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Abstract: Compared with conventional cameras, spectral imagers provide many more features in the spectral do-
main. They have been used in various fields such as material identification, remote sensing, precision agriculture, and
surveillance. Traditional imaging spectrometers use generally scanning systems. They cannot meet the demands of
dynamic scenarios. This limits the practical applications for spectral imaging. Recently, with the rapid development
in computational photography theory and semiconductor techniques, spectral video acquisition has become feasible.
This paper aims to offer a review of the state-of-the-art spectral imaging technologies, especially those capable of
capturing spectral videos. Finally, we evaluate the performances of the existing spectral acquisition systems and
discuss the trends for future work.
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1 Introduction

In mimicking human eyes, conventional RGB
imaging devices perceive light with three types of
micro-filters sensitive to three different parts of the
light spectrum, respectively. Although trichromatic
sensing suffices for human visual systems, spectral
imaging can provide much more information about
the captured scenes and objects. Since chemi-
cal elements have unique signatures in a spectral
domain, multispectral/hyperspectral imaging tech-
nologies have a great application potential.

Traditional users of spectral imaging technology
are in the fields of astronomy and remote sensing
where the mapping of vegetation, minerals, water
surfaces, and hazardous waste monitoring are of in-
terest. In recent years, spectral images have been
used increasingly in computer vision tasks, such as
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material discrimination (Du et al., 2009), ophthal-
mology (Lawlor et al., 2002), the study of com-
bustion dynamics (Hunicz and Piernikarski, 2001),
cellular dynamics (Kindzelskii et al., 2000), surveil-
lance (Harvey et al., 2000), deciphering ancient
scrolls (Mansfield, 2005), photography (Rørslett,
2004), medicine, agriculture, manufacturing, and
forensics.

While spectral imaging is quite promising, the
capture and processing of spectral data, especially
high-dimensional spectral video data, faces signifi-
cant challenges: First, as shown in Fig. 1, a spectral
video holds one mega pixel in the spatial domain,
hundreds of spectral channels, and tens of frames
per second (FPS), and its capacity of within one
second is about 10 GB. Second, traditional spec-
tral acquisition systems commonly require specially-
manufactured optical elements and complicated me-
chanical components, and cannot meet the demand
of various low-cost and compact-size applications.

In this paper, we first review the traditional
imaging spectrometers which are based on spa-
tial scanning (Herrala et al., 1994; Green et al.,
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Fig. 1 Illustration of a high-dimensional spectral data
cube. It spans two spatial dimensions (x, y), one spec-
tral dimension (λ) and one temporal dimension (t)

1998) or spectral filtering (Morris et al., 1994; Gat,
2000), trading the temporal or spatial resolution
for spectral information. Then, we focus on sev-
eral state-of-the-art computational imaging snap-
shot spectrometers: (1) the computed tomography
imaging spectrometer (CTIS) (Descour and Dere-
niak, 1995; Descour et al., 2001), (2) the coded
aperture snapshot spectral imager (CASSI), from
the early CASSI (Wagadarikar et al., 2009) to its
upgraded systems (Kittle et al., 2010; Wu et al.,
2011; Lin et al., 2014b), (3) the prism-mask mul-
tispectral video imaging system (PMVIS), including
the low-spatial-resolution single-camera system (Cao
et al., 2011a), the high-spatial-resolution hybrid-
camera system (Cao et al., 2011b), and the content-
adaptive hybrid-camera system (Ma et al., 2014),
and (4) some newly developed spectral acquisition
systems based on the big-data science and semicon-
ductor technologies, namely, the light field imaging
spectrometer (LFIS) (Su et al., 2015), the training-
based spectrometer (Nguyen et al., 2014; Oh et al.,
2016), and the colloidal quantum dot (CQD) spec-
trometer (Bao and Bawendi, 2015). In the end, we
evaluate the performance of these existing spectral
acquisition systems and discuss the trends for future
work.

2 Traditional imaging spectrometers

A traditional spectrometer records the high-
spectral-resolution information of a single point
by dispersing a beam of light with optical
dispersers, e.g., a prism or grating. To acquire spec-
tral images, traditional spectral imaging devices use

scanning systems, which trade the temporal informa-
tion for high spectral or spatial resolution. Distin-
guished by their scanning systems, there are mainly
two types of scanning-based spectral imaging de-
vices, namely, the spatial scanning spectrometer and
the spectral filtering spectrometer.

