Foundations of Software Engineering, article 27.
https://doi.org/10.1145/2393596.2393627

Christodorescu M, Jha S, Kruegel C, 2008. Mining
specifications of malicious behavior. Proc 1st India
Software Engineering Conf, p.5-14.
https://doi.org/10.1145/1342211.1342215

Chuang HY, Wang SD, 2015. Machine learning based hybrid
behavior models for Android malware analysis. Proc
IEEE Int Conf on Software Quality, Reliability and
Security, p.201-206.
https://doi.org/10.1109/QRS.2015.37

Comparetti PM, Salvaneschi G, Kirda E, et al., 2010.
Identifying dormant functionality in malware programs.
Proc IEEE Symp on Security and Privacy, p.61-76.
https://doi.org/10.1109/SP.2010.12

Cuckoo, 2017. Cuckoo sandbox. https://cuckoosandbox.org
Dahl GE, Stokes JW, Deng L, et al., 2013. Large-scale

malware classification using random projections and
neural networks. Proc IEEE Int Conf on Acoustics,
Speech and Signal Processing, p.3422-3426.
https://doi.org/10.1109/ICASSP.2013.6638293

Damodaran A, di Troia F, Visaggio CA, et al., 2017. A
comparison of static, dynamic, and hybrid analysis for
malware detection. J Comput Virol Hack Tech, 13(1):
1-12. https://doi.org/10.1007/s11416-015-0261-z

Das S, Liu Y, Zhang W, et al., 2016. Semantics-based online
malware detection: towards efficient real-time protection
against malware. IEEE Trans Inform Forens Secur, 11(2):
289-302. https://doi.org/10.1109/TIFS.2015.2491300

Deschamps N, 2008. Specification language for code behavior.
http://wombat-project.eu/WP4/FP7-ICT-216026-Womba
t_WP4_D08_V01_Specification_language_for_code_be
haviour.pdf

Dinaburg A, Royal P, Sharif M, et al., 2008. Ether: malware
analysis via hardware virtualization extensions. Proc 15th
ACM Conf on Computer and Communications Security,
p.51-62. https://doi.org/10.1145/1455770.1455779

Ding YX, Yuan XB, Tang K, et al., 2013. A fast malware
detection algorithm based on objective-oriented
association mining. Comput Secur, 39:315-324.
https://doi.org/10.1016/j.cose.2013.08.008

Ding YX, Dai W, Yan SL, et al., 2014. Control flow-based
opcode behavior analysis for malware detection. Comput
Secur, 44:65-74.
https://doi.org/10.1016/j.cose.2014.04.003

Dube T, Raines R, Peterson G, et al., 2012. Malware target
recognition via static heuristics. Comput Secur, 31(1):
137-147. https://doi.org/10.1016/j.cose.2011.09.002

Dumitras T, Neamtiu I, 2011. Experimental challenges in
cyber security: a story of provenance and lineage for
malware. Proc 4th Conf on Cyber Security Experimen-

tation and Test, p.9.
Egele M, Scholte T, Kirda E, et al., 2012. A survey on

automated dynamic malware-analysis techniques and
tools. ACM Comput Surv, 44(2), Article 6.
https://doi.org/10.1145/2089125.2089126

Elhadi AAE, Maarof MA, Barry BIA, et al., 2014. Enhancing
the detection of metamorphic malware using call graphs.
Comput Secur, 46:62-78.
https://doi.org/10.1016/j.cose.2014.07.004

Feng Y, Anand S, Dillig I, et al., 2014. Apposcopy:
semantics-based detection of Android malware through
static analysis. Proc 22nd ACM SIGSOFT Int Symp on
Foundations of Software Engineering, p.576-587.
https://doi.org/10.1145/2635868.2635869

Feng Y, Bastani O, Martins R, et al., 2017. Automated
synthesis of semantic malware signatures using maxi-
mum satisfiability. Proc Network and Distributed System
Security Symp, p.1-16.
https://doi.org/10.14722/ndss.2017.23379

Fratantonio Y, Bianchi A, Robertson W, et al., 2016.
Triggerscope: towards detecting logic bombs in Android
applications. Proc IEEE Symp on Security and Privacy,
p.377-396. https://doi.org/10.1109/SP.2016.30

Fredrikson M, Jha S, Christodorescu M, et al., 2010.
Synthesizing near-optimal malware specifications from
suspicious behaviors. Proc IEEE Symp on Security and
Privacy, p.45-60. https://doi.org/10.1109/SP.2010.11

