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Abstract: Retinal vessel segmentation is a significant problem in the analysis of fundus images. A novel deep learning structure 
called the Gaussian net (GNET) model combined with a saliency model is proposed for retinal vessel segmentation. A saliency 
image is used as the input of the GNET model replacing the original image. The GNET model adopts a bilaterally symmetrical 
structure. In the left structure, the first layer is upsampling and the other layers are max-pooling. In the right structure, the final 
layer is max-pooling and the other layers are upsampling. The proposed approach is evaluated using the DRIVE database. Ex-
perimental results indicate that the GNET model can obtain more precise features and subtle details than the UNET models. The 
proposed algorithm performs well in extracting vessel networks, and is more accurate than other deep learning methods. Retinal 
vessel segmentation can help extract vessel change characteristics and provide a basis for screening the cerebrovascular diseases. 
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1  Introduction 
 

Cerebrovascular disease is regarded as one of the 
three major causes of death. Stroke is the most 
common cerebrovascular disease, and hypertension is 
the most important and independent risk factor for 
stroke. Ikram et al. (2006) discovered that the risk of 
stroke in a patient with hypertension was related to 
the retinal artery diameter, vein diameter, and arteri-
ovenous ratio. Information about the personal risk of 
potential cerebrovascular diseases can be obtained 
through the quantization parameter of the retinal 
vessel, which is widely used in clinical practice and 
may improve the prevention of strokes in hyperten-
sive patients. Retinal vessel segmentation facilitates 
the quantification of characteristics. The advantage of 

this method is that it can overcome the randomness of 
boundary selection and the subjective error of quan-
tization, and provide a convenient way for doctors to 
select vessels of interest. This can help in the early 
diagnosis of diseases and the monitoring of prognosis 
and treatment. 

Many different approaches to vessel segmenta-
tion have been proposed, which can be divided into 
two categories (Zhu et al., 2015): unsupervised 
methods (including vessel tracking, matched filters, 
morphological processing, and a deformable model) 
and supervised methods (based on pixel classification 
systems such as neural networks). 

1. Unsupervised methods 
(1) Vessel tracking. Vessel tracking is based on 

the continuous structure of the retinal vessel. The 
initial seed should be chosen and followed in the 
direction of the vessel. The vessel between two points 
can be obtained when the termination condition is 
reached. Liu and Sun (1993) first proposed the vessel 
tracking method. Solouma et al. (2002) proposed a 
new real-time method, initiating a grid of seed con-
tours over the whole image by splitting deformation 
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and merging according to the preset criteria until the 
whole vessel tree was demarcated. A Gaussian filter 
was then used to filter the image to extract the vessels. 
Kumar et al. (2015) proposed a modified multiscale 
vessel method and reduced the processing by apply-
ing this vessel only within the connected blood vessel 
region. They proposed a novel method, combined 
with blood vessel segmentation, centerline extraction, 
and radius detection. Vessel tracking provides precise 
vessel connectivity information at branching and 
crossover points for early detection of many systemic 
diseases. However, vessel tracking may be confused 
by vessel crossings and bifurcations and may termi-
nate when the contrast between the vessels and the 
background is weak. 

(2) Matched filters. A matched filter is based on 
the gray distribution of the vessel section, which 
conforms to the Gaussian distribution. The vessel 
points can be determined by the maximum response 
value of the convolution between the Gaussian filter 
and the retinal image. Chaudhuri et al. (1989) de-
signed a two-dimensional matched filter to detect a 
vessel in 12 directions, and obtained the maximum 
response as the output. Odstrcilik et al. (2013) com-
bined a matched filter and a minimum error to seg-
ment a vessel. A matched filter can adopt the property 
of a vessel section sufficiently. However, the accuracy 
of this approach is low when the vessels and back-
ground have low contrast. 

(3) Morphological processing. In morphological 
processing, dilation and erosion are used to process 
the image. The vessel edge can be obtained when the 
original image is subtracted from the processed image. 
Zana and Klein (2001) combined morphology and 
curvature estimation to extract a vessel. Based on this 
approach, Ayala et al. (2005) used median fuzzy set 
methods to extract vessels. Imani and Pourreza (2016) 
used morphological component analysis (MCA) to 
improve the detection of retinal blood vessels. First, 
an MCA algorithm with appropriate transforms was 
adopted to separate vessels and lesions from each 
other. Then Morlet wavelet transform was applied to 
enhance the retinal vessels. Finally, the vessel map 
was obtained by adaptive thresholding. This method 
can obtain a good noise immunity performance 
without relying on prior knowledge of vessels. 