2.1 Spatial scanning spectrometer

As shown in Fig. 2, spatial scanning spectrom-
eters can be divided into whisk-broom and push-
broom spectrometers. Whisk-broom spectrometers,
such as the airborne visible/infrared imaging spec-
trometer (AVIRIS) (Green et al., 1998), record a sin-
gle pixel spectrum each time, and the platform moves
pixel by pixel until the entire plane is recorded. To
improve the scanning efficiency, push-broom spec-
trometers record a spatial slit spectrum each time,
such as in the hyperspectral digital imagery collec-
tion experiment (HYDICE) system (Mitchell, 1995),
and the entire scene can be captured by moving the
slit continuously.

Whisk-broom
spectrometer

Push-broom
spectrometer

Spectral filtering
spectrometer

x
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λ

Fig. 2 Different scanning systems of traditional imag-
ing spectrometers: whisk-broom spatial scanning,
push-broom spatial scanning, and spectral filtering

2.2 Spectral filtering spectrometer

Spectral filtering spectrometers are based
mainly on a set of different narrow bandpass color fil-
ters or electronically tunable filters, and the light in-
tensity at different spectral channels can be recorded
by switching the filters. Typical examples are: (1)
the spatially varying color filters based camera in
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Schechner and Nayar (2002), in which a spatially
varying color filter is rigidly attached to a mov-
able camera—as the camera moves, it senses each
pixel in the scene multiple times, each time in a
different spectral band; (2) the tunable filter-based
imaging spectroscopy in Gat (2000), in which an
electronically tunable filter is mounted in front of
a monochrome camera, and spectral information
is recorded by switching the pass-band of the fil-
ter; (3) the rotary filter-based system in Yamaguchi
et al. (2006), in which several filters with different
bandpass wavelengths are mounted into the rotat-
ing wheel, and the spectral images can be captured
one after another by the monochrome camera placed
behind the wheel.

To summarize, traditional imaging spectrome-
ters produce additional spectral information by sam-
pling continuous manifolds in a 3D data cube. To
achieve high performance in terms of spectral accu-
racy, the voxels are sampled more evenly over the
data cube to increase the information rate per cap-
tured frame. Thus, dynamic spectrum imaging be-
comes the bottleneck.

3 Computational imaging spectrome-
ters

Since the scanning-based spectral imaging sys-
tems cannot capture dynamic scenes, technology for
collecting high-dimensional spectral data cubes in
a single snapshot appears to have great potential
for various video-based applications, such as military
target tracking, environmental pollution monitoring,
and high-efficiency material classification.

The spectral data cube spans in three domains
(x, y, and λ) with up to 10 GB capacity. Record-
ing such an amount of data in a snapshot seems
beyond the Nyquist-Shannon limit; however, it be-
comes practical by using the newly developed under-
sampling and reconstruction technologies (Donoho,
2006; Candès and Wakin, 2008). The key feature de-
termining the different reconstruction performances
is the under-sampling strategy according to the op-
tical configurations and statistical distribution prop-
erties of data (Candès et al., 2006; Cao et al., 2016).
In this section, we will introduce several typical
computational imaging spectrometers based on the
under-sampling and reconstruction strategy.

3.1 Computed tomography imaging spec-
trometer

CTIS eliminates the need for scanning by ac-
quiring full spectral information for all points within
a 2D field of view during a single integration time.
The original optical design and reconstruction al-
gorithms of CTIS were introduced by Descour and
Dereniak (1995). Some improvements were made
later by Descour et al. (2001).

As shown in Fig. 3, a sequence of three trans-
mission sinusoidal-phase gratings rotated in an in-
crement of 60◦ can achieve dispersion in multiple di-
rections into multiple orders. The dispersed images
of the system’s stop are interpreted as 2D projections
of the 3D (x, y, λ) spectral cube. Then, the spectral
cube is reconstructed using the maximum-likelihood
and expectation-maximization algorithms (Shepp
and Vardi, 1982) under the prior assumptions.

