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Abstract: As we approach the exascale era in supercomputing, designing a balanced computer system with a pow-
erful computing ability and low power requirements has becoming increasingly important. The graphics processing
unit (GPU) is an accelerator used widely in most of recent supercomputers. It adopts a large number of threads to
hide a long latency with a high energy efficiency. In contrast to their powerful computing ability, GPUs have only
a few megabytes of fast on-chip memory storage per streaming multiprocessor (SM). The GPU cache is inefficient
due to a mismatch between the throughput-oriented execution model and cache hierarchy design. At the same
time, current GPUs fail to handle burst-mode long-access latency due to GPU’s poor warp scheduling method.
Thus, benefits of GPU’s high computing ability are reduced dramatically by the poor cache management and warp
scheduling methods, which limit the system performance and energy efficiency. In this paper, we put forward a
coordinated warp scheduling and locality-protected (CWLP) cache allocation scheme to make full use of data locality
and hide latency. We first present a locality-protected cache allocation method based on the instruction program
counter (LPC) to promote cache performance. Specifically, we use a PC-based locality detector to collect the reuse
information of each cache line and employ a prioritised cache allocation unit (PCAU) which coordinates the data
reuse information with the time-stamp information to evict the lines with the least reuse possibility. Moreover, the
locality information is used by the warp scheduler to create an intelligent warp reordering scheme to capture locality
and hide latency. Simulation results show that CWLP provides a speedup up to 19.8% and an average improvement
of 8.8% over the baseline methods.
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1 Introduction

Due to their high efficiency and easily-
programming characteristics, graphics processing
units (GPUs) have been a popular platform in in-
dustry and academia for accelerating various ap-
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plications, ranging from the simplest matrix addi-
tion and transformations to popular large-scale deep
learning algorithms. As a type of many-core proces-
sor, GPUs have thousands of processors. Different
from the traditional multiprocessors, such as cen-
tral processing units (CPUs), GPUs have few con-
trol units and many compute units. Due to their
massive threads, they can hide most of the long la-
tencies and gain a high throughput. However, a large
number of threads introduce an enormous number of
accesses to the on-chip memory. Since there are only
a few megabytes of on-chip memory, many accesses
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easily cause cache contention and thrashing prob-
lems (NVIDIA, 2015). At the same time, for such a
large number of accesses, traditional warp scheduling
methods have difficulties in hiding long latencies.

Protecting data locality in the cache is an ef-
fective way to relieve the cache problem. There are
a few ways to preserve data locality. One way is
to tune the GPU programs, which is direct and ef-
fective but painstaking for programmers to optimise
a highly tuned program. Therefore, this method
has only a limited effect in practice. As a result,
there is an urgent need to design an intelligent cache
management strategy that is invisible to program-
mers, to alleviate these problems and promote higher
performance.

Latency hiding is another way to improve per-
formance. A good warp scheduling method can hide
a long latency. A simple scheduler regardless of the
locality information is not suitable for different kinds
of programs. Thus, it is better to have a scheduler
that uses the locality information from the cache for
scheduling. Moreover, a locality information based
warp scheduler should be simple enough to avoid a
high overhead.

GPUs are built around an array of streaming
multiprocessors (SMs) (Fig. 2). A multi-threaded
program is partitioned into blocks of threads which
execute independently from each other; thus, a GPU
with more cores will automatically execute the pro-
gram faster than one with fewer cores. Because most
early applications are computation-intensive, and
massive multi-threaded execution patterns can hide
long access time to memory, the early generations of
NVIDIA GPUs do not consider cache as one of the
components for simplicity (NVIDIA, 2015). How-
ever, as the GPU architecture has been developed
and the fields for its application have been extended,
a generic on-chip memory, which is invisible for pro-
grammers, is imperative. This can preserve most of
the locality. Therefore, later generations of GPUs
introduce fast on-chip cache to improve the GPU
performance (NVIDIA, 2009). From Fermi architec-
tures, NVIDIA GPUs feature on-chip L1 cache and
the programmers are able to turn on/off the L1 cache
at the application or instruction level (Xie et al.,
2013). However, in most cache-sensitive applica-
tions, L1 cache has important effects on single-thread
performance, and will affect the GPU performance.

From the Kepler architecture onward, L1 cache

has been used for only local access, and the global
loads are cached in L2 cache. The poor efficiency of
L1 cache is one of the main reasons for this change.
Therefore, there is an urgent need to find better solu-
tions in cache management policy for the next gener-
ation GPUs to relieve this problem. Since this study
does not involve new features in the Kepler architec-
ture and improvements in Kepler, and the following
Maxwell architecture is related mainly to extending
functional units and memory capacity (Harris, 2014),
we consider the Fermi architecture for our research
and the strategies applied to it can be popularised to
other new architectures.

Recent studies focus mainly on reducing the
access number to on-chip memory by bypassing
and throttling (Rogers et al., 2013; Xie et al., 2013;
Chen et al., 2014; Lee et al., 2014; Sethia et al.,
2015; Xie et al., 2015, 2017). Bypassing is a method
applied first to CPUs. It is used when the mem-
ory system detects that the memory is full of data
locality and a new data insertion will destroy the
data locality. The new data skips this memory level
and accesses the lower memory. Throttling has been
another research hotspot in recent years. It can re-
lieve cache contention and thrashing by fundamen-
tally decreasing the number of blocks on the cores.
There are other studies on data locality (Rhu et al.,
2013) and reuse distance in GPU (Nugteren et al.,
2014). Rhu et al. (2013) retained the advantages of
coarse-grained access for spatially and temporally lo-
cal programs while permitting selective fine-grained
access to memory. Nugteren et al. (2014) showed
that the reuse distance theory can be used to model
the GPU caches in detail by extending the theory.
In conclusion, the latest research shows that cache
optimisation plays a critical role in improving GPU
performance.