(4) Deformable model. An algorithm based on a 
deformable model is used to describe the boundary of 

the target adopting a continuous curve. Vese and Chan 
(2002) proposed a multiphase level set framework for 
image segmentation, using the Mumford and Shah 
model based on active contours without edges. Zhao 
et al. (2014) proposed retinal vessel segmentation 
based on level set and region growing. 

2. Supervised methods 
Franklin and Rajan (2014) used a back- 

propagation algorithm in a neural network for vessel 
segmentation. Zhu et al. (2016) proposed an effective 
method for retinal vessel segmentation based on su-
pervised learning, in which a 39-dimensional feature 
vector was extracted for each pixel, consisting of 
local, morphological, and Gabor features. The sam-
pled set was initially treated by the classification and 
regression tree as a weak classifier, and was then 
strengthened by a trained AdaBoost-based classifier 
as a strong classifier to classify pixels. Supervised 
methods are time consuming because they require 
training, which depends on hand-labeled vessel seg-
mentation for references. 

A retinal vessel segmentation method based on 
deep learning has achieved a higher precision than 
other supervised algorithms (Zhu et al., 2015). Maji 
et al. (2015) proposed a hybrid architecture based on 
deep and ensemble learning to detect vessels, fol-
lowed by the unsupervised learning of sparse de-
noising and auto-encoding training with a random 
forest used to detect vessels. Ronneberger et al. (2015) 
proposed a UNET model, which was established on a 
fully convolutional network (FCN). The UNET 
model was so named because of its “U”-like shape. 
The back-half operation of the UNET model was 
upsampling instead of max-pooling. The model has 
been used for biological image segmentation includ-
ing retinal vessels, and has achieved good results. Liu 
et al. (2014) and Fu et al. (2016) proposed a novel 
method for retinal vessel segmentation based on deep 
learning and a random field, respectively. 

Given the differentiation in color, brightness, 
and texture features between regions of retinal vessels 
and background in fundus images, a saliency model 
can be used to highlight the vessel region. The sali-
ency characteristics of the underlying data can high-
light the vessels in images. 

The left half structure of the UNET model is 
max-pooling. However, some details are lost in spite 
of upsampling in the back-half structure. In this study, 
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we propose a novel deep learning model called 
Gaussian net (GNET), since the structure resembles a 
Gaussian distribution curve. The GNET model is an 
improved version of the UNET model. The GNET 
model adopts a bilaterally symmetrical structure. In 
the left structure, the first layer is upsampling and the 
other layers are max-pooling. In the right structure, 
the final layer is max-pooling and the other layers are 
upsampling. The original image is directly used as an 
input of the new algorithm, which can ensure the 
universality of the learning characteristics without the 
need to manually design features, based on prior 
knowledge. Compared with the UNET model, the 
improved GNET model is proposed to obtain more 
precise features and subtle details. 

Consider the advantages of a saliency model and 
deep learning, both of which are combined with ves-
sel segmentation. There are two important ideas in the 
proposed algorithm: (1) A low-level and bottom- 
up visual saliency model is adopted to detect the 
fundus image. By computing the distance between the 
mean pixel value and the Gaussian blurred version of 
the fundus image, the distance image is used in the 
saliency image. This method can highlight the sali-
ency region of the retinal vessel and obtain clear 
edges with a complete resolution. (2) Given that the 
GNET model used to learn the characteristics of the 
fundus image may lose some details, an improved 
model is proposed, and the classifying results are 
obtained through a training classifier. 

The flowchart of the proposed algorithm is 
shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2  Related work 

2.1  Deep learning 

2.1.1  Fully convolutional network 

An FCN (Shelhamer et al., 2017) has been 
transformed from a convolutional neural network 
(CNN). A CNN is a multilayer neural network, with 
each layer containing convolution and pooling 
transformations. The CNN structure contains convo-
lution, sampling, and fully connected layers. Fixed- 
length feature vectors can be obtained in the fully 
connected layer and can be classified by the softmax 
classifier. In an FCN model, the fully connected layer 
is used instead of the convolution layer. The resolu-
tion becomes lower after pooling. The deconvolution 
layer is followed by the last convolution layer. The 
output image has the same size as the input image. 
Then pixels in the feature map can be classified by the 
softmax classifier. The structure of the FCN is shown 
in Fig. 2. 

 
 
 
 
 
 
 
 
 

 

 
 
1. Convolution layer 
The input image is convolved with a convolution 

kernel, which can generate a new feature map. The 
size of the output image will be smaller than that of 
the input image. For example, consider the size of an 
input image to be 32×32 pixels and the size of a 
convolution layer with four convolution kernels to be 
5×5 pixels. Four feature maps will be obtained after 
convolution, and the size of the feature maps will be 
(32−5+1)×(32−5+1)=28×28 pixels. These feature 
maps comprise the input layer of the subsequent 
convolution layer. 

