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Abstract: The long-term goal of artificial intelligence (AI) is to make machines learn and think like human
beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems
that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans.
Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems
to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is
a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models:
one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive
computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system.
This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the
basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive
reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive
reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based
on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.
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1 Introduction

The unprecedented development of artificial in-
telligence (AI) technology (Marr, 1977; Russell and
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Norvig, 1995) is profoundly changing the relation-
ships and interactive modes between humans and be-
tween humans and their physical environments and
society (McCarthy and Hayes, 1987; Holland, 1992).
With the help of AI, solving various problems of high
complexity, uncertainty, and vulnerability in every
field of engineering technology, scientific research,
and human social activities (Eakin and Luers, 2006;
Martin, 2007; Gil et al., 2014; Ledford, 2015) and
continuously promoting the development of society
and socioeconomics have become the cherished goals
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of science and technology. AI is an enabling tech-
nology leading to numerous disruptive changes in
many fields (Minsky, 1961; Stone et al., 2016). Using
AI technology reasonably and effectively can greatly
promote valuable creativity and enhance the com-
petitiveness in both humans and machines. Thus,
AI is no longer an independent, isolated, and self-
cycling academic system, but a part of the human
evolutionary process.

In recent years, deep learning methods have
gained rapid development with the boost in com-
puter data acquisition, storage, and calculation ca-
pabilities (Hagan et al., 2002; Sun et al., 2014). A
new boom in AI has been triggered, especially in
high demand fields such as cloud computing (Youseff
et al., 2008), big data (O’Leary, 2013), wearable de-
vices (Son et al., 2014), and intelligent robots (Thrun
et al., 1998), which all promote the development of
AI theory and technology.

The development of AI can be described us-
ing a three-dimensional (3D) space, which includes
strength, extension, and capability. Strength refers
to the intelligence level of AI systems, extension
refers to the scope of the problems that can be
solved by AI systems, and capacity refers to the av-
erage solution quality that AI systems can provide.
General AI systems can do unsupervised learning
deftly based on experience and knowledge accumu-
lation. However, general AI cannot be realized with
a simple combination of computing models and algo-
rithms from AI methods. DeepBlue (Campbell et al.,
2002), Watson (?Rachlin, 2012; Shader, 2016), and
AlphaGo (Silver et al., 2016) are AI systems that
have achieved great success in challenging human in-
telligence in some fields by relying on the powerful
processing ability of computers. However, these sys-
tems cannot evolve to a higher intelligence level by
virtue of their own thought processes yet. There is a
gap between those systems and general AI in regards
to a high self-learning ability (Simon, 1969; Newell
and Simon, 1972; Selfridge, 1988).

Intelligent machines have become the intimate
companions of humans, where the interaction and
cooperation between a human and an intelligent ma-
chine will become integral in the formation of our
future society. However, many problems that hu-
mans face tend to be of high complexity, uncertainty,
and open-ended. Because the human is the service
object and arbiter in the ultimate ‘value judgment’

of an intelligent machine, human intervention in the
machine has been consistent throughout the evolu-
tion of these systems. In addition, even if sufficient
or infinite data resources are provided for AI sys-
tems, human intervention cannot be ruled out of
intelligent systems. There are many problems to
be solved in AI, for example, how to understand
the nuances and fuzziness of human language in
the face of the human-computer interaction system,
and especially how to avoid the risks or even harms
caused by the limitations of AI technology in some
important applications, such as industrial risk con-
trol (de Rocquigny et al., 2008), medical diagnosis
(Szolovits et al., 1988), and the criminal justice sys-
tem. To solve these problems, human supervision,
interaction, and participation must be introduced
for verification purposes. Hence, on the one hand,
the confidence level in intelligent systems will be
improved, and human-in-the-loop hybrid-augmented
intelligence will be constructed; on the other hand,
human knowledge will be optimally used. Therefore,
in this paper, we highlight the concept of hybrid-
augmented intelligence, which skillfully combines hu-
man cognitive ability and the capabilities of comput-
ers in fast operations and mass storage. Particularly,
the definitions are as follows:

Definition 1 (Human-in-the-loop hybrid-
augmented intelligence) Human-in-the-loop
(HITL) hybrid-augmented intelligence is defined as
an intelligent model that requires human interaction.
In this type of intelligent system, human is always
part of the system and consequently influences the
outcome in such a way that human gives further
judgment if a low confident result is given by a
computer. HITL hybrid-augmented intelligence
also readily allows for addressing problems and
requirements that may not be easily trained or
classified by machine learning.

Definition 2 (Cognitive computing based hybrid-
augmented intelligence) In general, cognitive com-
puting (CC) based hybrid-augmented intelligence
refers to new software and/or hardware that mim-
ics the function of the human brain and improves
computer’s capabilities of perception, reasoning, and
decision-making. In that sense, CC based hybrid-
augmented intelligence is a new framework of com-
puting with the goal of more accurate models of how
the human brain/mind senses, reasons, and responds
to stimulus, especially how to build causal models,
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intuitive reasoning models, and associative memories
in an intelligent system.

In addition, because of issues with qualifica-
tion (Thielscher, 2001) and ramification (Thielscher,
1997), not all problems can be modeled; i.e., it is
impossible to enumerate all the prerequisites of an
action, or to enumerate all the branches following
an action. Machine learning cannot understand real
world environments, nor can it process incomplete
information and complex spatial and temporal cor-
relation tasks better than the human brain does. It
is impossible for a formal system of machine learning
to describe the interaction of the human brain across
the spectrum of non-cognitive factors and cognitive
functions or to emulate the high plasticity of the
brain’s nervous system. The brain’s understanding
of non-cognitive factors is derived from intuition and
influenced by empirical and long-term knowledge ac-
cumulation (Pylyshyn, 1984). All these biological
characteristics of the brain contribute to enhancing
the adaptability of machines in complex dynamic en-
vironments or on the scene, promoting machine abil-
ities in non-integrity and unstructured information
processing and self-learning, and inspiring the build-
ing of CC hybrid-augmented intelligence.

CC frameworks can combine the modules for
complex planning, problem solving, and perception
as well as actions. These frameworks can possibly
provide an explanation for some human or animal
behaviors and study their actions in new environ-
ments, and they could build AI systems that require
much less calculation than existing systems.

2 Human-computer collaborative
hybrid-augmented intelligence

2.1 Human intelligence vs. artificial intelli-
gence

Humans can learn, speak, think, and interact
with the environment to perform actions and study.
The capacity for human movement also depends on
such learning mechanism. The most ingenious and
important ability of human beings is to learn new
things. The human brain has the ability for self-
adaptation and knowledge inference, which tran-
scends experience. In addition, human is gregarious,
a quality where cooperation and dynamic optimiza-
tion show that collective intelligence is much better

than that of any individual. In one word, human
intelligence is creative, complex, and dynamic (Guil-
ford, 1967; Sternberg, 1984). The creativity of hu-
man beings means that human intelligence is skillful
in abstract thinking, reasoning, and innovation, cre-
ating new knowledge and making associations. The
complexity of human intelligence implies the struc-
tural complexity and connective plasticity of the neu-
ral system inside the human brain, and the complex-
ity inherent to a series of intuitive, conscious, and
thinking mechanisms. At present, there is no com-
mon conclusion regarding the mechanism of human
intelligence, but it is precisely because of the complex
structure of the human brain that human intelligence
can better specialize in dealing with non-integrity
and unstructured information. The dynamic nature
of human knowledge evolution and learning abil-
ity makes humans more adept at learning, reason-
ing, collaborating, and other advanced intelligence
activities.