Galal HS, Mahdy YB, Atiea MA, 2016. Behavior-based
features model for malware detection. J Comput Virol
Hack Tech, 12(2):59-67.
https://doi.org/10.1007/s11416-015-0244-0

Grégio ARA, Baruque AOC, Afonso VM, et al., 2012.
Interactive, visual-aided tools to analyze malware
behavior. Proc 12th Int Conf on Computational Science
and Its Applications, p.302-313.
https://doi.org/10.1007/978-3-642-31128-4_22

Gupta A, Kuppili P, Akella A, et al., 2009. An empirical study
of malware evolution. Proc 1st Int Communication
Systems and NETworks and Workshops, p.1-10.
https://doi.org/10.1109/COMSNETS.2009.4808876

Haass JC, Ahn GJ, Grimmelmann F, 2015. ACTRA: a case
study for threat information sharing. Proc 2nd ACM
Workshop on Information Sharing and Collaborative
Security, p.23-26.
https://doi.org/10.1145/2808128.2808135

Huang HD, Acampora G, Loia V, et al., 2011. Applying FML
and fuzzy ontologies to malware behavioural analysis.
Proc IEEE Int Conf on Fuzzy Systems, p.2018-2025.
https://doi.org/10.1109/FUZZY.2011.6007716

Huang HD, Lee CS, Wang MH, et al., 2014. IT2FS-based
ontology with soft-computing mechanism for malware
behavior analysis. Soft Comput, 18(2):267-284.
https://doi.org/10.1007/s00500-013-1056-0

Huang L, Joseph AD, Nelson B, et al., 2011. Adversarial
machine learning. Proc 4th ACM Workshop on Security
and Artificial Intelligence, p.43-58.

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 601

https://doi.org/10.1145/2046684.2046692
Inoue D, Yoshioka K, Eto M, et al., 2009. Automated malware

analysis system and its sandbox for revealing malware’s
internal and external activities. IEICE Trans Inform Syst,
E92.D(5):945-954.
https://doi.org/10.1587/transinf.E92.D.945

Jacob G, Debar H, Filiol E, 2009. Malware behavioral
detection by attribute-automata using abstraction from
platform and language. Proc 12th Int Symp on Recent
Advances in Intrusion Detection, p.81-100.
https://doi.org/10.1007/978-3-642-04342-0_5

Jang J, Woo M, Brumley D, 2013. Towards automatic
software lineage inference. Proc 22nd USENIX Conf on
Security, p.81-96.

Kharraz A, Arshad S, Mulliner C, et al., 2016. UNVEIL: a
large-scale, automated approach to detecting ransomware.
Proc 25th USENIX Security Symp, p.757-772.

Kirat D, Vigna G, 2015. MalGene: automatic extraction of
malware analysis evasion signature. Proc 22nd ACM
SIGSAC Conf on Computer and Communications
Security, p.769-780.
https://doi.org/10.1145/2810103.2813642

Kirat D, Vigna G, Kruegel C, 2014. Barecloud: bare-metal
analysis-based evasive malware detection. Proc 23rd
USENIX Conf on Security Symp, p.287-301.

Kirda E, Kruegel C, Banks G, et al., 2006. Behavior-based
spyware detection. Proc 15th Conf on USENIX Security
Symp, Article 19.

Kirillov I, Beck D, Chase P, et al., 2011. Malware attribute
enumeration and characterization (MAEC™).

 http://maec.mitre.org/
Kokkonen T, Hautamaki J, Siltanen J, et al., 2016. Model for

sharing the information of cyber security situation
awareness between organizations. Proc 23rd Int Conf on
Telecommunications, p.1-5.
https://doi.org/10.1109/ICT.2016.7500406

Kruegel C, 2014. Full system emulation: achieving successful
automated dynamic analysis of evasive malware. Lastline,
Inc., Las Vegas, NV, USA.

Lanzi A, Sharif M, Lee W, 2009. K-Tracer: a system for
extracting kernel malware behavior. Proc Network and
Distributed System Security Symp, p.163-169.

Lebiere C, Bennati S, Thomson R, et al., 2015. Functional
cognitive models of malware identification. Proc 13th
Annual Conf on Cognitive Modeling, p.90-95.