However, it is still quite difficult to manage
cache efficiently and to optimise warp scheduling.
For cache-sensitive applications, an enormous num-
ber of memory accesses easily render the cache ca-
pacity insufficient, and this will cause a long latency.
Therefore, we need to coordinate a cache manage-
ment strategy with a thread scheduling method to
preserve data locality and simultaneously hide the
memory latency. In this paper, we propose a new
strategy that uses a single locality collection unit
to manage cache allocation and to optimise warp
scheduling. The main contributions of this work are
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as follows:
1. We analyze the data locality in L1 cache for

two typical programs. We show that early eviction
impairs the performance, and focus on a way to pre-
serve locality to solve the problem.

2. We compare the program counter (PC) and
the address based reuse detection methods, and il-
lustrate why we choose the PC-based method.

3. We propose a novel locality detector called
the ‘locality-protected cache allocation method
based on the instruction program counter (LPC)’,
and a prioritised cache allocation unit which evicts
the cache line with lower reuse possibilities, by us-
ing the collected reuse information and time-stamp
information.

4. A novel locality-based warp scheduler is pro-
posed to use the reuse information from the locality
detector to instruct the warp reordering scheme to
preserve locality and hide latency at the same time.

5. We evaluate the coordinated warp schedul-
ing and locality-protected (CWLP) cache alloca-
tion scheme on a simulated Fermi architecture and
achieve an IPC improvement of up to 19.8% over
the baseline scheme with a low overhead. We also
inspect L1-cache performance for LPC, and analyze
the relationship between L1_D-cache performance
and instructions-per-cycle (IPC) performance. The
results can be achieved for a variety of applications
with different characteristics.

2 Motivation

Data locality has become increasingly impor-
tant in designing high throughput and energy effi-
cient GPUs (Nugteren et al., 2014). This reasoning
relies on two aspects. First, early GPU applications
occur mainly in image processing, which has special
access patterns. Thus, GPUs are almost customised
for these applications and have special types of on-
chip memory such as texture and constant caches
(Dally et al., 2003; Drew, 2008). However, modern
generic applications have few streaming memory ac-
cess patterns. Second, recent universal and irregular
applications do not have enough parallelism, com-
pared with image processing programs. As a result,
preserving data locality becomes especially impor-
tant for these applications, because it can reduce the
number of redundant accesses to the global memory,
resulting in lower data access time and fewer blocks.

Continuous reuse number (CRN) is the number
of continuous memory accesses at a time to the same
address. It is different from the reuse distance, which
equals the number of the only addresses accessed be-
tween the current and the most recent previous ac-
cesses to the same address. Fig. 1 gives a clear distri-
bution of CRNs for k-means (KMN) clustering and
breadth first search (BFS) applications. CRN can
be used as locality information. For a cache line, a
larger CRN indicates that more localities exist in it.
Fig. 1 shows that the number of memory accesses in
L1_D-cache decreases as CRN increases. For BFS,
the downward trend is more remarkable than that in
KMN. Fig. 1 implies that, for some programs (such
as BFS), most memory accesses have no or little
locality.
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Fig. 1 Distributions of the reuse number for mem-
ory accesses in k-means (KMN) clustering (a) and
breadth first search (BFS) (b)

Memory hiding is another important method for
improving the GPU performance. In GPUs, multi-
threading is used to hide the long latency and to
achieve a high throughput. A good warp scheduler
can preserve locality and hide long latency at the
same time. It gives issue priority to warps based
on the characteristics of the executed instruction
to achieve reordering. As reordering may destroy
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locality, the reordering decision is based on local-
ity information from the cache. Therefore, if there
is a good locality in the cache, it will not perform
reordering to preserve locality. Otherwise, it does
perform reordering to hide latency.

3 Baseline architecture

As Fig. 2 shows, modern GPUs consist of multi-
ple SMs or computation units (CUs), interconnects,
memory partitions, and global memory. An SM exe-
cutes instructions in the manner of single instruction
multiple data (SIMD). At each cycle, an instruction
is fetched and decoded in the front-end, and then it is
dispatched to a warp (typically with 32 threads) pool
which contains multiple warps to run the instruction.
After the dispatch, the scoreboard will check for data
hazards. If an instruction passes the scoreboard, it is
qualified to be issued to the execution units. The in-
struction execution process is performed in multiple
SIMD lanes, which constitute the hardware execu-
tion units. The lanes have many computing resources
to process the data in parallel. Due to the sharing
of the same fetch and the decoding stage for mul-
tiple instructions in a warp, considerable hardware
expense is saved in GPU. Each SM is connected on
chip to the L2 cache through interconnects. The L2
cache is shared by SMs and the data in L2 cache is
transferred to DRAM through multiple data chan-
nels. The GPUs use mainly a multi-threaded execu-
tion model to achieve high throughput.
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Fig. 2 Baseline architecture of our graphics process-
ing unit (GPU)
SM: streaming multiprocessor; SIMD: single instruction mul-
tiple data; Reg: register; Mem: memory

The compute unified device architecture
(CUDA) is the computing platform for the GPU ar-
chitecture. In CUDA, a GPU kernel is offloaded

onto the GPU for execution. The kernel executes
instructions through massive threads, and the pro-
grammer can assign the number of threads. The
numerous threads are organised hierarchically. A
kernel has several thread blocks, and each block con-
sists of many threads. The threads in one block run
in an SIMT model. They can synchronise among
themselves through barriers.