In considering an analogy with human intelli-
gence, AI has the features of normalization, repeata-
bility, and logicality. Normalization refers to the fact
that AI can deal only with structural information at
present; i.e., the input of programs must conform to
certain norms. Repeatability refers to the mechan-
ical nature of AI. Repetitive work does not degrade
the efficiency or accuracy of the machine because
of the powerful computing ability and abiotic char-
acteristic of a computer. Logicality means that AI
has advantage in dealing with the symbolized prob-
lem, which means that AI is better at processing
some discrete tasks, instead of discovering or break-
ing the rules by itself (Poole et al., 1997). Fig. 1
shows a comparison between human intelligence and
AI. It can be seen that although AI and human in-
telligence each have distinctive advantages, they are
highly complementary.

2.2 Limitations of existing machine learning
methods

Machine learning (Nilsson, 1965; Michalski
et al., 1984; Samuel, 1988) makes it possible to pre-
dict the future through the patterns of past data. In
short, machine learning can be considered to be the
automation of predictive analyses and it generates
models based on computer data. When dealing with
a new task, the system makes a corresponding judg-
ment according to a data-based model, which is a
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‘training & test’ learning mode. This learning mode
depends entirely on the machine’s performance and
learning algorithms (Bradley, 1997). In fact, the pro-
cess of using machine learning to deal with complex,
dynamic, and unstructured information (Wang et al.,
2017) is much more complex than that of the hu-
man process because a machine has to make choices
between data sources and options, while a human
can quickly make a decision according to slight dif-
ferences in the tasks and the complex relationships
among the data.

Machine learning relies excessively on the rules,
which results in poor portability and scalability.
Thus, it can work only in an environment where there
are tight constraints and limited objectives, and it
cannot process dynamic, non-complete, and unstruc-
tured information. Although hybrid-augmented
computational intelligent systems can be constructed
by artificial neural networks (Yegnanarayana, 1994),
fuzzy reasoning (Mizumoto, 1982), rough sets, ap-
proximate reasoning (Zadeh, 1996), and optimiza-
tion methods, such as evolutionary computation
(Fogel, 1995) and group intelligence (Williams and
Sternberg, 1988), to overcome individual limitations
and achieve synergies to some degree with the in-
tegration of different machine learning methods and
adaptive techniques, these systems are still incapable
of exercising common sense, to solve time-varying
complex problems, and to use experience for future
decisions (Jennings, 2000). Indeed, no matter how
much development happens in machine learning, it
is impossible for a machine to complete all the tasks
in human society individually. In other words, a hu-
man cannot rely completely on machine learning to
carry out all work, such as economic decision making,
medical problem solving, and mail processing.

Humans are capable of extracting abstract con-

Creativity 

Dynamism Logicality

RepeatabilityComplexity

Normalization

Formulation and 
calculable mathematical

 model

Dealing with 
difficult 

problems

Fig. 1 Human intelligence vs. artificial intelligence

cepts from a small number of samples. However, even
though deep neural network (DNN) has made great
progress in recent years, it is still difficult to make
a machine do such things like a human. However,
Lake et al. (2015) used Bayesian learning methods
so that a machine can learn how to write letters like
a human through a small amount of training data.
Compared with traditional machine learning meth-
ods, which require a great deal of training data, this
method requires only a rough model, and then uses a
reasoning algorithm to analyze the case and update
the details of the model.

The growth in the amount of data is a source of
‘complexity’ that must be tamed via algorithms or
hardware, whereas in statistics, the growth in the
amount of data brings ‘simplicity’ in a statistical
sense, which often provides more support for rea-
soning, leading to stronger, asymptotic results. At
a formal level, the gap is made evident by the lack
of a role for computational concepts (such as ‘run-
time’ in core statistical theory) and the lack of a role
for statistical concepts (such as ‘risk’ in core compu-
tational theory). Therefore, machine learning with
a stronger reasoning capacity requires more integra-
tion of computational and inferential aspects at the
foundational level (Jordan, 2016).

2.3 Human-in-the-loop hybrid-augmented in-
telligence

Introducing human intelligence to the loop of
intelligence systems can realize a close coupling
between the analysis-response advanced cognitive
mechanisms in fuzzy and uncertain problems and
the intelligent systems of a machine (Fig. 2). Hence,
the two adapt to and collaborate with each other,
forming a two-way information exchange and con-
trol. Such a ‘1 + 1 > 2’ hybrid-augmented intelli-
gence can be achieved by integrating human percep-
tion, cognitive ability, machine computing, and stor-
age capacities (Pan, 2016). Ultimately, information
from a large-scale, non-complete, and unstructured
knowledge base can be processed, and the risks of out
of control brought by AI technologies can be avoided.

The Internet provides an immense innovation
space for HITL hybrid-augmented intelligence. In-
ternet information processing is considered by some
researchers as the processing of highly structured and
standardized semantic information, a process they
believe can be processed by computers as long as
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Fig. 2 Human-in-the-loop hybrid-augmented intelli-
gence

human knowledge is properly marshaled. In fact,
the Internet is full of disorganized, messy fragments
of knowledge (Wang et al., 2017), and much of it can
be understood only by humans. Therefore, machines
cannot complete all the tasks of Internet information
processing. Human intervention is still needed on
many occasions.

HITL hybrid-augmented intelligence needs to
cover the basic functions of computable interaction
models, including dynamic reconstruction and op-
timization, autonomy and adaptivity during inter-
active sharing, interactive cognitive reasoning, and
methodologies for online evaluation. HITL hybrid-
augmented intelligence can effectively realize the
concept of human-computer communication, espe-
cially at the conceptual level of knowledge, where
computers can not only provide intelligent-ware in
different models, but also talk to human beings at
the conceptual level of knowledge.

Different HITL hybrid-augmented intelligence
systems should be constructed for different fields.

Fig. 3 shows the basic framework of HITL hybrid
intelligence, which can be considered a hybrid learn-
ing model. The hybrid learning model integrates
machine learning, knowledge bases, and human de-
cision making. It uses machine learning (supervised
and unsupervised) to learn a model from training
data or a small number of samples, and predicts new
data by using the model. When the predictive con-
fidence score is low, humans will intervene to make
judgments. In the hybrid learning framework shown
in Fig. 3, when the system is abnormal, or when the
computer is not confident in success, the confidence
estimation or the state of the computer’s cognitive
load will determine whether the prediction needs to
be adjusted by a human or whether human interven-
tion is required, and the knowledge base of the sys-
tem is automatically updated. In fact, human pre-
diction and intervention in the algorithm increases
(improves) the accuracy and credibility of the sys-
tem. Of course, HITL hybrid-augmented intelligence
needs to reduce human participation as much as pos-
sible, so that the computers can complete most of the
work. The intelligence of a hybrid learning mode as
shown in Fig. 3 is able to greatly expand the scale
and efficiency of the tasks humans can complete.

The main research topics for HITL hybrid-
augmented intelligence include:

1. how to break through the human-computer
interaction barrier, so that machines can be trained
in the intelligence circuit in a natural way,

2. how to combine human decision making and
experience with the advantages of machine intelli-
gence in logical reasoning, deductive inference, and
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Fig. 3 Basic framework of human-in-the-loop hybrid-augmented intelligence (integrating supervised and
unsupervised learning, knowledge bases, and human decision-making hybrid learning models)
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so on, so that a man-machine collaboration of high
efficiency can be realized,

3. how to build cross-task, cross-domain contex-
tual relations, and

4. how to construct task- or concept-driven ma-
chine learning methods which allow machines to
learn from both massive training samples and human
knowledge, to accomplish highly intelligent tasks by
using the learned knowledge.

HITL hybrid-augmented intelligence is able to
process highly unstructured information, generating
more accurate and more credible results than what
can be derived from a single AI system.

3 Hybrid-augmented intelligence
based on cognitive computing

In nature, human intelligence is undoubtedly
the most robust. The construction of hybrid-
augmented intelligence based on CC, which uses re-
search on effective cooperation mechanisms between
biologically inspired information processing systems
and modern computers, could possibly provide a
novel method to solve the long-term planning and
reasoning problems in AI.