Leder F, Steinbock B, Martini P, 2009. Classification and
detection of metamorphic malware using value set
analysis. Proc 4th Int Conf on Malicious and Unwanted
Software, p.39-46.
https://doi.org/10.1109/MALWARE.2009.5403019

Lee T, Choi B, Shin Y, et al., 2015. Automatic malware mutant
detection and group classification based on the n-gram
and clustering coefficient. J Supercomput, p.1-15.
https://doi.org/10.1007/s11227-015-1594-6

Lindorfer M, Kolbitsch C, Comparetti PM, 2011. Detecting
environment-sensitive malware. Proc 14th Int Symp on

Recent Advances in Intrusion Detection, p.338-357.
https://doi.org/10.1007/978-3-642-23644-0_18

Liu L, Wang BS, Yu B, et al., 2016. A novel selective
ensemble learning based on K-means and negative
correlation. Proc 2nd Int Conf on Cloud Computing and
Security, p.578-588.
https://doi.org/10.1007/978-3-319-48674-1_51

Martignoni L, Stinson E, Fredrikson M, et al., 2008. A layered
architecture for detecting malicious behaviors. Proc 11th
Int Symp on Recent Advances in Intrusion Detection,
p.78-97. https://doi.org/10.1007/978-3-540-87403-4_5

Martignoni L, Paleari R, Bruschi D, 2009. A framework for
behavior-based malware analysis in the cloud. Proc 5th Int
Conf on Information Systems Security, p.178-192.
https://doi.org/10.1007/978-3-642-10772-6_14

Miao QG, Liu JC, Cao Y, et al., 2016. Malware detection using
bilayer behavior abstraction and improved one-class
support vector machines. Int J Inform Secur, 15(4):361-
379. https://doi.org/10.1007/s10207-015-0297-6

Ming J, Xin Z, Lan PW, et al., 2015. Replacement attacks:
automatically impeding behavior-based malware specifi-
cations. Proc 13th Int Conf on Applied Cryptography and
Network Security, p.497-517.
https://doi.org/10.1007/978-3-319-28166-7_24

Ming J, Xin Z, Lan PW, et al., 2017. Impeding behavior-based
malware analysis via replacement attacks to malware
specifications. J Comput Virol Hack Tech, 13(3):193-207.
https://doi.org/10.1007/s11416-016-0281-3

Mithal T, Shah K, Singh DK, 2016. Case studies on intelligent
approaches for static malware analysis. In: Shetty NR,
Prasad NH, Nalini N (Eds.), Emerging Research in
Computing, Information, Communication and Applica-
tions. Springer, Singapore, p.555-567.
https://doi.org/10.1007/978-981-10-0287-8_52

Mohaisen A, Alrawi O, 2015. AMAL: high-fidelity, behavior-
based automated malware analysis and classification.
Proc 15th Int Workshop on Information Security Appli-
cations, p.107-121.
https://doi.org/10.1007/978-3-319-15087-1

Moonsamy V, Tian RH, Batten L, 2012. Feature reduction to
speed up malware classification. Proc 16th Nordic Conf
on Information Security Technology for Applications,
p.176-188.
https://doi.org/10.1007/978-3-642-29615-4_13

Moser A, Kruegel C, Kirda E, 2007. Exploring multiple
execution paths for malware analysis. Proc IEEE Symp
on Security and Privacy, p.231-245.
https://doi.org/10.1109/SP.2007.17

Naval S, Laxmi V, Rajarajan M, et al., 2015. Employing
program semantics for malware detection. IEEE Trans
Inform Forens Secur, 10(12):2591-2604.
https://doi.org/10.1109/TIFS.2015.2469253

Neugschwandtner M, Platzer C, Comparetti PM, et al., 2010.
dAnubis—dynamic device driver analysis based on
virtual machine introspection. Proc 7th Int Conf on
Detection of Intrusions and Malware, and Vulnerability

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 602

Assessment, p.41-60.
https://doi.org/10.1007/978-3-642-14215-4_3

Nunes E, Buto C, Shakarian P, et al., 2015. Malware task
identification: a data driven approach. Proc IEEE/ACM
Int Conf on Advances in Social Networks Analysis and
Mining, p.978-985.
https://doi.org/10.1145/2808797.2808894

O’Kane P, Sezer S, McLaughlin K, et al., 2013. SVM training
phase reduction using dataset feature filtering for
malware detection. IEEE Trans Inform Forens Secur,
8(3):500-509.
https://doi.org/10.1109/TIFS.2013.2242890

Palahan S, Babić D, Chaudhuri S, et al., 2013. Extraction of
statistically significant malware behaviors. Proc 29th
Annual Computer Security Applications Conf, p.69-78.
https://doi.org/10.1145/2523649.2523659