2. Pooling layer 
The pooling layer is the downsampling layer. 

The size of the feature maps will decrease after 
downsampling. The max-pooling operation is 
adopted extensively and the stride is two. The  Fig. 1  Flowchart of the proposed algorithm 

Preprocessing
 (1) Gray-scale conversion;
 (2) Standardization;
 (3) Contrast-limited adaptive histogram equalization  
      (CLAHE);
 (4) Gamma adjustment

Saliency model detection

Gaussian net (GNET)
(1) Building the model;
(2) Training;
(3) Prediction

Generating data pieces

Fig. 2  Structure of the fully convolutional network 
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maximum value of the region is 2×2 pixels, which is 
considered a characteristic of this region. After 
downsampling, the size of the feature maps will be 
reduced to a quarter. 

3. Deconvolution layer 
The deconvolution layer is the upsampling layer. 

The size of the feature maps will increase after up-
sampling. The size of the image becomes small after 
pooling, and can remain unchanged when the same 
stride is chosen for upsampling. 

4. Dropout 
Dropout can prevent overfitting in the case of 

few training samples. In overfitting, the network is 
good for fitting the training set because the loss is 
small and the accuracy is high. The accuracy de-
creases when the loss of the testing set increases. 
Some of the hidden layer nodes are lost, which pre-
vents the network from fitting the training set when 
each sample is trained. 

2.1.2  UNET model 

The UNET model (Ronneberger et al., 2015) has 
been established based on the FCN. However, some 
changes and extensions were made to enable the 
network to obtain a better precision with fewer 
training images. The back-half operation of the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNET model is upsampling instead of pooling of the 
FCN. First, the pooling operation is implemented to 
decrease the resolution of the image. Then the up-
sampling operation is implemented to increase the 
image resolution. The output layer will be merged 
with the high-resolution features of the left structure. 
Thus, many accurate features can be obtained. The 
UNET model is symmetrical such that the resolutions 
of the input and output images are the same. 

The UNET model and the simplified UNET 
model are shown in Figs. 3 and 4, respectively. The 
UNET model can preserve the complete position 
information, which is important for pixel segmenta-
tion. However, complete feature details cannot be 
obtained. 

The stair layer Ci (i=1, 2, …, 9) in Fig. 4 repre-
sents a series of operations in the original model, 
which involves convolution and dropout. 

1. Interpolation operation 
The size of the feature images is increased 

through deconvolution. However, the size is de-
creased after convolution. The sampling operation 
should be implemented in each convolution layer 
after deconvolution. Then the corresponding kernel is 
implemented to fill the details to restore the original 
image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3  Structure of the UNET model (References to color refer to the online version of this figure) 
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2. Merge operation 
The output layer should be merged with the 

corresponding layer on the left structure, and the 
sampling should be completed. 

2.1.3  GNET model 

The left structure of the GNET model consists of 
pooling layers, and results in a low resolution. How-
ever, some details are lost in spite of upsampling in 
the back-half structure. The improved GNET model is 
proposed to obtain more precise features and subtle 
details. In the left structure, the first layer is upsam-
pling and the other layers are max-pooling. In the 
right structure, the last layer is max-pooling and the 
other layers are upsampling. The novel model is also 
symmetrical. The simplified structure is shown in 
Fig. 5. The novel structure is called the GNET model, 
because it resembles the shape of the Gaussian dis-
tribution curve. 

 
 
 
 
 
 
 
 
 
 

 

2.2  Saliency detection 

Saliency detection is widely used in image re-
trieval, target recognition, and image segmentation. 
Fu et al. (2013) adopted comparison features, space 

features, and similarities to detect saliency after 
clustering all pixels of an image. Liu et al. (2014) 
proposed a saliency detection model based on hier-
archical segmentation. The key of fine-grained image 
classification was to find the saliency of the image 
(Peng et al., 2018). Xiao et al. (2015) integrated two 
level attentions: an object-level attention that selects 
image patches relevant to the object and a part-level 
attention that selects discriminative and saliency parts. 
He et al. (2017) further exploited the object-part at-
tention model (OPAM) for weakly supervised fine- 
grained image classification. 