Each warp in an SM takes advantages of the co-
alesced access to global memory to enhance memory
access efficiency. More clearly, multiple accesses in
a warp to a single block can be coalesced into one
to reduce the number of long access times to global
memory. Furthermore, the address will be checked to
see which chunk in the block will be accessed by the
address. In this way, smaller chunks can be accessed
instead of the entire cache block, reducing memory
bandwidth.

4 Comparison of address and program
counter based reuse information

To use data locality, GPUs need to detect lo-
cality first. There are two ways to collect reuse in-
formation. One is based on the instruction PC and
the other is based on the address information. They
each have different advantages and weaknesses, and
are suitable for different kinds of processors.

In the traditional CPU, each instruction issues
only one memory request. After the address is issued
to the cache, the hardware circuit will compare the
corresponding address segment with the cache tag to
see whether the accessed data hits on the cache. If
the request hits, the data in the block will be read or
written. Otherwise, the request is sent to the lower
level. The address-based reuse information is direct
and simple. Fig. 3a shows CPU’s memory access
pattern.

PC (instruction)

0 1 2 … 31 0 1 2 … 31

PC (instruction)
…warp0 warp1 warpN

Address
(a) (b)

Address

Fig. 3 Address access patterns for central processing
unit (CPU) (a) and graphics processing unit (GPU)
(b)

In the GPU architecture, the memory access
procedure is almost the same as that in CPU, except
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that each warp with an instruction can issue up to
32 memory addresses (Fig. 3b). The 32 accesses are
not separated completely and have the same instruc-
tion PC. Although some of the 32 accesses can be
coalesced by the coalescer, the access number is still
large and will change with the program’s features. If
we adopt an address-based method to collect reuse
information, the memory access process will be more
complicated and will not be suited for GPU’s single
instruction multiple thread (SIMT) running pattern.
The PC information for an application is more sta-
ble than the address information. The number of
PCs will not change with the increase in the size
of the input dataset (Zheng, 2014). Therefore, we
use the PC-based method to collect reuse informa-
tion to accommodate the characteristics of the GPU
architecture. The locality value in a cache block in-
creases when two accesses to the block have the same
PC, and decreases when they do not. The detailed
computation process for the locality is shown in Sec-
tion 5.

As the coalescer merges the many memory ac-
cesses in a warp into fewer or even one, some intra-
warp reuse information is hidden. The access number
after the coalescer does not show the real memory ac-
cess number of threads. We will consider the locality
problem after the coalescence operation, and deem
the coalescing problem beyond our consideration.

5 Coordinated warp scheduling with
locality-protected cache allocation

In this section, we will introduce CWLP which
uses locality information from the cache to instruct
cache allocation and warp scheduling simultaneously.
The locality-protected cache allocation and the warp
scheduling constitute CWLP.

5.1 Instruction program counter: locality-
protected method based on program counter
information

In this section, we discuss implementation of the
LPC allocation scheme. First, we propose a novel
PC-based reuse information collector to obtain the
locality information. Then, we demonstrate an ar-
bitrator unit called ‘PCAU’, which consists of a pre-
dictor and an eviction unit to evict the cache block
with the low reuse possibility. The architecture of
LPC is based on the locality-protected method based

on instruction PC (LPP) presented by Zhang et al.
(2017); however, their implementation and hardware
overhead are different.

5.1.1 Locality detection and prediction with pro-
gram counter information

As shown in Fig. 1, for some programs, a pro-
portion of the memory accesses has little or no reuse.
Our target is to acquire the reuse information in
these programs dynamically and evict these cache
lines with a low reuse possibility.

To protect the lost locality in the GPU cache,
we need to collect the reuse information in the cache
to distinguish the cache lines with a low locality from
those with a high locality. Our locality detector has
two parts: an extensive cache line architecture and
the locality prediction logic. As shown in Fig. 4, we
add the PC information in each block of the L1_D-
cache. Each line consists of tag bits, data bits, PC,
and a reuse bit. The tag bits are used to check the hit
or miss of the access. The data bits store the data.
PC, shown as W_PC, is for the instruction which
has accessed the cache line recently. The reuse bit
records the reuse information of this block, indicating
whether this block has a locality or not.

Reuse 
counter

LPL

Reuse bitW_PCDataTag

Data cache

Fig. 4 Implementation of the locality detector on the
graphics processing unit (GPU)
LPP: locality-protected method based on the instruction pro-
gram counter

We develop the locality prediction logic (LPL)
to monitor the locality of each line and predict the
reuse possibility for each block by making an AND
operation between the last and the current reuse val-
ues of the same block. LPL includes 128 entries
(covering all of the cache blocks). Each entry com-
prises a one-bit locality counter to record one block’s
reuse information in the last access. LPL also has
a common AND logic to compute reuse values and
to predict reuse possibility. The output from LPL
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is used by our proposed prioritised cache allocation
unit for a more efficient cache management.