3.1 Computing architecture and computing
process

The construction of CC hybrid-augmented in-
telligence should take into consideration computing
architecture and computing processes. That is to
say, the kind of computing architecture and the kind
of computing process needed to complete the calcu-
lation must be decided.

Modern computers are based on the von Neu-
mann architecture. The computing process is based
on the fact that computing tasks can be formulated
by a symbolic system. Running a modern computer
is a process of calculation by a formal model (soft-
ware) in the von Neumann architecture, which can
achieve complete and undifferentiated copies of data.
Different solutions (software programs) to different
problems are required. Once the model is estab-
lished, its computational capabilities and the tasks
it faces are determined.

The computing architecture of a biological in-
telligence is based on the brain and nervous system.
The calculation process of biological intelligence is
the process of constantly adapting to an environ-

ment or a situation, that is, applying risk judgments
and value judgments. The biological intelligence’s
information processing mechanism has two aspects.
One is a natural evolutionary process, which requires
the biological intelligence system to be able to model
the status of the environment and of itself and then
provide an ‘interpretable model’, which forms the
measurement of risk and value. The other is ‘selec-
tive attention’ (Moran and Desimone, 1985), which
provides an efficient mechanism for comprehensive
judgments of risk or value and screening key factors
in complex environments, such as children looking
for a father’s face in the crowd after school. In many
cases, risk and value judgments are based on contin-
uously cycling thinking activities of prediction and
choice on the basis of cognitive models, and veri-
fication thinking activities evolve and improve the
cognitive models, such as summing up an abstract
or formulaic experience as a theorem. Biological in-
telligence is a process of evolution; in addition to the
common characteristics, it presents individual differ-
ences such as individual experience (memory), value
orientation (psychological factors), and even ‘nerve
expressions’ of microscopic differentiation. For in-
stance, the same face may be represented differently
in different human brains.

Experience indicates that for different tasks, the
computing process of a biological intelligence is pos-
sibly separated from its computing architecture. Yet,
sometimes these two parts cannot be separated from
each other (how to identify this separation is also
worthy of study). For a computing architecture,
the cognitive model of biological intelligence can be
used to complete the ‘modeling’ progress and for-
malize its representation. Finally, taking advantages
of modern computers (computing devices), an effec-
tive collaborative calculation can be realized. For
the computing process, a neuromorphology model
can be constructed to emulate the biological brain
in structure and processing. Therefore, the critical
step in forming an effective CC framework is to de-
velop the hybrid-augmented intelligence inspired by
biological intelligence.

3.2 Basic elements of cognitive computing

Fig. 4 shows a schematic diagram of the ba-
sic components in a framework for CC. A CC
framework includes six interrelated cognitive compo-
nents, which are understanding, verifying, planning,
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evaluating, attention, and perception. Any of them
can serve as a starting point or an objective in a spe-
cific cognitive task. The system chooses a simple or
complex interactive path (e.g., repeated iteration) to
achieve the goal of cognition, according to the infor-
mation required to interact with the outside world.
Usually, the top-down selective attention is based on
the planning attention, while the bottom-up selec-
tive attention is essentially based on the perception
attention. Evaluation based on understanding or
planning is the prior probability (performance as pre-
diction), while evaluation based on perception is the
posterior probability (performance as observation).
In short, the process of CC is to constantly inter-
act with the outside world based on the information
required to meet objective tasks, and to gradually
start a thinking activity, rather than be limited to
knowledge-based processing. In the face of problems
involving a lack of preparation, an intelligent system
should have a cycle capability of ‘do until ...’, with-
out traversing every possibility to achieve the goal of
planning. This requires the CC process to contain
verifying steps, including: What to do next? Did it
produce the expected results? Whether to make fur-
ther effort or try other methods? In such a process,
the understanding and guidance of the environment
is enriched based on reasoning and experience (long-
term memory), and the ability to ‘verify’ is enhanced
accordingly.

The above CC process requires construction of
a causal model to explain and understand the world.
Using the causal model to update the prior proba-
bility (the prediction) by the posterior probability
(the observation), the association analysis is com-
pleted based on the probability analysis of given
data, and the time/space-based imagination or pre-
diction (such as spatial variation over time), pro-
vides understanding, supplement, and judgment of

the environment or situation. Planning action se-
quences are used to maximize future rewards, and
prior knowledge is applied to enrich the reasoning of
small-scale data to achieve good generalization abil-
ity and fast learning speed.

The main research topics for CC are as follows:
1. how to realize brain-inspired machine intu-

itive reasoning,
2. how to construct a causal model to explain

and understand the world,
3. how to use the causal model to support and

extend learned knowledge through intuitive reason-
ing, and

4. how to construct the knowledge evolution
model, i.e., how to learn to learn and how to ac-
quire and generate knowledge rapidly through the
combination of knowledge.

3.3 Intuitive reasoning and casual model

3.3.1 Intuition and cognitive mapping

Intuition is a series of processes in the human
brain including high-speed analysis, feedback, dis-
crimination, and decisions (Fischbein, 2002). Studies
have shown that the average accuracy of human in-
tuitive judgment is higher than that of non-intuitive
judgment (Salvi et al., 2016). Humans make many
decisions through intuition in their daily lives, such
as judging the proximity of two objects, perceiving
the unfriendliness of another’s tone, and choosing
one’s partner or a book. Intuitive decision mak-
ing is not just done by common sense. It involves
additional sensors to perceive and become aware of
information from outside.

Intuition can be divided into three processes,
namely selective encoding, selective combination,
and selective comparison (Sternberg and Davidson,
1983; Sternberg, 1984). Selective encoding involves
sifting out relevant information from irrelevant in-
formation. However, selective encoding is still insuf-
ficient for a human to achieve accurate understand-
ing. Selective combination is also needed to com-
bine the encoded information in some way and form
reasonable internal relations with other information
as a whole. Thus, selective combination involves
combining what might originally seem to be isolated
pieces of information into a unified whole that may
or may not resemble its parts. Selective comparison
involves relating newly acquired information to old
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information that one already has. When people re-
alize the similarity to a certain degree between the
old information and new information, people can use
this similarity to achieve a better understanding of
the new information.

Therefore, intuition helps humans make rapid
decisions in complex and dynamic environments. Be-
sides, it greatly reduces the search space in the pro-
cess of solving problems and makes the human cog-
nitive process more efficient.

Intelligence represents a model of characteriza-
tion and facilitates a better ultimate cognition. One
kind of cognitive ‘pattern’ that arises in the mind can
be thought of as a world model constructed based on
prior knowledge. This model contains three kinds
of relationships: interaction, causality, and control.
The world model can be considered a cognitive map
of the human brain, which resembles an image of the
environment. It is a comprehensive representation
of the local environment, including not only a simple
sequence of events but also directions, distance, and
even time information. This concept of a cognitive
map was first proposed by Tolman (1948). A cogni-
tive map can also be represented by a semantic web
(Navigli and Ponzetto, 2012). From the aspect of
information processing theory, a cognitive map (or
cognitive mapping) is a dynamic process with steps
of data acquisition, encoding, storage, processing,
decoding, and using external information (O’Keefe
and Nadel, 1978).

People are able to model their own state and
relationship within the environment, and then pro-
vide an interpretable model to form a basis and mea-
sure of evaluation and judgment of risk and value.
Human cognitive activities are embodied in a series
of decision-making activities based on the cognitive
map, which is a process of pattern matching. The
formation of a current cognitive map is related to the
brain’s perception and the understanding of external
information. As shown in Fig. 5, through the hu-
man individual’s growth and accumulation of learn-
ing, common sense, and experience, a human forms
a ‘decision-making space’, and the brain searches de-
cisions in the decision space randomly; once the se-
lected decision matches the current cognitive map,
where the match may be defined by a minimum cost,
people will respond intuitively. In this process, the
role that intuition plays can be considered guidance
for a decision-making search as well as the construc-
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Fig. 5 Relation of intuitive reasoning and cognitive
mapping

tion of a cost space in the computing process (Janis
and Mann, 1977).