 
 

3  The proposed method 
 

The original fundus images should be prepro-
cessed by a series of transformations. The saliency 
image can be obtained from the gray image through 
the saliency model. The pieces of saliency images are 
the inputs of the CNN. A 48×48-pixel region is se-
lected as a piece. The input of the convolution layer is 
the same as the output. The advantage of size con-
sistency is that the front layer and the latter layer can 
be directly merged without shear. To minimize over-
fitting, the dropout layer is added between the con-
volution layers in each stair layer. The final convolu-
tion layer whose size is 1×1 pixel is transformed into 
two layers. Finally, the output with two labels can be 
obtained using the softmax activation function. 

3.1  Preprocessing 

The 20 training set images should be prepro-
cessed with the following transformations before 
training: gray-scale conversion, standardization, 
contrast-limited adaptive histogram equalization, and 
Gamma adjustment. First, the gray image is normal-
ized as 
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Fig. 4  Structure of the simplified UNET model 
The upward arrow represents upsampling; the downward 
arrow represents max-pooling; the dotted line with an arrow 
represents merging 
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Fig. 5  Simplified structure of the GNET model 
The upward arrow represents upsampling; the downward 
arrow represents max-pooling; the dotted line with an arrow 
represents merging 
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where fgin is the gray image, fgin_mean the average of the 
image, fgin_std the standard deviation of the image, 
fnormalized the normalized image, fout the image after 
adjustment using the Gamma curve, and α is set to 
0.25. Then the image can be adjusted using the 
Gamma curve. The preprocessed images are shown in 
Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3.2  Saliency model 

Given the differentiation in color, brightness, 
and texture features between the regions of retinal 
vessels and the background in fundus images, sali-
ency detection can highlight the retinal vessels. We 
adopt a frequency-tuned approach for computing 
saliency in images using low-level features of gray 
images, which is easy for quick implementation and 
can provide full-resolution saliency maps. 

The pixel distance to describe the saliency for 
the gray space is defined as (Achanta et al., 2009) 

 

out_m out_G| ( , ) |,D f f x y= −                    (4) 

where fout_m is the mean pixel value of the prepro-
cessed images and fout_G the image after Gaussian 
filtering. The fine texture details, noises, and coding 
artifacts can be eliminated in the Gaussian blurred 
version. The retinal vessels can be highlighted and the 
lesion of the fundus images will be removed in this 
saliency model. The saliency image is shown in 
Fig. 7. 

 
 
 
 
 
 
 
 
 

 
 
 
 

 

3.3  Generating data pieces 

The training network may not be effective when 
the sample number is small. Thus, the training sets are 
extended into more sub-images in the GNET model. 
Each image is randomly intercepted into 9500 pieces. 
The training set has a total of 190 000 pieces. An 
arbitrary pixel of the image is chosen as the center, 
and a 48×48-pixel region is selected as a piece. The 
stride is five. If the size does not match, then the piece 
should be filled in black to meet the size of the pieces. 
Note that the pieces may be located partially or en-
tirely in the outer portion of the area of interest. The 
pieces will overlap. The network can learn to distin-
guish between the retinal vessels and the boundary 
region of interest. Sample pieces are shown in Fig. 8. 

3.4  Building the model 

After a series of preprocessing operations and 
the generation of additional training samples, the data 
pieces are sent to the network for feature learning. 
The GNET model has nine stair layers. 

In the first stair layer (C1), the input image is 
convoluted with 32 convolution kernels with the size 
of 3×3 pixels, and 20% of the connection of the input 
neurons is randomly disconnected. Then the output  

      
(a)                                   (b) 

 

      
(c)                                 (d) 

 

 
(e) 

 

Fig. 6  Preprocessing processes: (a) original color image; 
(b) gray image; (c) standardized image; (d) equalization 
image; (e) Gamma correction image 

Fig. 7  Saliency image 
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images are also convoluted with 32 convolution ker-
nels with the size of 3×3 pixels. The output feature 
images are upsampling, with a stride of two. These 
feature maps are the input images of the subsequent 
stair layers. 

Starting with the second stair layer, two paths are 
divided. Downsampling is completed in one path. In 
the second stair layer, the output image of the previ-
ous layer is convoluted with 16 convolution kernels 
with the size of 3×3 pixels, and 20% of the connection 
of the input neurons is randomly disconnected. Then 
the output images are also convoluted with 16 con-
volution kernels with the size of 3×3 pixels. The 
output feature images are max-pooling, with a stride 
of two. The image will be sheared in the other path, 
which is merged with the output of the corresponding 
stair layer in the right structure. The information of 
the front and back layers is crossed. Positioning will 
be better.  

Operations in other layers are the same as those 
in the second stair layer. However, the convolution 
parameters in the 10th layer are different from those in 
the previous layers. Two convolution kernels with the 
size of 1×1 pixel are used in the 10th layer to change 
the output into two channels. This layer is called the 
“activation layer,” which is implemented by the  

activation function. In this study, we adopt softmax to 
achieve pixel segmentation. 