When a memory request is sent to the memory,
the PC for instruction, which sends the current ad-
dress, will be compared with that in the line. If the
two are the same, the block’s reuse bit will be set as
1. Otherwise, it will be reset. After that, the reuse
bit of the accessed block will perform an AND oper-
ation with its corresponding bit in the LPL entry. If
the result is 1, it means that the last and the current
accesses both have a locality, and we predict that
the next access will also have a locality. Otherwise,
we predict that the next access will have no locality.
Then, the reuse bit in the block will replace the reuse
bit of this entry and the AND result will be used by
PCAU as the locality information (Fig. 5). Since
a warp has the same PC, we can use the PC-based
reuse information to indicate warp information. As
the locality between different memory instructions is
far less than that within one instruction, the local-
ity detection overhead between different instructions
is considerable. Therefore, we consider mainly the
locality within one instruction.
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information
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operation

Reuse 
information

Timestamp Eviction 
candidate

Fig. 5 Implementation of the locality-protected
method based on the instruction program counter
(LPC) on the graphics processing unit (GPU)
PCAU: prioritised cache allocation unit; LPL: locality pre-
diction logic

5.1.2 Prioritised cache allocation unit with reuse and
time-stamp information

After the collection of reuse information for each
cache block, the reuse information is transformed to
PCAU to help decide which cache line will be evicted
on the cycle. In the traditional bit-pseudo-LRU

(LRU: least recently used) eviction policy, each cache
line has time-stamp information on the last access
time for the block, and the eviction unit will choose
the LRU cache block to evict. In this way, the tem-
poral locality of the cache lines is preserved.

Our implementation is based on the bit-pseudo-
LRU replacement policy and has made some im-
provements according to the GPU’s memory access
pattern. It uses the reuse information from the cache
lines to help determine whether the cache block will
be a candidate for eviction. It is clear that the
reuse information and the time-stamp information
are used together to predict whether the cache block
will be the candidate for eviction. If a cache block
is LRU and is without a locality, it will be evicted.
Therefore, the time-stamp and locality information
can coordinate with each other to decide the cache
allocation scheme.

The reuse information from LPL shows the value
of the locality counter, which predicts the reuse pos-
sibility of the currently accessed block. The time-
stamp information indicates whether the block is
LRU. The time-stamp information indicates if the
cache block is the LRU one (if yes, it will be set as 0;
otherwise, 1), and will create an OR operation with
the reuse information (from LPL) which indicates if
the block has locality or not in the latest two ac-
cesses (if yes, it will be set as 1; otherwise, 0). If the
result of the OR operation is 1, the eviction predic-
tion bit is set as 1, indicating that this block should
not be evicted; otherwise, it is 0, meaning that this
block should be evicted. Using reuse information
with time-stamp information can predict the reuse
possibility of the block more accurately, since the
time-stamp information can represent only temporal
locality, and reuse information from LPL, which uses
the real access traces to instruct cache replacement,
is more convincing.

5.1.3 Implementation of the prioritised cache alloca-
tion unit

LPC is implemented in Algorithm 1, where we
first declare and initialise two variables ‘r_use’ and
‘classify’. ‘r_use’ records the reuse information of
each cache line and the ‘classify’ variable can dis-
tinguish L1 cache from all of the on-chip memories.
Then, each cache line will be checked to see if the
access hits on the cache. If it hits, the current time-
stamp will be assigned to the cache line. After that,
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whether the memory access comes from L1 cache will
be checked. If it is from L1_D-cache and the PC in-
formation of the access matches the last PC in cache,
r_use will be set as 1. Otherwise, r_use will be re-
set. r_use will then perform an AND operation with
the corresponding reuse value in LPL. Finally, the
AND result will carry out an OR operation with the
time-stamp information to decide the eviction.

Algorithm 1 Program counter based locality-
protected cache allocation
1: classify ← false
2: for Idx ← 1 to set_index×assoc do
3: m_lines[Idx].r_use ← 0;
4: end for // One-best to initialise
5: if access L1D cache then
6: classify = true;
7: end if
8: for Idx ← 1 to set_index×assoc do
9: if STATUS=HIT then

10: m_lines[Idx].m_time_stamp=current_time;
11: if classify = true then
12: if PC = m_lines[Idx].m_pc then
13: m_lines[Idx].r_use ← 1; // Collect the

// reuse information
14: else
15: m_lines[Idx].r_use ← 0;
16: m_lines[Idx].m_pc ← PC;
17: end if
18: if (m_lpl[Idx].r_use&m_lines[Idx].r_use)

==1 then
19: m_lpl[Idx].r_use=1; // Predict reuse

// information of the next access to
// the block

20: else
21: m_lpl[Idx].r_use=0;
22: end if
23: end if
24: end if
25: if !(m_lines[Idx].m_time_stamp<valid_time)||

(m_lpl[Idx].r_use) then
26: valid_time=m_lines[Idx].m_time_stamp;
27: evicted_line=Idx; // Determine which cache

// block to evict
28: end if
29: end for

5.2 Locality information based reordering

In this section, we will introduce the locality
information based warp scheduling method which
uses locality information from PCAU to instruct the

warp scheduling. The warp scheduling method and
the locality-protected cache allocation discussed in
Section 5.1 constitute CWLP. The whole structure
diagram of CWLP is shown in Fig. 6.

5.2.1 Locality information collection

Because the reuse information in PCAU can pre-
dict cache locality, it is used to guide the cache allo-
cation to preserve data locality as shown in Section
5.1. Furthermore, the reuse information can be used
to instruct warp scheduling in the warp issue stage
of the pipeline.

The locality information score (LIS) update
logic is made up of a 10-bit storage capacity and sev-
eral adders. The 10-bit storage stores 10 instances
of reuse information from the latest 10 accesses. The
adders are used to calculate the reuse values in the
storage to evaluate the locality status in the cache.
The reuse information in PCAU will update LIS ev-
ery cycle. The output from LIS will help the warp
priority logic create reorder operations in the warp
queue.