CT-projections

High-dimensional
spectral data cube

CT projections of 
the spectral data cube

Fig. 3 Schematic of a computed tomography imaging
spectrometer (CT: computed-tomography)

CTIS has the capacity for a spectrum snap-
shot, and the intensities at different wavelengths can
be recorded directly without any color-filtering de-
vices, which ensures the high throughput of light.
However, computed-tomography reconstruction the-
ory (Radon, 1917) requires continuous projection an-
gles from 0◦ to 180◦, while CTIS can record projec-
tion images only from a limited number of direc-
tions. These untapped projections leave a conical
unsampled region in the 3D Fourier volume, which is
commonly known as the ‘missing cone problem’ (De-
scour and Dereniak, 1995; Cao et al., 2011a). The
CTIS system faces an inevitably ill-posed limited
problem caused by limited projection angles during
the spectral imaging process. Filling the missing
cone with additional computation was also discussed
in Mooney et al. (1997).

In practice, the simultaneous capture of multi-
ple diffraction orders reduces severely the transverse
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spatial resolution in CTIS. The resolution would be
better if only one diffraction order is captured and
then the grating is rotated to obtain the diverse pro-
jections. Therefore, CTIS is not necessarily capa-
ble of acquiring spectral videos efficiently. Some
more advanced video sampling techniques could be
proposed.

3.2 Coded aperture snapshot spectral imager

Compressive sensing theory dictates that the
high-dimensional spectral data cube can be recon-
structed efficiently from far fewer measurements
than those required by traditional linear scanning
spectral systems.

Inspired by this, Brady et al. first introduced
the compressive sensing theory to solve the under-
determined problem in spectral imaging, relying on
the assumption that natural scenes are sparse inher-
ently on some multi-scale basis (Wagadarikar et al.,
2009). To implement compressive spectral imaging,
the aperture, which is used commonly as a light en-
ergy adjustor in conventional cameras, is designed
specifically for coding the incoming rays. The imag-
ing system is illustrated in Fig. 4 where light com-
ing from the scene passes through the object lens
first; then coupling with the coded aperture happens;
next, the light is dispersed by the prism, and finally
recorded by the sensor (CCD). Here, the coded aper-
ture is considered to be binary, while the dispersive
prism is considered linear. The imaging process can
be expressed mathematically as (Arce et al., 2014)

y = Aθ + ω =Hψθ + ω, (1)

where A = Hψ is the CASSI sensing matrix, θ
is a sparse representation of the spectral data cube
on a 3D basis ψ, ω represents the noise of the sys-
tem, and matrix H accounts for the effects of the
coded aperture and the prism (Willett et al., 2014).
To reconstruct the 3D spectral data cube, given the
set of measurements y, the cost function (Golbabaee

Objective
lens

Coded
aperture Relay lens Prism Sensor

Fig. 4 Schematic of a coded aperture snapshot spec-
tral imager

and Vandergheynst, 2012) should be minimized as
follows:

argmin
θ

‖y −Aθ‖+ λ ‖θ‖1 , (2)

where λ is a regularization constant. At this point,
it should be emphasized that sensing matrixA plays
a vitally important role in sensing to enable θ to be
as sparse as possible. In the following parts, we will
present some upgrades to the CASSI system wherein
more flexible sensing matrices are pursued.

Multi-frame CASSI: To improve the reconstruc-
tion accuracy, the proposed multi-frame CASSI,
which was proposed by Kittle et al. (2010) provides
more flexibility in strict adhering to the sparsity re-
quirements needed for accurate estimation with com-
pressive sensing. By taking multiple snapshots of
the same scene with distinctly coded apertures, it
is possible to select the number of measurements
based on the resolution requirements while main-
taining the snapshot advantages of the instrument in
each unique shot. To realize a multiple snapshot, the
static photomask is mounted on a piezostage so that,
by spatially shifting the mask using the piezostage,
different regions of the mask are exposed to the imag-
ing scene. Furthermore, Wu et al. (2011) used a
digital micromirror device (DMD) to implement the
multiplexing pattern, substituting it for the static
coded aperture. Since each pixel in DMD can be
driven electrically to be turned on/off, it provides
a virtually unlimited selection pool of multiplexing
patterns.