Humans’ intuitive reasoning is closely related to
the prior knowledge processing ability of the brain.
This ability is about abstraction and generalization
instead of the rote memory of prior knowledge. It is
precise because of this ability that human intuition
can make rapid risk mitigation decisions based on
the world model in the human brain.

3.3.2 Machine implementation of intuitive reasoning

Although a machine has the power of symbolic
computation and a storage capacity that the human
brain cannot match, it is hard for existing machine
learning algorithms to realize the concepts men-
tioned above, such as a cognitive map, decision space
searching, and cost of space, like a human brain.

If the intuitive response can be considered as
finding the global optimal solution in the search
space, intuition can be regarded as the initial iter-
ation position of the solution. This position is valid
with large probabilities. This initial iteration posi-
tion is not important when solving a simple problem.
However, when solving complex problems, compared
with traditional machine reasoning methods, the ad-
vantages of intuitive reasoning will be highlighted. In
the latter case, traditional machine reasoning meth-
ods are likely to fall into local minima (Ioffe, 1979),
while intuitive reasoning can provide a reasonable
initial iteration position so that it can avoid the lo-
cal minima problem to a great extent.

In practical terms, the solution space is of-
ten complex, non-convex, or even structurally in-
definable (Hiskens and Davy, 2001). Therefore, the
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selection of an initial iterative position is critical and
can even decide whether the final result is the global
optimal solution or not. In common machine learn-
ing methods, the initial iteration position is usually
obtained at the sacrifice of the generalization abil-
ities of the algorithm, such as the introduction of
strong assumptions (Lippmann, 1987) and increas-
ing human intervention (Muir, 1994). Constructing
brain-inspired machine intuitive reasoning methods
will avoid the problem of local minima and improve
the generalization abilities of AI systems. Then, we
can establish models for problems with uncertainty.

As seen from the above discussion, intuitive
reasoning depends on the heuristics and reference
points. The heuristic information is derived from
experience, i.e., the prior information, which deter-
mines the direction of the problem solving. The
choice of the reference point depends on other re-
lated factors, which determine the initial iteration
position of the solution. Intuitive decision making
does not seek to find the absolute solution of the tar-
get solution position, but to assess whether or not the
deviation from the reference point is more conducive
to the avoidance of loss. In reality, intuitive judg-
ments tend to show the characteristics of the minimal
cost (or minimal risk) based on the ‘reward and pun-
ishment’ rule. Therefore, intuitive reasoning can be
simulated by machines. The hybrid-augmented in-
telligence based on CC requires optimally integrating
the two reasoning mechanisms, i.e., intuitive reason-
ing (Tversky and Kahneman, 1983) and deductive
reasoning (Dias and Harris, 1988), based on mathe-
matical induction.

The success of AlphaGo can be seen as a success-
ful example of the application of machine intuitive
reasoning. The solution space for Go is nearly impos-
sible to exhaust and the approaches based on rules
or exhaustive searching cannot make Go programs
reach the master level of a human. AlphaGo achieved
intuitive reasoning to a certain extent. Its intuition
is reflected in its simulation of the ‘Go sense’, which
is realized by the policy network and value network
(Fig. 6). The policy network is a quick judgment of
where to move, i.e., which actions can be considered
and which cannot. A value network evaluates overall
positions. AlphaGo gains the ‘Go sense’ by training
30 million positions from the KGS Go server and the
reinforcement learning process. The Go sense nar-
rows the search space in the process of finding the

Policy 
network

Value
network

Output

Monte Carlo
tree search

Intuitional 
reasoning

Input position

Results of 
intuitional 
reasoning

Fig. 6 Intuitive reasoning of AlphaGo

optimal solution, so that the computer can find the
approximate optimal solution from the vast solution
space through multithread iterations. The success of
AlphaGo shows the importance of intuitive reasoning
for problem solving.

Although AlphaGo has adopted a more general
framework, it still involves a great deal of manu-
ally encoded knowledge. Designing specific encoding
schemes for specific problems is the most common
way to describe a problem to be solved in previ-
ous and present AI research. However, encoding
methods are often manually designed for a partic-
ular purpose and do not ensure optimality. Be-
sides, AlphaGo does not have the ability of asso-
ciative memory. However, AlphaGo combines intu-
ition (Go sense) with explicit knowledge (rules and
chessboard) by the nonlinear mapping of deep learn-
ing and the jumping of Monte Carlo tree searching
(Browne et al., 2012). It is of great value to the
research into novel AI technologies.

In the research on hybrid-augmented intelli-
gence, more attention must be paid to other meth-
ods of learning and reasoning, such as deep learn-
ing based reinforcement learning (Mnih et al., 2015),
recurrent neuron network based methods (Mikolov
et al., 2010), and differentiable neuron computers
(Graves et al., 2016).

3.3.3 Casual model

Constructing an interpretable and understand-
able causal model is very important for the realiza-
tion of the hybrid-augmented intelligence based on a
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CC framework (Freyd, 1983). As shown in Fig. 7, the
posture of a person riding downhill is clearly different
from that when riding uphill. The angle between the
postures and the slopes of the ground are bounded by
a physical causal relationship. The relationship be-
tween the police and the thief can be seen as a kind of
social causal relationship. Non-causal relationships
manifest as no causal association between any two
independent individuals. The causal model, which
can be explained and understood in the framework
of cognitive computation, should satisfy the physical
constraints arising from the physical causal relation-
ship in cognitive tasks, and regard the machine as
‘itself’ and understand itself and the causality in-
volved in order to produce psychological reasoning
judgments in the current cognitive task.

Physical causality Non-causality Social causality

Fig. 7 Causal relationship: (a) physical causality; (b)
non-causality; (c) social causality

Cognitive reasoning at the psychological level
refers to the study and forecasting process of hu-
mans constrained or guided by their own mental
state, such as in imitation activities (Premack and
Premack, 1997; Johnson et al., 1998; Tremoulet and
Feldman, 2000; Schlottmann et al., 2006). As shown
in Fig. 8, a child remembers reward and punishment
when he sees his friend playing a new game. On the
next day, when he plays the same game, based on the
memory of how his friend played the game, he can
quickly find out how to deal with similar scenes. The
child’s behavior is guided by his psychological state
when he is playing the same game. This is a kind
of imitative learning and shows that people’s percep-
tion of new things can be predicted based on their
prior knowledge instead of complying with entirely
new rules.

The causal model in CC can track the develop-
ment spatiotemporally by cognitive inference at the
physical level as well as at the psychological level,
which means the learning procedure is guided by the
mental state.

Fig. 9 shows the general framework of the causal
model (Rehder and Hastie, 2001). Various objects

Recall

Fig. 8 Reasoning guided at the psychological level

that exist in the real world are represented by differ-
ent class attributes in this model. A1, A2, A3, and
A4 represent four different objects. In the common-
cause schema (Fig. 9a), A1 has causal effects on A2,
A3, and A4; i.e., in A1/A2, A1/A3, and A1/A4, A1

is the cause. In the common-effect schema (Fig. 9b),
A4 is the effect, and the others are the cause. In
the no-cause control schema (Fig. 9c), there exist no
causal relationships between A1, A2, A3, and A4.

A2 A4A3

A1 A3A1 A2

A4

A1

A3

A2

A4

(a) (b) (c)

Fig. 9 General framework of the causal model: (a)
common-cause schema; (b) common-effect schema;
(c) no-cause control schema

Temporal and spatial causality widely exist in
many AI tasks, especially in object recognition. For
example, Chen D et al. (2016) proposed a tracking
system for video applications. Because the spatial
causality between the target and the surrounding
samples changes rapidly, the ‘support’ in the pro-
posed system is transient. Thus, a short-term re-
gression is used to model the support. The short-
term regression is related to support vector regres-
sion (SVR), which exploits the spatial causality be-
tween targets and context samples and uses spatial
causality to help locate the targets based on tempo-
ral causality.