The pieces of the intermediate layer are assem-
bled to obtain the complete output feature map of the 
middle layer. The output feature maps in the first 
convolution layer of the 8th stair layer are shown in 
Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.5  Training process of the network 

The feature map layer of the convolution layer is 
convoluted between the last layer and the convolution 
kernels. Then a bias bj is added. The output feature 
images can be obtained using a rectified linear unit. 
Each output of the convolution layer can be a com-
bination of many convolutions, expressed as 

 
1 ,

j

l l l l
j i ij j

i M
x f x k b−

∈

 = ⊗ +
  
∑                (5) 

 
where l

jx  is the jth output feature in the lth layer, Mj the 

input map, l
ijk  the kernel in the lth layer, and ⊗ stands 

for the convolution operation. 
A rectified linear unit (ReLU) (Schmidhuber, 

2015) is constant in the interval of (−∞, 0) and linear 
in the interval of [0, +∞). The function can be ex-
pressed as 

 
( ) max(0, ).=f z z                         (6) 

Fig. 9  Output feature maps of the 8th stair layer 

Fig. 8  A sample of image pieces 
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The derivative is expressed as 
 

0,                 0,
( ) 1,                  0,

undefined, 0.

z
f z z

z

<
′ = >
 =  

                    (7) 

 
The process of GNET model training involves 

learning the weight kernels and the bias. The sto-
chastic gradient descent method is adopted to solve 
the model parameters. The loss can be reduced 
through the iteration steps, and the network converges 
through constantly updating the weights. 

Softmax is used in the last feature map to 
achieve pixel segmentation, expressed as 

 
exp( )

softmax( ) .
exp( )

i
i

j
j

xx
x

=
∑

                 (8) 

 
The cross entropy is used to optimize the classi-

fication problem. If the probabilities of the final 
sample are assumed to be p and q, then 

 

1( , ) ( ) log .
( )

H p q p i
q i

= ⋅∑                 (9) 

3.6  Prediction of the network 

The fundus image can be predicted after the 
training of the network. The original image is cut into 
pieces every 5 pixels after preprocessing. The size of 
each piece is 48×48 pixels. Then the image is sent to 
the model and the corresponding weights are used to 
perform the prediction of the network. The input and 
output of the network are all pieces. These pieces can 
be assembled according to the size of the pieces and 
the stride. The black part caused by size mismatch in 
the fragmentation process is removed. The prediction 
result is shown in Fig. 10. 

 
 
 
 
 
 
 
 
 
 

4  Experimental results and analysis 

4.1  Data collection 

The proposed algorithm was evaluated using the 
DRIVE database. The database was established from 
a diabetic retinopathy screening program in the 
Netherlands. The ages of the 400 diabetic subjects 
were between 25 and 90. The resolution of the retinal 
images was 568×584, and the images were captured 
using a Cannon CR5 non-mydriatic 3CDD camera 
with a 45° field of view. The site provided hand- 
labeled data from two graders, which could be used to 
evaluate an algorithm’s performance. 

The proposed algorithm was implemented in the 
operating system of Microsoft Windows 10, with an 
Intel E3-1231 v3 CPU, ASUS B85-PRO GAMER 
motherboard, NVDIA GeForce GTX 1080 graphics, 
and 32 GB memory. The development environment 
was Visual Studio 2013+CUDA 8.0.27+cuDNN 5105, 
which used the Keras deep learning framework and 
Python language. 

4.2  Evaluation methodology 

To evaluate the algorithm, we calculated the  
sensitivity (Sen), specificity (Spec), and accuracy 
(ACC). Assume that true positive (TP) and true neg-
ative (TN) show the correct vessel pixels and back-
ground pixels respectively, consistent with the oph-
thalmologist’s judgement. False positive (FP) and 
false negative (FN) show the wrong vessel pixels and 
background pixels respectively, according to the 
ophthalmologist’s judgement. The evaluation formu-
lae are expressed as 

 
TPSen= ,

TP FN+
                        (10) 

TNSpec= ,
FP TN+

                       (11) 

TP TNACC= .
TP FP TN FN

+
+ + +

            (12) 

 

4.3  Results and analysis 

All images were processed by the algorithm. The 
vessel segmentation results are shown in Fig. 11. 