Park Y, Reeves DS, Stamp M, 2013. Deriving common
malware behavior through graph clustering. Comput
Secur, 39:419-430.
https://doi.org/10.1016/j.cose.2013.09.006

Pleszkoch M, Linger R, 2015. Controlling combinatorial
complexity in software and malware behavior computa-
tion. Proc 10th Annual Cyber and Information Security
Research Conf, Article 15.
https://doi.org/10.1145/2746266.2746281

Poeplau S, Fratantonio Y, Bianchi A, et al., 2014. Execute this!
Analyzing unsafe and malicious dynamic code loading in
Android applications. Proc Network and Distributed
System Security Symp, p.23-26.
https://doi.org/10.14722/ndss.2014.23328

Razak MFA, Anuar NB, Salleh R, et al., 2016. The rise of
“malware”: bibliometric analysis of malware study. J
Netw Comput Appl, 75:58-76.
https://doi.org/10.1016/j.jnca.2016.08.022

Rieck K, Holz T, Willems C, et al., 2008. Learning and
classification of malware behavior. Proc 5th Int Conf on
Detection of Intrusions and Malware, and Vulnerability
Assessment, p.108-125.
https://doi.org/10.1007/978-3-540-70542-0_6

Rieck K, Trinius P, Willems C, et al., 2011. Automatic analysis
of malware behavior using machine learning. J Comput
Secur, 19(4):639-668.
https://doi.org/10.3233/JCS-2010-0410

Riley R, Jiang XX, Xu DY, 2009. Multi-aspect profiling of
kernel rootkit behavior. Proc 4th ACM European Conf on
Computer Systems, p.47-60.
https://doi.org/10.1145/1519065.1519072

Royal P, Halpin M, Dagon D, et al., 2006. PolyUnpack:
automating the hidden-code extraction of unpack-
executing malware. Proc 22nd Annual Computer Security
Applications Conf, p.289-300.
https://doi.org/10.1109/ACSAC.2006.38

Saxe J, Mentis D, Greamo C, 2012. Visualization of shared
system call sequence relationships in large malware
corpora. Proc 9th Int Symp on Visualization for Cyber
Security, p.33-40.

https://doi.org/10.1145/2379690.2379695
Saxe J, Turner R, Blokhin K, 2014. Crowdsource: automated

inference of high level malware functionality from
low-level symbols using a crowd trained machine
learning model. Proc 9th Int Conf on Malicious and
Unwanted Software: the Americas, p.68-75.
https://doi.org/10.1109/MALWARE.2014.6999417

Shan ZY, Wang X, 2014. Growing grapes in your computer to
defend against malware. IEEE Trans Inform Forens
Secur, 9(2):196-207.
https://doi.org/10.1109/TIFS.2013.2291066

Shi HB, Hamagami T, Yoshioka K, et al., 2014. Structural
classification and similarity measurement of malware.
IEEJ Trans Electr Electron Eng, 9(6):621-632.
https://doi.org/10.1002/tee.22018

Shosha AF, Liu C, Gladyshev P, et al., 2012. Evasion-resistant
malware signature based on profiling kernel data structure
objects. Proc 7th Int Conf on Risk and Security of Internet
and Systems, p.1-8.
https://doi.org/10.1109/CRISIS.2012.6378949

Sirinda P, 2014. A framework for mining significant subgraphs
and its application in malware analysis. PhD Thesis, The
Pennsylvania State University, Pennsylvania, USA.

Suarez-Tangil G, Conti M, Tapiador JE, et al., 2014. Detecting
targeted smartphone malware with behavior-triggering
stochastic models. Proc 19th European Symp on Research
in Computer Security, p.183-201.
https://doi.org/10.1007/978-3-319-11203-9_11

Sun MK, Lin MJ, Chang M, et al., 2011. Malware
virtualization-resistant behavior detection. Proc 17th Int
Conf on Parallel and Distributed Systems, p.912-917.
https://doi.org/10.1109/ICPADS.2011.78

Thomson R, Lebiere C, Bennati S, et al., 2015. Malware
identification using cognitively-inspired inference. Proc
24th Annual Behavior Representation in Modeling and
Simulation Conf, p.1-8.