Perceptual causality is the perception of causal
relationships from observation. Humans, even as
infants, form such models from observation of the
world around them (Saxe and Carey, 2006). Fire and
Zhu (2016) proposed a framework for unsupervised
learning of this perceptual causal structure from
video. It takes action and object status detections
as input and uses cognitive heuristics to produce the
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causal links perceived between them. This method
has the precision to select the correct action from
a hierarchy. Similarly, a typical application of pre-
diction or inference tasks based on a causal model
is in the action recognition tasks in video sequences
(Wei et al., 2013; 2016). As shown in Fig. 10, a good
action recognition system is expected to be able to
deal with temporal and spatial correlation, discover
causal relationships and constraints among samples,
investigate the relationships between actions and en-
vironment at a sematic level, and then transform an
action recognition task into a structured prediction
problem.

An enhanced deep learning system with struc-
tured prediction modules (Honey et al., 2010) has
been applied to address issues including natural lan-
guage processing (Fig. 11a) (Xiao et al., 2016), pose
detection (Fig. 11b) (Wang LM et al., 2016), and
semantic segmentation (Fig. 11c) (Noh et al., 2015).

3.4 Memory and knowledge evolution

3.4.1 Implementation of memory by artificial neural
networks

The human learning mechanism (Nissen and
Bullemer, 1987; Norman and O’Reilly, 2003) is based
on memory, which is the foundation of human intelli-
gence. The human brain has an extraordinary mem-
ory capability and can identify individual samples
and analyze the logical and dynamic characteristics
of the input information sequence. The informa-
tion sequence contains a great amount of informa-
tion and complex temporal correlations. Therefore,
these characteristics are especially important for de-
veloping models for memory. Memory is equally im-

portant, if not more than computation for cognitive
functions. Effective memory is able to greatly re-
duce the cost of computation. Take the cognition
of human faces as an example. The human brain
can complete this cognitive process through a few
photos or even a single photo of a face. This is be-
cause a common cognitive basis of human faces has
been formed in the brain and the common features
of the face have been kept in mind so that identi-
fying the new or unique features of the faces is the
only task for a human. However, machines require
many training samples to achieve the same level as a
human does. For example, in natural language pro-
cessing tasks such as a question-answering system,
a method is needed to temporarily store the sepa-
rated fragments. Another example is to explain the
events in a video and answer related questions about
the events, where an abstract representation of the
events in the video must be memorized. These tasks
require the modeling of dynamic sequences in the
time scale and forming long- and short-term memo-
ries of historical information properly.

However, information is converted into binary
code and written into memory for computer devices.
The capacity for memory is completely determined
by the size of the storage devices. In addition, stor-
age devices are hardly capable of processing data,
which means storage and calculation are completely
separated physically and logically. Therefore, it is
difficult for existing AI systems to achieve an associa-
tive memory function. For future hybrid-augmented
intelligence systems, a brain-like memory ability is
in great demand (Graves et al., 2013) so that the
machine can imitate the human brain’s long- and
short-term memories. For example, we could form a

Fig. 10 Action recognition system integrating causal constraints
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Fig. 11 Combining deep learning with structured prediction to address issues of natural language processing
(a), pose detection (b), and semantic segmentation (c)

stable loop that represents some basic feature, and
maintain it for some period of time in a part of the
artificial neural network (Williams and Zipser, 1989).

DeepMind proposed a structure for a neural
Turing machine (Graves et al., 2014). Its structure
consists of two basic components: the neural net-
work controller and the memory pool. As shown
in Fig. 12, each neuron in a neural Turing machine
interacts with the outside via input and output vec-
tors as in traditional neural networks. The difference
is that the neural Turing machine interacts with a
memory matrix having selective read and write op-
erations. Therefore, it can achieve a simple memory
based inference. Park and Kim (2015) developed a
coherent recurrent convolutional network architec-
ture based on the neural Turing machine and used
it to create novel and smooth stories from a series of
images. Based on the neural Turing machine, Deep-
Mind has proposed a differentiable neural computer
(DNC) (Graves et al., 2016). As shown in Fig. 13,
the DNC also interacts with the external storage unit
to complete the memory function and it is similar to
a differentiable function from a mathematical point
of view. Thus, the structure is also used to solve the
problem of vanishing gradient in the long short-term
memory (LSTM) network for modeling longer time
series.

Differentiable neural networks combine well the
advantages of the structured memory of a traditional
computer with the capabilities for learning and deci-
sion making in a neural network, so they can be used
to solve complex structured tasks that a traditional
neural network is quite unable to do. The core of
the differentiable neural network is the controller,
which is characterized by a deep neural network,
where the controller can carry out intelligent read

External input External output

Controller

Read heads Write heads

Memory

Fig. 12 Structure of the neural Turing machine
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Fig. 13 Differentiable neural network
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from and write in memory and reasoning decisions
(Mnih et al., 2013; 2015; Lillicrap et al., 2016). For
a given condition, the differentiable neural network
makes inferences and autonomous decisions based
on the relevant experience and knowledge in mem-
ory, and constantly makes itself remember, learn,
and update strategies to complete the processing of
complex data and tasks.

3.4.2 Knowledge evolution

The evolutionary process for human knowledge
is the synergistic effect of the brain’s memory mecha-
nism and its knowledge transfer mechanism. Fig. 14a
depicts the structure and hierarchy of the evolution-
ary process of human knowledge, which are alongside
mental activities such as associative memory and as-
sociation. This process is structural and hierarchi-
cal. Similarly, as shown in Fig. 14b, in the neo-
cortex, neurons are not random, but have a certain
structure and hierarchy. Moreover, knowledge is in a
distributed representation in the human brain. The
neural system stores information mainly by chang-
ing the strength of synaptic connections between
neurons, and expresses different concepts through
changes in multiple assemblies of neurons.

Human memory is associative memory (Ogura
et al., 1989), so the input information and the re-
trieved memory in the human brain are correlated
at some level. For example, the former is part of
the latter, or both of them are similar or related in
content (such as the opposite), or they normally ap-

pear to exist simultaneously (spatial correlation) or
sequentially (event-related), synchronously, or suc-
cessively. Moreover, memory storage and retrieval
is a well-structured sequence with rich dynamic fea-
tures. This characteristic is the premise of knowl-
edge evolution. In addition, memory and informa-
tion processing are tightly coupled. The knowledge
evolution model in the brain-inspired CC framework
is expected to meet the following four requirements:

1. A probabilistic model is established for prior
knowledge.

2. The evolution model is expected to achieve
knowledge combinations and update them.

3. The evolution model is expected to determine
whether to go further by using an existing strat-
egy, or trying other methods, which is a self-proven
process.

4. In the process of validation, the evolution
model is expected to generate a rich understanding of
the environment by taking advantage of causal mod-
els through intuitive reasoning and experience at the
physical or psychological level (Lake et al., 2016).
Such understanding forms the basis of a verification
capacity.

The general framework of the evolution model
(Griffiths et al., 2010; Tenenbaum et al., 2011) is
shown in Fig. 15. The first (bottom) layer repre-
sents the first-order logical expression of the abstract
causal relationships, the weight status of the external
intervention factors (x, y) that influence the develop-
ment of the causal relationship, and the influence of

Internal 
granular

External 
granular
Plexiform

External 
pyramidal

Ganglionic

Fusiform

Th
e

dy
na

m
ic

 p
ro

ce
ss

 o
f k

no
w

le
dg

e 
ev

ol
ut

io
n

O
rg

an
iz

at
io

n 
of

 th
e 

ne
oc

or
te

x 
in

 s
ix

 la
ye

rs

K
no

w
le

dg
e 

tra
ns

fo
rm

at
io

n
A

ss
oc

ia
tiv

e 
m

em
or

y

(a) (b)

Fig. 14 Process of the synergistic effect of brain’s memory mechanism and knowledge transfer mechanism: (a)
dynamic process of knowledge evolution; (b) organization of the neocortex in six layers
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Fig. 15 General framework of the evolution model

the extrinsic intervention factors (F1). Causality and
external intervention factors are modeled as proba-
bility information (different data matrices). At the
top level, the hypothesis space for event development
is established, based on a probability computation,
and the model can quickly converge to a certain event
in the hypothesis space, that is, to predict the evo-
lution of the results.