There were 331 712 pixels in one image. There 
was no big difference in the segmentation accuracy 
between the UNET model and the GNET model. The  Fig. 10  Prediction result of the retinal vessels 
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segmentation results were not so different with the 
unaided eye. Thus, the two segmentation results and 
the labeling results can be subtracted separately, 
yielding the difference between the two segmentation 
results. If the segmentation results were close to the 
labeling results, the subtracted image would have few 
white pixels. The difference image between the seg-
mentation results from the GNET model and the la-
beling results had fewer white pixels than that from 
the UNET model (Fig. 11). It was closer to the la-
beling and was more accurate. 
 
 
 
 
 
 
 
 
 
 
 
 

 
The proposed algorithm was compared with the 

retinal vessel segmentation algorithms based on deep 
learning and manual labeling in the DRIVE database. 
Fig. 12 shows that the vessel network is continuous 
and clear, and that small vessels can be extracted by 
the proposed algorithm. The effect is good for those 
images with poor contrast. The segmentation results 
are close to those of manual labeling. 

Table 1 shows the performance comparison of 
our method with the methods used by other re-
searchers in terms of Spec, Sen, and ACC. The quan-
titative of both enhancement and segmentation steps 
shows that our method effectively detects the blood 
vessels with an accuracy of above 95%. 

The performance indices of vessel segmentation 
in the DRIVE database are given in Table 2. The 
difference between the best and the worst segmenta-
tion results is due to the contrast, which results in the 
loss of some small vessels. The novel algorithm has a 
high accuracy, but is time consuming. The structure 
will be improved in future to solve this problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The receiver operating characteristic (ROC) 

curves of the UNET and GNET models are shown in 
Fig. 13. The ROC curves can be used to quantify the 
performance of a classifier. A good classifier has an 
area under curve (AUC) of about one. The true posi-
tive rate is on the y axis, whereas the false positive 
rate is on the x axis. The AUC of the UNET model is 
close to 0.9835 and that of the model combining sa-
liency and GNET is close to 0.9843. 

Table 2  Performance indices of vessel segmentation from 
images in the DRIVE dataset 

Image Spec Sen ACC 
01_test 0.9742 0.8656 0.9603 
02_test 0.9871 0.8302 0.9639 
03_test 0.9824 0.8012 0.9589 
04_test 0.9898 0.7948 0.9650 
05_test 0.9887 0.8043 0.9670 
06_test 0.9914 0.7324 0.9564 
07_test 0.9836 0.8273 0.9674 
08_test 0.9822 0.7931 0.9638 
09_test 0.9933 0.6889 0.9576 
10_test 0.9830 0.8422 0.9683 
11_test 0.9841 0.8331 0.9657 
12_test 0.9848 0.8193 0.9656 
13_test 0.9916 0.7351 0.9539 
14_test 0.9799 0.8567 0.9664 
15_test 0.9847 0.8015 0.9648 
16_test 0.9853 0.8260 0.9656 
17_test 0.9845 0.8013 0.9647 
18_test 0.9910 0.7970 0.9652 
19_test 0.9899 0.8024 0.9629 
20_test 0.9914 0.7188 0.9547 
Average 0.9861 0.7986 0.9629 

Maximum 0.9933 0.8656 0.9683 
Minimum 0.9742 0.6889 0.9539 

Spec: specificity; Sen: sensitivity; ACC: accuracy 

   
 

(a)                                     (b) 
 

Fig. 11  Difference images between the segmentation 
results and the labeling results using the UNET model (a) 
and the GNET model (b) 

Table 1  Performance comparison between our method 
and the methods used by other researchers 

Method Spec Sen ACC 
Wang et al. (2015)’s – 0.7527 0.9457 
Maji et al. (2015)’s – – 0.9327 
Fu et al. (2016)’s – 0.7603 0.9523 
Ronneberger et al. (2015)’s 0.9835 0.7671 0.9559 
Ours 0.9861 0.7967 0.9629 

Spec: specificity; Sen: sensitivity; ACC: accuracy 



Xue et al. / Front Inform Technol Electron Eng   2019 20(8):1075-1086 1084 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5  Conclusions and future work 
 

To obtain clear edges with a complete resolution 
of retinal vessels, a saliency image has been used as 
the input image of the deep learning network. A novel 
GNET model has been proposed to train the features 
and classify the pixels using classifiers. Upsampling 
has been operated before max-pooling and the oppo-
site operation was implemented in the right layer to 
reduce the loss of several features caused by the size 
after convolution and to obtain details. The proposed 
algorithm has been evaluated using images from the 

     

     

     

     

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 12  Retinal vessel segmentation using images from the DRIVE database: (a) original images; (b) results using a 
CNN model; (c) results using a UNET model; (d) results using the proposed algorithm; (e) manual labeling images 

Fig. 13  ROC curves of the GNET and UNET models 
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DRIVE database. Compared with other deep learning 
algorithms, the proposed algorithm had higher accu-
racy, sensitivity, and specificity. The retinal vessels 
can be accurately segmented, and vessel change 
characteristics can be extracted to provide a basis for 
the screening of cerebrovascular diseases. 