The maximum value for the 10 bits in LIS is
10. Therefore, if the addition of the 10 bits is larger
than five, it means that the number of cache lines
accessed with locality is larger than that accessed
without locality. When the addition is larger than
five, we think that there is locality in the L1 data
cache. Otherwise, we think there is no locality in
the L1 data cache. If the addition of the 10 bits is
larger than five, LIS shows that there is locality and
the warp scheduler will not reorder the warp queue.
Otherwise, the warp scheduler will reorder the warp
queue to preserve locality. The reuse information in
PCAU will update LIS in every cycle. The priority
logic creates the reordering operations in the warp
queue in every cycle. To detect the locality more
accurately, we create a fine-grained locality informa-
tion clean-up operation in LIS update logic. For
every 10 L1 cache accesses, LIS update logic buffer
will be cleaned up and the buffer will count the reuse
values from the next cycle. Using this fine-grained lo-
cality clean-up method, the locality information can
be passed to the priority logic in a timely manner.

5.2.2 Warp reordering process and effects

We propose a novel warp scheduling scheme
to preserve inter-warp locality and hide memory
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Fig. 6 Coordinated warp scheduling with locality-protected cache allocation
PCAU: prioritised cache allocation unit; LPL: locality prediction logic; LIS: locality information score; I-Buffer: instruction
buffer

latency. We use the locality information from LIS to
decide whether to reorder the warps. Our method is
based on the idea that the locality information based
scheduling can hide latency and preserve locality by
either rebalancing the warp queue or not, which has
significant effects on the GPU performance.

CWLP has the ability to preserve locality and
hide memory latency. LRR scheduling can preserve
locality well but can not hide long latency. Reorder-
ing can hide long latency but may destroy locality.
Therefore, we use locality information from memory
to issue a reorder decision to preserve locality and
hide long latency at the same time. If there is local-
ity in memory, it will not reorder the warps and the
locality is preserved. Otherwise, it will reorder the
warps and memory latency is hidden.

In CWLP, warps are divided into short and long
latency warps as shown in Fig. 7a, where short la-
tency warps are on-chip and long latency warps have
accesses to the global memory. If LIS shows that
the cache has no locality, the scheduler will perform
reordering. Long- and short-latency warps are put
into the warp pool in an interleaved fashion (Fig. 7b).
Short latency warps will proceed to overlap the long
latency warps to reduce idles in CU. If LIS shows that
the cache has locality, the warp queue will not reorder
to keep locality. In this way, locality is maintained
and latency is hidden. The choice of insertion place
is based on balance and simplicity. We have done

experiments on different reordering schemes and
found a method which makes short latency warps
separated by long latency warps one by one. Fig. 7c
shows that this can hide latency well. The balanced
reordering method avoids the occurrence of a burst of
long operations that stall CU. The saved stall cycles
and the reordering effects are shown in Fig. 8.

Long latency
Short latency

Warp pool
warp0 warp1 warp4warp3warp2Issue

(a)

Warp pool
warp0 warp1 warp4warp3warp2Issue

(b)

Warp pool
warp3 warp0 warp2warp1warp4Issue

(c)

Fig. 7 Graphical representation of the warp schedul-
ing process: (a) original warp queue; (b) locality-
protected reordering; (c) after reordering (References
to color refer to the online version of this figure)

Fig. 8 shows the reordering process and the ef-
fects of the scheduling method in CWLP, an op-
timised warp scheduling method which uses local-
ity preservation and latency hiding, and its effects
are on the baseline LRR scheduling. In Figs. 8a
and 8b, the upper graphs show that the CU stall
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benefits from reordering, and the graphs below show
that the locality changes before and after reorder-
ing. In the upper graphs, arrows indicate the time of
memory access, and the saved cycles with reordering
are shown in the graphs. In the bottom of Figs. 8a
and 8b, dark boxes illustrate long latency warps and
light ones show short latency warps. The ticks and
crosses illustrate whether there is locality between
successive warps or not.

We use a typical and a common memory access
pattern to show the process and effects of the re-
ordering method. In a typical case where a burst
of long memory warps access the memory (Fig. 8a),
the warps are classified into long (warp0, warp1, and
warp2) and short (warp3 and warp4) latency warps.
The long and short latency warps are interleaved
one by one (Fig. 7). Because the consecutive long la-
tency warps are separated and the short ones can use
the computation units as soon as possible, CWLP
saves stall cycles with acceptable data locality misses
compared with LRR scheduling. In a common case,
where the long memory access pattern is not succes-
sive (i.e., if there is no consecutive long operation,
the accesses are not burst) (Fig. 8b), CWLP issues
classification and reordering to the candidate warps
and saves some cycles with misses of some locality.

In general, this method performs well in a typ-
ical case and has no performance degradation in
common cases. Compared with LRR scheduling,
CWLP’s reordering method achieves a better latency

hiding with few locality misses. CWLP scheduling
shows potential for performance improvements in the
processor. In Section 6, we will analyze the hardware
cost of our method.

6 Implementation of coordinated warp
scheduling and locality-protected cache
allocation scheme

CWLP is implemented in Algorithm 2, where
the collection process for locality information is the
same as that in LPC. The LPL entries are used to
record the reuse information of each line. If the num-
ber of cache lines with locality is larger than that
without and the whole access number is 10, the warp
queue will perform reordering. Otherwise, the warp
queue will remain unchanged. The reuse informa-
tion needs to be cleaned up every 10 accesses for
more accurate locality detection.