3.5 Visual scenes understanding based on
memory and inference

The visual system plays a crucial role in un-
derstanding a scene through the visual center. The
perception of the environment constructs a cogni-
tive map in the human brain. Combining rules and
knowledge stored in the memory with external infor-
mation, such as map navigation information, a driver
can make his/her driving decision and then control
the vehicle following the decision.

Similarly, a brain-inspired automatic driving
framework can be constructed and enlightened by
the memory and reference mechanisms of the hu-
man brain. When someone is driving, the primary
perception to create a basic description of the envi-
ronment can be formed by the brain with a single
glance. According to these environment perception
results, integrating with the knowledge of the situa-
tion and related rules in the memory, the knowledge
map of the traffic scene can be constructed.

Fig. 16 shows a hybrid learning network for
an automatic driving vehicle using architecture with
memory and inference. In this hybrid learning net-
work, the road scene is first processed by multiple
convolutional neural networks to simulate the func-
tion of human visual cortex and form a basic cogni-

tive map similar to human brain’s, which is a struc-
tured description of the road sense and may contain
explicit information and descriptions of hidden vari-
ables of the road sense. A more explicit cognitive
map should be constructed based on the initial for-
mation of the cognitive map and combined with prior
elements of traffic and external traffic guidance in-
formation. Then, the cognitive map should contain
both the description of the road sense and the driving
strategy of the near future. Through the recurrent
neural network (RNN) (Funahashi and Nakamura,
1993), the cognitive map formed in each frame is
modeled to give the temporal dependency in motion
control, as well as the long- and short-term memo-
ries of past motion states, imitating human motion
(Kourtzi and Kanwisher, 2000). Finally, the con-
trol sequence of the automatic driving vehicle can be
generated.

4 Competition-adversarial cognitive
learning method

4.1 Generative model and adversarial net-
work

The generative model and adversarial network
(Xiao et al., 2016) are combined by the competitive
and adversarial cognitive learning methods, which
can effectively represent the intrinsic nature of the
data. This learning framework combines supervised
learning with unsupervised learning to form an ef-
ficient cognitive learning. Adversarial training was
first proposed by Szegedy et al. (2013) and Goodfel-
low et al. (2014a). The main idea of this learning
framework is to train a neural network to correctly
classify both normal examples and ‘adversarial ex-
amples’, which are bad examples intentionally de-
signed to confuse the model.

Approaches to machine learning can be roughly
divided into two categories: generative and dis-
criminative methods. Models obtained by the two
methods correspond to a generative model and a
discriminative model, respectively. The genera-
tive model learns the joint probability distribution
P (X,Y ) of samples and generates new data ac-
cording to the learned distribution, and the dis-
criminative model learns the conditional probability
distribution P (Y |X). A generative model can be
used for unsupervised as well as supervised learning.
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Fig. 16 Hybrid learning model for self-driving cars using architecture with memory and inference

In supervised learning, the conditional probabil-
ity distribution P (X|Y ) is obtained from the joint
probability distribution P (X,Y ) according to the
Bayes formula; hence, many observation models have
been constructed, such as the Naive Bayesian model
(Lewis, 1998), mixed Gaussian model (Rasmussen,
2000), and Markov model. An unsupervised genera-
tive model is to learn the essential characteristics of
real data, to give the distribution characteristics of
samples, and to generate new data corresponding to
the learned probability distribution. In general, the
number of parameters of the generative model is far
smaller than the size of the training dataset. Thus,
the generative model can discover data interdepen-
dency and manifest the high-order correlation of the
data without labeling information.

Generative adversarial networks (GANs)
(Goodfellow et al., 2014b; Denton et al., 2015;
Radford et al., 2015) were proposed to promote

the training efficiency of the generative model, and
to solve the problems that the generative model
fails to process. GAN consists mainly of two parts,
a generative network used to generate samples
and a discriminator used to identify the source
of the samples. When new samples generated by
the generative network and real-world samples are
fed into the discriminator, the discriminator will
distinguish the two kinds of samples as accurately as
possible. The generative network tries to generate
new samples that cannot be discriminated by the
discriminator (Mirza and Osindero, 2014; Salimans
et al., 2016; van den Oord et al., 2016). Actually,
generative adversarial learning is inspired by the
zero-sum game from the game theory (Nash, 1950).
During the training, the parameters of the generative
model and the discriminative model are alternately
updated (update one when the other is fixed) to
maximize each other’s error rate. Thus, the two
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parts compete with each other in an unsupervised
manner, and ultimately a nearly perfect generative
model can be obtained.

4.2 Generative adversarial networks in self-
driving cars

Self-driving car is a hotspot of recent AI re-
search. Fig. 17 shows a framework of the generative
adversarial model used in unmanned vehicles. There
are two critical problems in self-driving technology.
One is how to acquire enough training samples, es-
pecially negative samples; the other is how to build a
vivid off-line test system to verify the performance of
unmanned vehicles. Generative adversarial models
can be used to generate abundant and more natural
scenes for solving these two problems.

Input noise

Adversarial Genera  
sample

Discriminative 
result

Fig. 17 Generative adversarial networks

First, the construction of a reliable and safe un-
manned vehicle system requires to learn a variety of
complex road scenes and extreme situations. How-
ever, in reality, the collected data cannot cover all of
the road conditions. Therefore, complex and vivid
scenes with more traffic elements need to be con-
structed to train a more robust unmanned system
online by combining the generative adversarial net-
work with traffic knowledge base and structure of the
cognitive map.

Second, off-line test and evaluation require a
real-time simulation system that combines the test
requirements with the real vehicle status skillfully.
As illustrated in Fig. 18, a small number of samples
can be used to train a real-time system in unsuper-
vised manner to simulate a variety of road environ-
ments by taking advantage of the generative adver-
sarial model. This system can evaluate the perfor-
mance of the unmanned vehicle through generating

virtual traffic scenes according to the requirements
of a real-time simulation environment and the con-
straints of a road scene.
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Fig. 18 Generative adversarial networks in self-
driving cars

Machine learning systems will no longer rely too
much on manually labeled data with models that
can generate similar data according to the limited
labeled data. Hence, an unsupervised computing ar-
chitecture, which relies only on a small amount of
manually labeled data, can be constructed for effi-
ciently competitive adversarial learning.

5 Typical applications of hybrid-
augmented intelligence

AI technology is creating numerous new prod-
ucts and changing the way of people’s work, study,
and life in almost every aspect. It has become a
powerful driving force to promote sustained growth
and innovative development of social economy. In
this section we introduce some typical applications
of hybrid-augmented intelligence.

5.1 Managing industrial complexities and
risks

Managing industrial complexities and risks is a
typical application of hybrid-augmented intelligence.
In the networked era, how to manage the complexity
and inherent risks of industry in a modern economic
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environment has become a daunting task for many
sectors (Shrivastava, 1995). Due to the dynamic na-
ture of the business environment, various industrial
environments are facing extensive risks and uncer-
tainties. In addition, the importance of enterprise
risk control, business process socialization, business
social networks, and the configuration of social tech-
nology are promoted extensively because of the ad-
vances in our information society and sociocultural
environment. The socialization of business is a pro-
cess of socialization defined, specified, and imple-
mented by an organization for the purpose of achiev-
ing implicit or explicit business benefits. The so-
cialization and business social networks require es-
tablishing a specific business-driven social structure,
or a specific business configuration. They facilitate
the flow of information and knowledge (primarily
through advanced technologies such as the Inter-
net and AI) and contribute to business intelligence.
In particular, the external networks of enterprises
not only directly affect the competitiveness of enter-
prises, but also indirectly affect the competitiveness
of enterprises by influencing the internal resources
such as total assets and levels of technical expertise
(Hu et al., 2010; 2013).