Dual-coded compressive hyperspectral imaging:
Whether single shot, multiple shot, or DMD-based,
CASSI codes only the color spectrum in a spatially
uniform manner. This sets a fundamental limit
on the data quality that can be expected from the
sparsity-constrained compressive reconstruction al-
gorithms. Lin et al. (2014b) proposed a novel snap-
shot approach for compressive hyperspectral imag-
ing, called ‘dual-coded compressive hyperspectral
imaging (DCSI)’, wherein the spatial and spectral
dimensions were coded, respectively, within a single
snapshot.

Fig. 5 shows the schematic of the DCSI sys-
tem, in which a two-arm system, including a
spatial and a spectral modulation arm, is designed.
In the spatial modulation arm, the objective lens
is used to project the scene onto a DMD, which is
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used as a high-resolution spatial light modulator. In
the spectral modulation arm, a diffraction grating
is brought in for spectrum dispersion, and a liquid
crystal on silicon (LCOS) is added as the spectral
modulator. During the exposure time, the spatial
and spectral information can be modulated simul-
taneously and dynamically. Altogether, the recon-
structed spectrum has been demonstrated to have a
higher quality than the previous ones.

Scene Objective lens

Diffraction
grating Relay lens

Relay lens
LCOS

Bandpass
filter

Sensor

DMD

Fig. 5 Schematic of the dual-coded compressive hy-
perspectral imagin system (DMD: digital micromir-
ror device) (Reprinted from Lin et al. (2014b), Copy-
right 2014, with permission from OSA)

To conclude, compressive sensing is a powerful
sensing and reconstruction framework for recover-
ing high-dimensional signals with only a few mea-
surements. For spectral imaging, it offers a novel
method for high-frame spectral video capture. When
compared with traditional scanning spectrometers
which rely on complicated mechanical scanning com-
ponents, compressive spectral imaging systems are
much more compact and flexible in various applica-
tion fields (Arce et al., 2014) and have lower cost.
In addition, from the perspective of optical config-
urations, compressive sensing achieves much more
sufficient light throughput than other spectrometers
do, and can not only ensure the short exposure time
for spectral video capture, but also result in high
spectrum reconstruction accuracy.

However, limitations still exist in the coded
aperture based imaging systems, whereby: (1) The
reconstruction error is unavoidable due to the spar-
sity assumption for a natural scene (Willett et al.,
2014); (2) The computational complexities of the
reconstruction algorithms, such as TwIST (Bioucas-
Dias and Figueiredo, 2007), ADMM (Boyd et al.,
2011), GAP (Liao et al., 2014), and HS-dictionary

learning plus sparse-constraint computational recon-
struction algorithms (Lin et al., 2014a), are not satis-
fying, and the high-dimensional spectral data cannot
be reconstructed in real time. This introduces obsta-
cles for some time-critical applications.

3.3 Prism-mask multispectral video imaging
system

In recent years, cameras have undergone rapid
developments in spatial resolution, which are far be-
yond the displaying device’s resolution and the per-
ception of the human visual system. Meanwhile,
spectral resolution has been the short board in many
machine vision applications. Therefore, why not take
the advantages of a camera’s high spatial resolution
for a higher spectral resolution?

Following this simple idea, Bodkin et al. (2009)
proposed the Hyperpixel ArrayTM Camera system,
Gao et al. (2010) proposed an image mapping spec-
trometer, and Cao et al. (2011a) proposed PMVIS
where the mask and micro lens array are used for spa-
tial under-sampling. Combining the traditional spec-
troscopic methods, high-resolution cameras can cap-
ture the diffuse spectrum of sampling points; thus,
spectral videos are captured allowing sacrifice in spa-
tial resolution.

As shown in Fig. 6a, light emitted from the scene
or object is down-sampled first by the uniform oc-
clusion mask; the sampled light is then dispersed
by the prism, and finally collected by the backward
grayscale camera. Fig. 6b is an RGB image of the
scene. Fig. 6c is the uniform occlusion mask used
for spatial down-sampling, in which light passes only
through the white rectangles, and the distance be-
tween the neighboring ones is well designed to avoid
spectrum overlapping. Fig. 6d is the captured image,
and the sampling rays have been diffused along the
horizontal direction so that the intensities at differ-
ent wavelengths can be recorded by different pixels.
After the necessary calibrations and rectifications,
the 3D spectral data cube can be extracted as shown
in Fig. 6e.