Our future work will focus on three aspects:  
(1) Given that image super-resolution can increase the 
size of a small image and prevent the degradation of 
image quality, incorporate a deep convolutional layer 
(Hu et al., 2016); (2) Use an anchored neighborhood 
index algorithm (Wang et al., 2018) to generate more 
patches; (3) Apply Bayesian learning (Wang et al., 
2017) to deep learning to produce a more accurate 
model from only a few training samples. These de-
velopments will be employed to further improve the 
performance of retinal vessel segmentation. 

 
Compliance with ethics guidelines 

Lan-yan XUE, Jia-wen LIN, Xin-rong CAO, Shao-hua 
ZHENG, and Lun YU declare that they have no conflict of 
interest. 
 
References 
Achanta R, Hemami S, Estrada F, et al., 2009. Frequency- 

tuned salient region detection. Proc IEEE Conf on 
Computer Vision and Pattern Recognition, p.1597-1604.  

 https://doi.org/10.1109/CVPR.2009.5206596 
Ayala G, Leon T, Zapater V, 2005. Different averages of a 

fuzzy set with an application to vessel segmentation. 
IEEE Trans Fuzzy Syst, 13(3):384-393.  
https://doi.org/10.1109/TFUZZ.2004.839667 

Chaudhuri S, Chatterjee S, Katz N, et al., 1989. Detection of 
blood vessels in retinal images using two-dimensional 
matched filters. IEEE Trans Med Imag, 8(3):263-269.  

 https://doi.org/10.1109/42.34715 
Franklin SW, Rajan SE, 2014. Retinal vessel segmentation 

employing ANN technique by Gabor and moment  
invariants-based features. Appl Soft Comput, 22:94-100.  

 https://doi.org/10.1016/j.asoc.2014.04.024 
Fu HZ, Cao XC, Tu ZW, 2013. Cluster-based co-saliency 

detection. IEEE Trans Imag Process, 22(10):3766-3778.  
 https://doi.org/10.1109/TIP.2013.2260166 
Fu HZ, Xu YW, Kee DW, et al., 2016. Retinal vessel seg-

mentation via deep learning network and fully-connected 
conditional random fields. Proc IEEE 13th Int Symp on 
Biomedical Imaging, p.698-701.  

 https://doi.org/10.1109/ISBI.2016.7493362 
He XT, Peng YX, Zhao JJ, 2017. Fine-grained discriminative 

localization via saliency-guided faster R-CNN. Proc 25th 
ACM Int Conf on Multimedia, p.627-635.  

 https://doi.org/10.1145/3123266.3123319 

Hu YT, Wang NN, Tao DC, et al., 2016. SERF: a simple, 
effective, robust, and fast image super-resolver from 
cascaded linear regression. IEEE Trans Imag Process, 
25(9):4091-4102. 
https://doi.org/10.1109/TIP.2016.2580942 

Ikram MK, de Jong FJ, Bos MJ, et al., 2006. Retinal vessel 
diameters and risk of stroke: the Rotterdam study. Neu-
rology, 66(9):1339-1343. 

 https://doi.org/10.1212/01.wnl.0000210533.24338.ea 
Imani E, Pourreza HR, 2016. A novel method for retinal exu-

date segmentation using signal separation algorithm. 
Comput Method Program Biomed, 133:195-205.  

 https://doi.org/10.1016/j.cmpb.2016.05.016 
Kumar RP, Albregtsen F, Reimers M, et al., 2015. Blood 

vessel segmentation and centerline tracking using local 
structure analysis. Proc 6th European Conf of the Int 
Federation for Medical and Biological Engineering, 
p.122-125. 
https://doi.org/10.1007/978-3-319-11128-5_31 

Liu I, Sun Y, 1993. Recursive tracking of vascular networks in 
angiograms based on the detection-deletion scheme. 
IEEE Trans Med Imag, 12(2):334-341.  

 https://doi.org/10.1109/42.232264 
Liu Z, Zou WB, Li LN, et al., 2014. Co-saliency detection 

based on hierarchical segmentation. IEEE Signal Process 
Lett, 21(1):88-92.  

 https://doi.org/10.1109/LSP.2013.2292873 
Maji D, Santara A, Ghosh S, et al., 2015. Deep neural network 

and random forest hybrid architecture for learning to de-
tect retinal vessels in fundus images. Proc 37th Annual Int 
Conf of the IEEE Engineering in Medicine and Biology 
Society, p.3029-3032. 
https://doi.org/10.1109/EMBC.2015.7319030 