To manage the inherent complexity brought
about by society-economy (Wang, 2004), society-
technology, and society-politics relationships, a mod-
ern process of business social networks and socializa-
tion is formed (Fig. 19). In this context, enterprises
need innovative solutions to reconstruct different in-
ternal organizational functions and operational mod-

els, as well as to optimize the scheduling of resources
and technology. Innovative solutions depend not
only on the ability of decision makers and cognitive
conditions (how much information is possessed), but
also on the social capabilities based on technology.
These capabilities are provided by hybrid-augmented
intelligence (Liyanage, 2012; Wang FY et al., 2016),
including advanced AI, information and communica-
tion technologies (ICTs), social networks, and busi-
ness networks. This hybrid-augmented intelligence
integrates organizational events, technological com-
ponents, and society to create a human-computer
interaction environment where learning, understand-
ing, reasoning, and decision making are supported
and core technologies are available. The applica-
tions of hybrid-augmented intelligence can greatly
improve the risk management capability of modern
enterprises, enhance their value creation, and pro-
mote competitiveness.

5.2 Collaborative decision-making in enter-
prises

Collaborative decision-making is critical to al-
most all businesses (Hoffman, 1998; Ball et al., 2001).
The free exchange of ideas in an enterprise is likely to
create more innovative products, strategic solutions,
and lucrative business decisions (Fjellheim et al.,
2008).

Human-computer collaborative hybrid-
augmented intelligence can provide application
solutions for large-scale workflow coordination,
which has great potential in value creation. Fig. 20
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Fig. 20 General framework of hybrid-augmented in-
telligence for enterprise collaborative decision-making

shows an example of hybrid-augmented intelligence
for enterprise collaborative decision-making that
supports coordination and communication among
participants in the process. The hybrid-augmented
intelligence systems of enterprise collaboration
decision-making must be accessible to all CEO
partners to provide transparency and make it easy
to follow workflows at any time. The integration
of multiple machine learning methods, decision
models, and domain knowledge is critical for hybrid-
augmented intelligence systems. That is to say, the
integration process is very complicated. In addition,
a collaborative application is considered to include
an expert system that provides recommendations
for an optimal solution through a combination of
existing explicit knowledge in the knowledge base,

rule reasoning, and experts’ implicit knowledge.
Such a collaborative application demands smooth
interfaces (decision support, communication, work
process compliance, etc.) among different modules.
For example, in an application, members are able to
discuss and solve problems by communicating and
sharing pictures, videos, audio, and other language
contexts. During the process of solving the problem,
different solutions need to be combined into the
decision-making model to obtain the recommended
best solution.

5.3 Online intelligence learning

AI makes education traceable and visible. On-
line learning is another important application of
hybrid-augmented intelligence (Yau et al., 2003; Atif
and Mathew, 2015). Future education must be per-
sonalized, and students will benefit from interact-
ing with an online learning system. As shown in
Fig. 21, such an online learning system is based on
a hybrid-augmented intelligence system under the
framework of CC. The human-computer interaction
in online learning is not a simple interface interac-
tion, but the continuous impartation and update of
knowledge (Marchiori and Warglien, 2008) between
students and machines during the learning process.
Online hybrid-augmented intelligence learning sys-
tem will be designed to provide personalized tutorial
according to each student’s knowledge structure, in-
telligence, and proficiency.
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To provide personalized tutorial, the online
hybrid-augmented intelligence learning system can
construct a sense-making model dynamically, and
plan different learning schemes according to different
abilities and responses of learners. The core of the
system is to transform traditional education into a
customized and personalized learning system, which
will profoundly change the formation and dissemina-
tion of knowledge.

5.4 Medical and healthcare

In the medical field, a large amount of knowl-
edge and rules need to be memorized, of which most
are empirical, complex, and unstructured and have
been changing over time. Furthermore, there are
complex causal relationships between medical knowl-
edge and rules (Lake et al., 2016). Fig. 22 shows a
schematic of various medical relationships among pa-
tients, precision medicine, healthcare, diagnosis, and
clinical practice. In addition, the ‘human disease
space’ cannot be exhaustively searched. Therefore,
it is necessary to establish a medical care oriented
hybrid-augmented intelligence system.
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Fig. 22 Precision medical schematic

The medical field is closely related to human life,
and a wrong decision is intolerable. So, completely
replacing doctors by AI is impossible and unaccept-
able. At present, the most successful application in
medical field is IBM’s Watson health system, which
is still in rapid development and improvement (Ando
et al., 2005; Ando, 2007; Chen Y et al., 2016). For
a doctor, the necessary preconditions to become an
expert are formal training, reading a large amount
of medical literature, rigorous clinical practice, and
knowledge accumulation through cases. However,
the knowledge and experience accumulated in the
whole life of a doctor are still very limited. Mean-

while, the knowledge in each academic field is rapidly
increasing; it is impossible for any expert to un-
derstand and master all the latest information and
knowledge. In contrast to humans, the Watson sys-
tem can accumulate knowledge easily by memorizing
the literature, cases, and rules and by translating a
number of doctors’ diagnosis about diseases into an
improvement in system capability. The Watson sys-
tem is able to understand natural language, answer
questions, and mine patient data and other available
data systematically to obtain hypotheses and present
them by a confidence score. Then, a doctor can give
the ultimate diagnosis according to the information
offered by the system. To some extent, AI systems
can diagnose individually (Dounias, 2003), but it is
difficult to exhaust human diseases by the rules. So,
the involvement of doctors is required (Fig. 23a).
Integrating doctors’ clinical diagnostic process into
a medical AI system with powerful storage, search-
ing, and reasoning capabilities (Fig. 23a) can make
a better and faster diagnosis. Fig. 23b shows the
basic framework of a medical hybrid-augmented in-
telligence system.

The applications of cognitive medical hybrid-
augmented intelligence systems with human-
computer interaction, medical imaging, biosensors,
and nano surgery will bring a revolutionary change
to the medical field.

5.5 Public safety and security

The current public safety and security issues
show a complex and diversified development trend,
especially in security areas such as national secu-
rity (Cimbala, 2012), financial security (Hilovska
and Koncz, 2012), web security (Shuaibu et al.,
2015), public security (Ferreira et al., 2010), and
anti-terrorism. Hybrid-augmented intelligence can
provide strong technical support and a basic infras-
tructure framework to meet the increasing challenges
in those security areas. Generally, the processing
of anomaly events can be divided into three parts:
prediction, detection, and subsequent disposition.
To make full use of human intelligence in complex
problem judging and of AI in processing massive
data, security systems should be a human-computer
collaborative hybrid-augmented intelligence, that is,
humans’ participation in prediction, detection, and
subsequent disposition. A general framework of the
system is given in Fig. 24.
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Fig. 23 Integrating doctors’ clinical diagnostic pro-
cess into a medical AI system (a) and the basic frame-
work of a medical hybrid-augmented intelligence sys-
tem (b)

A typical example of an anomaly prediction task
is sentiment analysis (Zhao et al., 2010). With the
development of social networks, analyzing sentiment
access by Internet data is possible. Sentiment anal-
ysis is an effective means to predict the occurrence
of abnormal events (public safety events). Facing
massive unstructured Internet data, it is, however,
impossible for humans to predict abnormal events
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Fig. 24 General framework of hybrid-augmented in-
telligence for public safety and security

without the aid of Al. This requires the prediction
module of the security system to process large-scale
data automatically and hand the results to humans,
who will make further judgment. In the process of
anomaly detection and subsequent disposition, there
is a similar interaction mechanism between a human
and a security system. Thus, a security system based
on human-computer collaborative hybrid-augmented
intelligence is formed.