Hybrid-camera system: Due to the sacrifice of
spatial resolution for the additional spectral resolu-
tion, the image captured by PMVIS contains few
spatial details. This may limit the ability to per-
form image analysis. Additionally, the higher the
resolution in the spectral domain, the lower the
resolution in the spatial domain. Assuming that the
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RGB image retains most of the spatial edge struc-
tures of the high-dimensional image cube, a hybrid-
camera system was proposed by Cao et al. (2011b).
The schematic of the hybrid-camera system is illus-
trated in Fig. 7. Composed of an additional RGB
camera and the PMVIS system, the hybrid-camera
system can record two video streams simultaneously:
an RGB video with a high spatial resolution, and a
spectral video with a low spatial resolution. Follow-
ing the registration of the two videos, the system
propagates the spectral information into the RGB
video stream so that a high-resolution spectral video
is produced, in which both the proximity in the spa-
tial domain and the color similarity are used to guide
the propagation process, mathematically expressed
as (Cao et al., 2011b)

sij =
∑

c∈{R,G,B}

∑
k∈Ω

Gσr (d
RGB
k )Gσs(d

xy
k )ρck(w

c ⊗ sk)

∑
k∈Ω

Gσr (d
RGB
k )Gσs (d

xy
k )

,

(3)
where sij denotes the spectral vector of pixel (i, j),

Mask Prism Lens Sensor
(a)

(b) (c) (d) (e)

Fig. 6 Schematic of the prism-mask multispectral
video imaging system: (a) light path; (b) an RGB
image of the scene; (c) uniform occlusion mask; (d)
intensities at different wavelengths of the diffused im-
age; (e) a spectral signature of the 3D spectral data
cube (References to color refer to the online version
of this figure) (Reprinted from Cao et al. (2011a),
Copyright 2011, with permission from IEEE)
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Fig. 7 Schematic of the hybrid-camera system
(Reprinted from Cao et al. (2011b), Copyright 2011,
with permission from IEEE)

k ∈ Ω indexes the pixels within the neighborhoods
centered on (i, j), Gσs(·) represents the Gaussian op-
erator with zero mean and variance σ, and dRGB

k and
dxyk denote the Euclidean distance between pixels
(i, j) and k in the RGB space and (x, y) space, re-
spectively, and factor ρk represents the ratio of a
given color channel value at k to the corresponding
value at (i, j).

Content-adaptive high-resolution hyper-
spectral video acquisition system: In addition, Ma
et al. (2014) proposed a content-adaptive high-
resolution hyperspectral video acquisition system
to exploit fully the advantages of a hybrid-camera
system. As illustrated in Fig. 8, compared with the
hybrid-camera system, a spatial light modulator
(SLM), where the sampling patterns are generated
on-the-fly according to the scene content which is
provided by the RGB camera, is used to replace
the uniform occlusion mask. This leads to a more
accurate and intelligent spectral video acquisition,
which is more flexible for application in various
application fields.
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Fig. 8 The prototype and captured results for the
content-adaptive high-resolution hyperspectral video
acquisition system (Reprinted from Ma et al. (2014),
Copyright 2014, with permission from OSA)

Unlike the traditional scanning spectrometers
that trade either temporal or spatial resolution
for additional spectral information, the prism-
mask based hybrid-camera imaging system does not
require such sacrifice in spatial details while main-
taining high spectral accuracy. In contrast to coded
aperture based imaging systems, these systems
can be constructed with the low-cost off-the-shelf



1256 Chen et al. / Front Inform Technol Electron Eng 2017 18(9):1250-1260

optical components and are much simpler to cali-
brate in practice. Additionally, these systems can
generate high-dimensional spectral videos in real
time, and the effectiveness has been demonstrated
with different computer vison applications including
dynamic white balance adjustment and object track-
ing (Cao et al., 2011b; Ma et al., 2014).