Odstrcilik J, Radim K, Attila B, et al., 2013. Retinal vessel 
segmentation by improved matched filtering: evaluation 
on a new high-resolution fundus image database. IET 
Image Process, 7(4):373-383.  

 https://doi.org/10.1049/iet-ipr.2012.0455 
Peng YX, He XT, Zhao JJ, 2018. Object-part attention model 

for fine-grained image classification. IEEE Trans Imag 
Process, 27(3):1487-1500.  

 https://doi.org/10.1109/TIP.2017.2774041 
Ronneberger O, Fischer P, Brox T, 2015. U-Net: convolutional 

networks for biomedical image segmentation. Proc 18th 
Int Conf on Medical Image Computing and Computer- 
Assisted Intervention, p.234-241.  

 https://doi.org/10.1007/978-3-319-24574-4_28 
Schmidhuber J, 2015. Deep learning in neural networks: an 

overview. Neur Netw, 61:85-117.  
 https://doi.org/10.1016/j.neunet.2014.09.003 
Shelhamer E, Long J, Darrell T, 2017. Fully convolutional 

networks for semantic segmentation. IEEE Trans Patt 
Anal Mach Intell, 39(4):640-651.  

 https://doi.org/10.1109/TPAMI.2016.2572683 
Solouma NH, Youssef ABM, Badr YA, et al., 2002. A new 

real-time retinal tracking system for image-guided laser 



Xue et al. / Front Inform Technol Electron Eng   2019 20(8):1075-1086 1086 

treatment. IEEE Trans Biomed Eng, 49(9):1059-1067.  
 https://doi.org/10.1109/TBME.2002.802059 
Vese LA, Chan TF, 2002. A multiphase level set framework 

for image segmentation using the Mumford and Shah 
model. Int J Comput Vis, 50(3):271-293.  

 https://doi.org/10.1023/A:1020874308076 
Wang NN, Gao XB, Sun LY, et al., 2017. Bayesian face sketch 

synthesis. IEEE Trans Imag Process, 26(3):1264-1274.  
 https://doi.org/10.1109/TIP.2017.2651375 
Wang NN, Gao XB, Sun LY, et al., 2018. Anchored neigh-

borhood index for face sketch synthesis. IEEE Trans Circ 
Syst Video Technol, 28(9):2154-2163.  

 https://doi.org/10.1109/TCSVT.2017.2709465 
Wang XH, Zhao YQ, Liao M, et al., 2015. Automatic seg-

mentation for retinal vessel based on multi-scale 2D 
Gabor wavelet. Acta Automat Sin, 41(5):970-980 (in 
Chinese). https://doi.org/10.16383/j.aas.2015.c140185 

Xiao TJ, Xu YC, Yang KY, et al., 2015. The application of 
two-level attention models in deep convolutional neural 

network for fine-grained image classification. Proc IEEE 
Conf on Computer Vision and Pattern Recognition, 
p.842-850.  

 https://doi.org/10.1109/CVPR.2015.7298685 
Zana F, Klein JC, 2001. Segmentation of vessel-like patterns 

using mathematical morphology and curvature evaluation. 
IEEE Trans Imag Process, 10(7):1010-1019.  

 https://doi.org/10.1109/83.931095 
Zhao YQ, Wang XH, Wang XF, et al., 2014. Retinal vessels 

segmentation based on level set and region growing. Patt 
Recog, 47(7):2437-2446.  

 https://doi.org/10.1016/j.patcog.2014.01.006 
Zhu CZ, Zou BJ, Xiang Y, et al., 2015. A survey of retinal 

vessel segmentation in fundus images. J Comput Aided 
Des Comput Graph, 27(11):2046-2057 (in Chinese).  

Zhu CZ, Zou BJ, Xiang Y, et al., 2016. An ensemble retinal 
vessel segmentation based on supervised learning in 
fundus images. Chin J Electron, 25(3):503-511. 

 https://doi.org/10.1049/cje.2016.05.016 
 


	Lan-yan XUE†‡1,2, Jia-wen LIN1, Xin-rong CAO1, Shao-hua ZHENG1, Lun YU1
	Abstract: Retinal vessel segmentation is a significant problem in the analysis of fundus images. A novel deep learning structure called the Gaussian net (GNET) model combined with a saliency model is proposed for retinal vessel segmentation. A salienc...
	Key words: Retinal vessel segmentation; Saliency model; Gaussian net (GNET); Feature learning
	Table 2  Performance indices of vessel segmentation from images in the DRIVE dataset