At present, surveillance cameras are deployed
almost everywhere, which can provide massive video
streams for monitoring public security. Due to the
lack of manpower, those videos are not fully used.
Hybrid-augmented intelligence based on CC can de-
tect suspect events and characters from massive data
(e.g., dangerous carry-on items, anomaly postures,
and anomaly crowd behaviors). For results with low
confidence or significant impact, experts will get in-
volved and interact with the security system and
make further judgments by their intuition and do-
main knowledge. Meanwhile, a cognition model can
leverage experts’ feedbacks to improve the analytical
ability for video understanding and finally, a better
and faster system can be achieved for prediction,
detection, and subsequent disposition of anomaly
events.

5.6 Human-computer collaborative driving

Automatic driving system (Varaiya, 1993; Wal-
drop, 2015) is a highly integrated AI system and also
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a hotspot of research in recent years. Currently, fully
automatic driving is still facing difficult technological
challenges. A conception of human-computer collab-
orative driving was first put forward in the 1960s
(Rashevsky, 1964). Along with the development of
intelligent transportation systems, 5G communica-
tion technologies, and vehicle networking, human-
computer collaborative driving has become more and
more robust and advanced (Im et al., 2009).

Human-computer collaborative driving refers
to the sharing of vehicle control between a driver
and the intelligent system. It means accomplish-
ing the driving task cooperatively (Fig. 25). Ob-
viously, this is an HITL human-computer collabo-
rative hybrid-augmented intelligence system where
there is a strong complementarity between a human
driver and an assisted-driving machine. First of all,
humans are of strong robustness and adaptability
towards scene understanding, but humans’ driving
behaviors are easily affected by physical and psycho-
logical factors (such as fatigue) (Sharp et al., 2001).
Human-computer collaborative driving can reduce
the risks of human error and free people from repet-
itive work. In addition, humans rely mainly on vi-
sion for environment perception, which is vulnerable
to light, weather, and other factors. The machine
assisted-driving system can take advantage of a va-
riety of sensors to achieve continuous monitoring of
the driving scenes with high precision, provide more
driving information to make up for the lack of human
manipulation, and broaden the perception domain.
The system is also able to intervene humans’ driving
behaviors when humans fail to detect danger.

Easy cases

Human driver Machine driver

Driving assistance

Return the control

Complex cases

Fig. 25 Human-computer collaborative driving

The key problems of man-machine collaborative
driving are how to realize machine perception and
judgment, interaction of information in machine and

humans’ cognition, and decision-making (Saripalli
et al., 2003). Therefore, how to coordinate the two
‘drivers’ to realize safe and comfortable driving of
the vehicle is a pressing fundamental problem faced
by the hybrid-augmented intelligence man-machine
collaborative driving system.

At present, automatic driving has been applied
in specific situations, but technical difficulties still
exist in public and natural traffic scenes. However,
there are still more than 1 billion passenger cars on
the road every day. Therefore, it is quite important
to solve the current safety problems of passenger
cars by man-machine collaborative driving (Zheng
et al., 2004). Fig. 26 shows a three-layer architec-
ture for a driver assistance and safety warning sys-
tem. The sensory layer completes data collection
and communication with different types of in-vehicle
sensors and roadside devices. The decision-making
layer processes the data that the sensor layer collects,
extracts valuable information, combines it with the
GIS database for real-time decision, and recommends
corresponding actions for the human driver. Simul-
taneously, the actions of the driver are compared
with the driver’s dangerous actions to make appro-
priate rational decision-making. The human inter-
face layer displays a variety of guidance information,
offers real-time presentations to the driver for the
safety of high-level road information, and warns for
unreasonable posture actions.
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Fig. 26 Architecture for a driver assistance and safety
warning system

Man-machine collaborative driving is also able
to provide an approach to driving learning for the
automatic driving intelligence system. The system
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learns the actions of human drivers, including driv-
ing behavioral psychology from the process of man-
machine collaborative driving.

5.7 Cloud robotics

In recent years, robots have been widely used
in industrial manufacturing (Johnson et al., 2014;
Schwartz et al., 2016), life services (Walters et al.,
2013; Boman and Bartfai, 2015; Hughes et al., 2016),
military defense (Gilbert and Beebe, 2010; Barnes
et al., 2013), and other fields. However, traditional
robots have the problem of simplification of instruc-
tions, which makes them difficult to update the
knowledge among the robots and hard to interact
with humans; so, it is difficult to carry out complex
tasks. Therefore, how to enhance the intelligence of
an individual in a multi-robot collaborative system is
a major challenge for multi-robot collaborative aug-
mented intelligence

Cloud robot is one of the fastest fields of trans-
forming hybrid-augmented intelligence research into
commercial applications. An important application
of mobile Internet is the Internet of Things (IoT).
The concept of IoT is the support of millions of
ordinary devices or all the items used in daily life,
connected to a mobile Internet cloud. This is a long-
term goal that people are pursuing, but this kind
of interconnection has already been reflected in the
cloud robot field. In these systems, different tasks
can be optimized so that different robots can inde-
pendently cope with specific tasks, and robots can
share solutions with each other via the cloud. The
robots can share data with each other via the cloud,
enabling any robot or intelligent system connected
to the same network to analyze the data. For ex-
ample, if robot A sends some knowledge to robot
B, robot B in turn can improve that knowledge and
continue to transmit it in a cooperative way, and can
realize multi-robot motion planning in the shared
space and limited time. Thus, the learning poten-
tial and connectivity of the robots are significantly
improved. Fig. 27 shows the hybrid-augmented intel-
ligence framework for cloud robot interconnection.

In addition, entertainment is an important ap-
plication of hybrid-augmented intelligence. In recent
years, technologies such as augmented reality and
virtual reality have been widely used in game indus-
try, such as Pokemon Go, which enhances humans’
participation by superimposing users’ real scenes
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Fig. 27 Hybrid-augmented intelligent framework for
cloud robot interconnection

and game virtual scenes, promotes the development
of game industry, and contributes to the techno-
logical progress. Moreover, social platforms such
as Facebook and WeChat, shopping websites, and
other entertainment websites push related informa-
tion to users by making personal preference analysis,
which can become more effective and accurate by
introducing human-computer collaborative hybrid-
augmented intelligence.

6 Conclusions

Intelligence machines have become human com-
panions, and AI is profoundly changing our lives and
shaping the future. Ubiquitous computing and in-
telligence machines are driving people to seek new
computational models and implementation forms of
AI. Hybrid-augmented intelligence is one of the im-
portant directions for the growth of AI.

Building human-computer interaction based
HITL hybrid-augmented intelligence by combining
perception and cognitive capabilities of humans with
the computer’s capabilities to calculate and store
data can greatly enhance AI system’s decision-
making capability, the level of cognitive sophistica-
tion required to handle complex tasks, and adapt-
ability to complex situations. Hybrid-augmented in-
telligence based on CC can solve the problems of
planning and reasoning that AI research area has
been facing for a long time through intuitive reason-
ing, experience learning, and other hybrid models.

In this survey, the importance of the devel-
opment of human-computer cooperative hybrid-
augmented intelligence and its basic framework are
described on the basis of discussing the limitations
of existing machine learning methods. The basic
problems of hybrid-augmented intelligence based on
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CC such as intuitive reasoning, causal modeling,
memory, and knowledge evolution are discussed,
and the important role and basic approach of
intuitive reasoning in complex problem solving are
described. The visual scene understanding method
based on memory and reasoning is also presented.
Finally, typical applications of hybrid-augmented
intelligence in the fields of managing industrial
complexities and risks, collaborative decision-
making in enterprises, online intelligent learning,
medical and healthcare, public safety and security,
human-computer collaborative driving, and cloud
robotics are introduced. We encourage both the
industry and academia to investigate and enrich
hybrid-augmented intelligence, in both theory and
practice.
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