3.4 More newly developed imaging systems

With the rapid development in big-data science
and semiconductor device fabrication, some newly
developed imaging systems have been emerging. In
the following part, we introduce three typical sys-
tems in this group.

LFIS: As we know, a light field camera is able to
simultaneously capture the spatial and angular infor-
mation of the incoming rays emitted from the scene
or object. A feasible spectral acquisition scheme was
proposed by Zhou et al. (2010) from the perspective
of a plenoptic function (Adelson and Bergen, 1991),
in which the spectral information is coupled with the
angular dimension information by placing a spectral
filter at the aperture of the light field camera. LFIS
can also capture the entire high-dimensional spectral
data cube in a single shot, and the system maintains
a compact size and weight. However, it still suf-
fers from the tradeoff between spatial and spectral
resolutions.

Training-based spectrometers: Since an RGB
camera provides three measurements per pixel,
it can be regarded as a spectral super-resolution
problem to reconstruct the high-dimensional spec-
trum directly from the trichromatic measurements.
The key to training-based methods is the mapping
model from the captured RGB image and the high-
dimensional spectral data; therefore, quite a few
schemes have been presented, such as the spatio-
spectral basis (Chakrabarti and Zickler, 2011), the
metamer set (Morovic and Finlayson, 2006), and lin-
ear interpolation (Abed et al., 2009) or non-linear
interpolation (Nguyen et al., 2014). Compared
with other spectral imaging methods, the training-
based ones have a much simpler and easy-to-use
system. However, note that these single-image meth-
ods rely inevitably on strong assumptions and are
extremely sensitive to the associated training data.

CQD spectrometer: Thanks to the develop-
ments in semiconductor device fabrication, a 2D ab-
sorptive filter array composed of CQDs has been

coupled directly to the imaging sensor (Bao and
Bawendi, 2015). Instead of measuring the spectra
with gratings, prisms, or interference-based narrow-
band filters, CQDs uses wide-band spectral filter ar-
rays (Fig. 9a) to achieve high signal-to-noise ra-
tio (SNR) measurements for reconstructing spectral
images.
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Fig. 9 The spectral transmission of different col-
loidal quantum dots (CQDs) (a) and the prototype
of the CQD spectrometer (b) (Reprinted from Bao
and Bawendi (2015), Copyright 2015, with permis-
sion from Macmillan Publishers Ltd.)

The imaging process of CQDs can be mathe-
matically expressed as

Ii =
∑

λ

Φ(λ)Ti(λ), i = 1, 2, ..., nF, (4)

where Ii is the transmitted intensity (i = 1, 2, ..., nF

is the filter number), Ti(λ) is the transmission spec-
tral curve of the ith CQD filter, and Φ(λ) is the
spectral intensity at wavelength λ of the incoming
light. Because Ti(λ) is predetermined by each CQD
filter, the only unknown parameter is Φ(λ); thus,
the linear regression algorithm can be performed for
spectral reconstruction, by finding a spectrum Φ̂(λ)

to obtain the minimum mean square error (MSE).
The advantage of the CQD spectrometer is that

it allows for a notable size reduction of the device. As
shown in Fig. 9b, a quantum dot spectrometer has a
size comparable to a US quarter, while it achieves a
considerable performance. It has considerable poten-
tial in some size-critical applications. However, the
spectral resolution of CQDs is quite limited and the
maximum number of reconstructed spectral bands is
equal to nF, which is determined by the filter num-
ber. Furthermore, increase in the filter number re-
quires a more sophisticated semiconductor technol-
ogy. Meanwhile, too many filters lead inevitably to
a decrease in the spatial resolution.
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4 Evaluation and conclusions

Because spectral information can provide
unique signatures of different chemical elements, ap-
proaches that enable efficient high-dimensional data
acquisition appear to have enormous potential in var-
ious application fields.

As illustrated in Table 1, traditional imaging
technologies use generally spatial scanning or spec-
tral filtering systems to record the spectral informa-
tion. They can capture the spectral images with both
high spectral and spatial resolution, and the compu-
tation cost is quite low in that they record the spectra
directly. However, since the scanning/filtering pro-
cess is quite time-consuming, they cannot capture
the spectral information of dynamic scenes. In addi-
tion, the embedded scanning/filtering mechanism is
fairly complicated and expensive.