Trinius P, Holz T, Göbel J, et al., 2009. Visual analysis of
malware behavior using treemaps and thread graphs. Proc
6th Int Workshop on Visualization for Cyber Security,
p.33-38. https://doi.org/10.1109/VIZSEC.2009.5375540

Trinius P, Willems C, Holz T, et al., 2011. A malware
instruction set for behavior-based analysis.
http://subs.emis.de/LNI/Proceedings/Proceedings170/arti
cle5739.html

Walenstein A, Lakhotia A, 2012. A transformation-based
model of malware derivation. Proc 7th Int Conf on
Malicious and Unwanted Software, p.17-25.
https://doi.org/10.1109/MALWARE.2012.6461003

Wang SW, Wang BS, Yong T, et al., 2015. Malware clustering
based on SNN density using system calls. Proc 1st Int
Conf on Cloud Computing and Security, p.181-191.
https://doi.org/10.1007/978-3-319-27051-7_16

Wang Z, Jiang XX, Cui WD, et al., 2008. Countering persistent
kernel rootkits through systematic hook discovery. Proc
11th Int Symp on Recent Advances in Intrusion Detection,
p.21-38. https://doi.org/10.1007/978-3-540-87403-4_2

Yu et al. / Front Inform Technol Electron Eng 2018 19(5):583-603 603

Watson MR, Shirazi NUH, Marnerides AK, et al., 2016.
Malware detection in cloud computing infrastructures.
IEEE Trans Depend Sec Comput, 13(2):192-205.
https://doi.org/10.1109/TDSC.2015.2457918

Wu DJ, Mao CH, Wei TE, et al., 2012. DroidMat: Android
malware detection through manifest and API calls tracing.
Proc 7th Asia Joint Conf on Information Security, p.62-69.
https://doi.org/10.1109/AsiaJCIS.2012.18

Wüchner T, Ochoa M, Pretschner A, 2015. Robust and
effective malware detection through quantitative data
flow graph metrics. Proc 12th Int Conf on Detection of
Intrusions and Malware, and Vulnerability Assessment,
p.98-118. https://doi.org/10.1007/978-3-319-20550-2_6

Yang C, Xu ZY, Gu GF, et al., 2014. DroidMiner: automated
mining and characterization of fine-grained malicious
behaviors in Android applications. Proc 19th European
Symp on Research in Computer Security, p.163-182.
https://doi.org/10.1007/978-3-319-11203-9_10

Yang W, Xiao XS, Andow B, et al., 2015. AppContext:
differentiating malicious and benign mobile app
behaviors using context. Proc 37th IEEE Int Conf on
Software Engineering, p.303-313.
https://doi.org/10.1109/ICSE.2015.50

Yavvari C, Tokhtabayev A, Rangwala H, et al., 2012. Malware
characterization using behavioral components. Proc 6th
Int Conf on Mathematical Methods, Models, and
Architectures for Computer Network Security, p.226-239.
https://doi.org/10.1007/978-3-642-33704-8_20

Yerima SY, Sezer S, Muttik I, 2015. High accuracy Android
malware detection using ensemble learning. IET Inform
Secur, 9(6):313-320.

 https://doi.org/10.1049/iet-ifs.2014.0099

Yin H, Liang ZK, Song D, 2008. HookFinder: identifying and
understanding malware hooking behaviors. Proc Network
and Distributed System Security Symp, p.1-16.

Yuan JF, Qiang WZ, Jin H, et al., 2014. Cloudtaint: an elastic
taint tracking framework for malware detection in the
cloud. J Supercomput, 70(3):1433-1450.
https://doi.org/10.1007/s11227-014-1235-5

Zhang FW, Leach K, Stavrou A, et al., 2015. Using hardware
features for increased debugging transparency. Proc IEEE
Symp on Security and Privacy, p.55-69.
https://doi.org/10.1109/SP.2015.11

Zhang H, Yao DF, Ramakrishnan N, et al., 2016. Causality
reasoning about network events for detecting stealthy
malware activities. Comput Secur, 58:180-198.
https://doi.org/10.1016/j.cose.2016.01.002

Zhang M, Duan Y, Yin H, et al., 2014. Semantics-aware
Android malware classification using weighted contextual
API dependency graphs. Proc ACM SIGSAC Conf on
Computer and Communications Security, p.1105-1116.
https://doi.org/10.1145/2660267.2660359

Zhao ZQ, Wang JF, Bai JR, 2014. Malware detection method
based on the control-flow construct feature of software.
IET Inform Secur, 8(1):18-24.
https://doi.org/10.1049/iet-ifs.2012.0289

Zhou YJ, Jiang XX, 2012. Dissecting Android malware:
characterization and evolution. Proc IEEE Symp on
Security and Privacy, p.95-109.
https://doi.org/10.1109/SP.2012.16