The reordering process is shown in Fig. 9. It uses
time-stamp and latency information in warp to select
a warp to issue. As the HDL code shows (Fig. 9), the
condition includes two parts, an equation to judge
whether the warp is the oldest among the remaining
warps, and the XOR logic to decide whether the
latency of the warp is different from that of the last
issued warp. If one warp satisfies the two conditions
simultaneously, the warp will be issued. Otherwise,
the XOR logic has a priority to be checked separately
to allow the issuing of the warp. If there is still no
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Fig. 8 Processes and effects of the scheduling method in the coordinated warp scheduling and locality-
protected (CWLP) cache allocation scheme when reordering is enabled in a typical case where the scheduling
uses memory hiding with acceptable data locality misses (a) and a common case where the scheduling uses
memory hiding with acceptable data locality misses (b)



Zhang et al. / Front Inform Technol Electron Eng 2018 19(2):206-220 215

Algorithm 2 Coordinated warp scheduling and
locality-protected algorithm
1: Algorithm 1 // The same as in Algorithm 1
2: for Idx ← 1 to set_index×assoc do
3: if m_lpl[Idx].r_use=1 then
4: dist1++; // The accumulation of locality

// information
5: else
6: dist0++;
7: end if
8: if dist0<dist1 then
9: r_use_info=1;

10: else
11: r_use_info=0;
12: end if
13: if dist0+dist1>10 then
14: dist0=0;
15: dist1=0;
16: end if
17: if (r_use_info==1) && (dist0+dist1==10)

then
18: m_warps.reordering(); // Take reordering

// operation based on locality information
19: end if
20: end for

warp with permission to issue, the time information
in warps will be compared to issue the oldest warp.
If all of the remaining warps have the same time
information, the priority logic will issue the warp
according to the warp number sequentially.

7 Hardware cost and complexity

CWLP requires the introduction of several hard-
ware elements, and the hardware overhead is com-
paratively small. On one hand, the L1_D-cache
must be enlarged to add information within each line
about the PC that requested it (the W_PC field)
and the reuse bit. On the other hand, new struc-
tures are required, such as LPL, PCAU, LIS, and
priority logic, which also introduce extra overhead.
Since L1_I-cache has a memory space of 2 KB (Ta-
ble 1), the W_PC field needs 11 bits for each line to
cover the whole instruction space and 1 bit for each
line to indicate the locality in the line. The L1_D-
cache has 128 lines and the overhead is 192 B, which
is only about 1% of the L1_D-cache capacity. LPL
comprises 128 one-bit entries (16 B) and the AND
logic. The hardware cost is low. As for PCAU, since
it records the information for only the current access,

w
ar

p0

w
ar

p1

w
ar

p(
N

−1
)

warpsel

Select[[log2N]−1:0]

warp0
warp1

warp(N−1)

time latency
time latency

time latency

always @(posedge ckl)
begin
  if ((warp0_time<=warp_time(1:N−1))&&
      (warp0_latency    warp_latency_last_issued))
    warp0_enable=1; warp1_enable=0; ...; warp(N−1)=0; 
  else if ((warp1_time<=warp_time(1:N−1))&&
     (warp1_latency    warp_latency_last_issued))
    warp0_enable=0; warp1_enable=1; ...; warp(N−1)=0; 
                      
  else if (warp0_latency    warp_latency_last_issued))
    warp0_enable=1; warp1_enable=0; ...; warp(N−1)=0; 
  else if ((warp1_latency    warp_latency_last_issued))
    warp0_enable=0; warp1_enable=1; ...; warp(N−1)=0; 
                      
  else if (warp0_time<=warp_time(1:N−1))
    warp0_enable=1; warp1_enable=0; ...; warp(N−1)=0; 
  else if (warp1_time<=warp_time(1:N−1))
    warp0_enable=0; warp1_enable=1; ...; warp(N−1)=0; 
                      
  else if (warp0 not issued)
    warp0_enable=1; warp1_enable=0; ...; warp(N−1)=0; 
  else if (warp1 not issued)
    warp0_enable=0; warp1_enable=1; ...; warp(N−1)=0; 
                      
  else 
    warp0_enable=0; warp1_enable=0; ...; warp(N−1)=1; 
end

...

...

...

... ...

...
...

...

⊗

⊗

⊗

⊗

Fig. 9 Hardware implementation of the priority logic

its memory overhead is only three bits. The AND
logic in PCAU is also inexpensive to implement. The
LIS update logic consists of 10 bits to record the reuse
values of the recent lines and nine adders (five 1-bit,
two 2-bit, one 3-bit, and one 4-bit adder to add to
the 10 bits) to determine the cache locality. The
hardware overhead can be omitted. The warp prior-
ity logic has 1 bit for each warp to indicate whether
it has a long or short latency, which is updated by
information from the scoreboard. It also has some
logic to reorder the warp queue. As shown in Fig. 9,
the multiple selector uses an enable signal to select
a warp to issue. The enable signal is decided by the
logical operation result of the time and latency in-
formation among the warps. The decision logic is
simple as the HDL code shows. The whole hardware
overhead for the priority logic is dependent mainly
on the warp number. Since the warp number in an
SM is no more than 1536/32=48 (Table 1) and the
number will decrease as the warps are issued from
the warp pool, the overhead for the priority logic is
small. Thus, we can conclude that the total hard-
ware cost in CWLP is small and its complexity is
low.
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8 Experimental evaluation

8.1 Methodology

We use the GPGPU-sim (version 3.2.2) simula-
tor (Bakhoda et al., 2009) to evaluate our locality-
protected design across various GPU programs.
GPGPU-sim is a cycle-accurate performance simu-
lator which models a general-purpose GPU archi-
tecture supporting NVIDIA CUDA (NVIDIA, 2015)
and its parallel thread execution and instruction set
architecture (PTX ISA). We take the architecture of
GTX480 as our simulated architecture and the op-
timisation method can be popularised to other new
architectures. We use the default simulator param-
eters, and the relevant configurations are shown in
Table 1.