Fortunately, with the significant development in
sampling theory and semiconductor device technol-
ogy, several types of novel spectral imaging systems
have emerged. Compared with traditional scanning-
based spectrometers, computational spectral imag-
ing systems have two significant advantages: (1)
They can acquire spectral videos due to the break-
throughs in time-cost scanning to high-dimensional
spectrum snapshots; (2) They can be constructed
without specially manufactured optical components
or complicated mechanical devices, endowing them
with considerable potential in low-cost, size-critical
applications.

On the other hand, the limitations of different
computational spectrometers include: (1) CTIS: A
conical unsampled region in the 3D Fourier volume
is inevitable due to the untapped projections, and

the construction has a high computation cost; (2)
CASSI: The calibration complexity and computation
cost are high; (3) PMVIS: The light throughput is
poor on account of the occlusion mask; (4) LFIS and
CQDs: The spatial and spectral resolutions in LFIS
and the CQDs present a tradeoff, and the increase of
either resolution leads to the decrease of the other;
(5) The training-based spectrometers rely on strong
assumptions and their accuracy is extremely sensi-
tive to the training set.

To intuitively demonstrate the imaging quality,
we use a public dataset (Yasuma et al., 2010) to
simulate the spectral images captured using differ-
ent technologies. Noise and inference in the imaging
process are ignored here. As shown in Fig. 10, it is
obvious that the accuracy of the spectra captured
by the training-based spectrometer is quite content-
dependent, and the spectral details cannot be recov-
ered by CASSI effectively. On the other hand, Fig. 11
shows the 2D image at 560 nm. The spatial details
(Fig. 11b), which are captured by CASSI, are over-
smoothed. The spatial resolutions of Figs. 11d and
11f are fairly low (which are respectively captured by
LFIS and CQDs).

The central theme of this article is that,
the under-sampling and reconstruction systems
have demonstrated considerable potential in vari-
ous applications, including both traditional remote
sensing and computer vision tasks (segmentation,
material discrimination, photography, surveillance,
etc.), because of the remarkable efficiency in dynamic
spectrum capture and simple low-cost system con-
figurations. Meanwhile, several limitations exist
in different spectral imaging systems, which must

Table 1 Comparisons of typical spectrometers

Spectrometer
Spectral Spatial Light Temporal Computation System

resolution (nm) resolution throughput resolution cost (min) complexity

Scanning <1.0 106 Low N/A Low High
CTIS 1.5–15.0 102 High High >10 High
CASSI 5.0–10.0 105 Medium High 5–10 Medium
PMVIS 1.0–5.0 106 Low Medium Low Medium
LFIS Multi-band 104 Medium Medium Medium Medium

Training Multi-band 105 High High 2 Low
CQDS Multi-band 104 High High Low Low

Scanning: traditional scanning based spectrometer (Herrala et al., 1994; Green et al., 1998; Gat, 2000); CTIS: computed-
photography imaging spectrometer (Descour and Dereniak, 1995; Descour et al., 2001); CASSI: coded aperture snapshot
spectral imager (Wagadarikar et al., 2009; Kittle et al., 2010; Wu et al., 2011; Lin et al., 2014b); PMVIS: prism-mask
multispectral video imaging system (Cao et al., 2011a; 2011b; Ma et al., 2014); LFIS: light field imaging spectrometer (Su
et al., 2015); Trainning: training-based spectrometer (Nguyen et al., 2014; Oh et al., 2016); CQDS: colloidal quantum dot
spectrometer (Bao and Bawendi, 2015)
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Fig. 10 The RGB reference image (a) and spectral signature comparisons for three areas: (b) white feather;
(c) green feather; (d) red feather

(a) (b) (c)

(d) (e) (f)

Fig. 11 Images at 560 nm which are captured by the traditional spectrometer (a), coded aperture snapshot
spectral imager (b), prism-mask multispectral video imaging system (c), light field imaging spectrometer (d),
training-based spectrometer (e), and the CQD spectrometer (f)

account for further combinations of optical princi-
ples, CS theory, machine learning algorithms, and
semiconductor device fabrication technologies.
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