Table 1 GPGPU-sim configurations

Item Value

Numbers of streaming 32
multiprocessors

Warp size 32
SIMD pipeline width 16
Number of threads/core 1536
Number of registers/core 32 768
Shared memory/core 48 KB
Constant cache size/core 8 KB
Texture cache size/core 12 KB, 128 B line,

24-way assoc.
Number of memory channels 6
L1 instruction cache 2 KB
L1 data cache 16 KB, 128 B line,

4-way assoc. LRU
L2 unified cache 64 K/mem. channel,

128 B line,
8-way assoc. LRU

Compute core clock 700 MHz
Interconnect clock 700 MHz
Memory clock 924 MHz
DRAM request queue capacity 16
Memory controller Out of order
GDDR5 memory timing tCL=12, tRP=12,

tRC=40, tRAS=28,
tRCD=12, tRRD=6

Memory channel bandwidth 8 bytes/cycle

SIMD: single instruction multiple data; DRAM: dynamic ran-
dom access memory; LRU: least recently used

8.2 Evaluation results and analysis

To perform our evaluation on the CWLP mech-
anism, we use GPU-enabled workloads from Rodinia
(Che et al., 2009), Bakhoda et al. (2009), CUDA
SDK, and Mars (Fang et al., 2011). The applications

have different parallelisms and memory-access pat-
terns. We classify the benchmarks into two cate-
gories, cache-sensitive and cache-insensitive applica-
tions. We use the default GPU configurations to
evaluate the benchmarks in Table 2.

Table 2 Benchmarks of the proposed locality-
protected design

Application Abbreviation Sensitivity

k-means clustering KMN Sensitive
Histogram His Sensitive
Speckle reducing SRAD-V2 Sensitive

anisotropic diffusion V2
Convolution separable Convolution Sensitive
Breadth first search BFS Sensitive
Inverted index IIX Sensitive
Balance tree B+tree Sensitive
N queen NQU Insensitive
Vector add VADD Insensitive
String match SM Insensitive
Word count WC Insensitive
Mummer GPU Mum Insensitive
Hot spot Hotspot Insensitive
Store GPU STO Insensitive

We use loose round robin (LRR), two-level
scheduling, cache conscious wavefront scheduling
(CCWS), and greedy then oldest (GTO) for com-
parison with LPC and CWLP. LRR is the schedul-
ing scheme that the base architecture adopts. Two-
level scheduling is an optimised scheme for LRR.
Through prioritising warps with short latency, the
number of long memory stalls is reduced. CCWS is
a novel scheduling method which can achieve high
performance by reducing cache contention. These
scheduling schemes are all practical and can promote
GPU performance effectively. GTO is the scheduling
method that the default simulator adopts. We use
them for performance comparison with our scheme.

8.2.1 Performance results for the L1 cache

LPC performs optimisations on the L1_D-cache
and we will evaluate LPC’s effects on it. The L1
cache is used to store the most frequently used data
in GPU. Its performance has a great impact on
GPU’s performance. The cache miss rate is one of
the commonly used metrics to evaluate cache perfor-
mance. A higher cache miss rate indicates that more
accesses will be sent to the lower memory hierar-
chy, leading to performance degradation. As Fig. 10
shows, KMN, BFS, and SM have clear decreases in
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the cache miss rate. This indicates that LPC has
relieved some of the cache conflict problems through
locality-protected methods. The other applications
have almost no change in terms of the miss rate,
meaning that they are not sensitive to cache locality.
In Section 8.2.2, we will analyze the relationships be-
tween L1_D-cache performance and IPC results in
detail over different applications.

KMN His BFS STO SM WC VADD
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Fig. 10 Miss rate for the L1 cache with locality-
protected method based on the instruction program
counter (LPC) and loose round robin (LRR) for dif-
ferent programs

8.2.2 Instructions per cycle (IPC) performance of
GPU

Fig. 11 shows the normalised instructions per
cycle (IPC) for the different optimisation methods
across different applications. With CWLP, programs
such as KMN and Convolution obtain 19.8% and
16.8% improvement, respectively, over the baseline
LRR method. They can obtain 20.1% and 23.3%
benefit, respectively, over the newest CCWS scheme.
They both have many reused data accesses (Fig. 1)
and can achieve high performance. Some programs
that have less locality, such as BFS (Fig. 1), IIX, and
SRAD, can obtain an improvement of 5.2%, 11%,
and 5.2%, respectively, over the baseline, and a slight
decrease compared with CCWS. This is because the
locality-protected method based on locality has fewer
benefits for these applications, and warp reordering
begins to take effect. For the other applications,
they have a slight increase or decrease over the base-
line and the CCWS scheme. They are insensitive to
the preservation of data locality and latency hiding
because there are little reuse information and few
long latencies within them. In particular, we find
steep decreases in some applications with CCWS.

However, CWLP will always have a good perfor-
mance. In general, CWLP is more robust compared
with the other schemes and can achieve good perfor-
mance for a variety of applications.

IPCs for KMN, BFS, and SM are consistent
with their L1_D-cache miss rate, because the lower
L1_D-cache miss rate has better IPC performance,
indicating that their performance improvements re-
sult mainly from locality preservation in the L1_D-
cache. His and STO have a clear advantage in IPC
performance; however, their L1 miss rate remains un-
changed. This is because their performance advan-
tages are derived mainly from latency hiding. The
other applications have few improvements in IPCs
and their L1 miss rates stay the same. This is be-
cause their performances are insensitive to L1_D-
cache and latency hiding, and the locality protection
and warp reordering method has limited effects on
them.

Overall, our CWLP can achieve a good perfor-
mance for a variety of cache-sensitive applications
with different characteristics. It can achieve an av-
erage improvement of 8.8% over the baseline LRR
scheduling method, and 4.8% over the novel CCWS
scheduling scheme. We can also see that the rela-
tively irregular programs have gained a better per-
formance from the CWLP mechanism, because warp
reordering has its greatest effects in these programs.
Compared with some feedback-based schedulers such
as CCWS and DAWS, CWLP uses PC information
as the feedback to reduce reuse information collec-
tion and address-comparison expenses. Meanwhile,
the new thread scheduler is more efficient and the
hardware overhead is small. It is a promising method
for future GPU architectures.

9 Related work

Previous work has looked at various ways to
solve issues that limit GPU performance, including
thread scheduling schemes, using data locality in the
GPU cache, and memory optimisation methods coor-
dinated with thread scheduling. In this section, we
will discuss research related to these three aspects
and illustrate our method’s advantage.

9.1 Thread scheduling

The two-level scheduler on GPUs was first pro-
posed to reduce energy (Gebhart et al., 2011). It
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maintains a small set of warps to hide short-latency
warps, and uses a large set of pending threads to
hide long memory latencies. It can reduce energy
considerably because most of the warps are not ac-
tive. Narasiman et al. (2011) expanded the previous
two-level scheduler to partition all warps into warp
groups. Warps within the active group are qual-
ified for scheduling while they are executing short-
latency instructions. Once all the warps in the active
group are stalled on long-latency loads, the warps
within the pending group will start to execute to
avoid stalls. Lee et al. (2014) explored alternative
thread blocks or CTA scheduling in GPU. In par-
ticular, they proposed two novel scheduling meth-
ods, the lazy and block CTA scheduling methods,
to exploit the interaction between the thread block
scheduler and the warp scheduler to improve perfor-
mance. These methods are effective and can achieve
good performance over the baseline; however, their
objective is optimising the scheduling scheme, while
our work combines a cache management scheme with
thread scheduling on GPUs.

9.2 Data reuse in GPUs

Nugteren et al. (2014) showed that reuse dis-
tance theory can be used to model GPU caches in
detail by extending the theory with: (1) schedul-
ing of the GPU’s threads, warps, threadblocks,
cores, and sets of active threads; (2) in-flight mem-
ory requests and conditional and non-uniform laten-
cies; (3) cache associativity; (4) miss-status holding-
registers (MSHRs); (5) warp divergence. It is a
more accurate model for evaluating GPU cache per-
formance using reuse distance theory. However,
this is not meant to promote cache performance.
Gupta et al. (2013) investigated the locality of ref-
erence at different cache levels in the memory hier-
archy. They looked into the locality behaviour at
the warp, thread-block, and SM levels. Since multi-
plication was used as only a case study, the insights
in Gupta et al. (2013) are limited to some programs
similar to multiplication, and do not make optimisa-
tions to the memory hierarchy based on the insight
revealed from locality analysis. In contrast, since
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CWLP is not proposed for certain applications where
intra- and inter-warp locality can be preserved, it can
be used for a wider range of applications. Meanwhile,
it performs optimisations on the cache management
strategy based on reuse information to achieve better
performance.

9.3 Cache optimisation by scheduling threads

Rogers et al. (2012) put forward CCWS to op-
timise memory access efficiency on GPUs by using
a victim cache tag array to record inter-warp cache
contention. The scheduler uses this feedback infor-
mation to throttle the active warp count to reduce
cache contention. Memory request prioritization
buffer (MRPB) (Jia et al., 2014) attacks the intra-
warp contention that cannot be addressed by warp
schedulers. It uses request reordering and cache by-
passing to improve performance. Other strategies
such as criticality-aware warp acceleration (CAWA)
(Lee et al., 2015) target the removal of significant ex-
ecution time disparity on GPU to improve resource
utilization for GPU workloads. It can obtain a good
performance improvement; however, the introduc-
tion of two predictors makes the scheduling process
complicated. Chen et al. (2013) introduced a novel
algorithm to efficiently use multi-thread parallelism
and overlap short-latency compute instructions with
long-latency memory accesses. Data locality, how-
ever, cannot be preserved directly in the method.
Jog et al. (2013) carried out a locality-aware warp
scheduling method to reduce contention and increase
reuse in the L1 cache; however, it is based on the
shift in priority in warps, and its performance im-
provements come from the smaller number of CTAs.
In contrast, CWLP can maintain intra-warp locality
by evicting cache lines with less locality and preserve
inter-warp locality through warp scheduling. Its sim-
pler predictor, compared with CAWA’s, is highly ef-
ficient with a lower hardware overhead.

10 Conclusions and future work

We have proposed a locality-protected method
called ‘CWLP’ to improve GPU performance. The
key premise of CWLP is to use GPU features to de-
sign a novel cache management scheme to preserve
cache blocks with a high locality in the cache and a
thread scheduling method to hide the latency, and to
improve the overall throughput. CWLP achieves this

by: (1) collecting the reuse information from each
memory block based on the instruction PC and de-
signing a locality predictor to predict the possibility
of eviction for each line; (2) proposing a coordinated
cache line evictor which coordinates reuse informa-
tion with an LRU replacement scheme to evict cache
blocks without reuse possibility and to preserve space
for cache lines with a high locality; (3) using the lo-
cality information to instruct the warp scheduling
process to hide latency and preserve locality.

Our experimental evaluations on the GPGPU-
sim platform demonstrated that CWLP can effec-
tively improve GPU performance. It can achieve an
average improvement of 8.8% over the baseline LRR
scheduling with a low overhead. We concluded that
our proposed CWLP method is an effective way to
enhance GPU performance and it is practical for fu-
ture GPU architectures. In the future, we plan to
extend the CWLP scheme to L2 cache to further
improve GPU performance.
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