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Abstract: With the rapidly increasing number of mobile devices being used as essential terminals or platforms
for communication, security threats now target the whole telecommunication infrastructure and become increasingly
serious. Network probing tools, which are deployed as a bypass device at a mobile core network gateway, can
collect and analyze all the traffic for security detection. However, due to the ever-increasing link speed, it is of
vital importance to offload the processing pressure of the detection system. In this paper, we design and evaluate a
real-time pre-processing system, which includes a hardware accelerator and a multi-core processor. The implemented
prototype can quickly restore each encapsulated packet and effectively distribute traffic to multiple back-end detection
systems. We demonstrate the prototype in a well-deployed network environment with large volumes of real data.
Experimental results show that our system can achieve at least 18 Gb/s with no packet loss with all kinds of
communication protocols.
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1 Introduction

The past decade has witnessed huge growth in
the popularity of mobile devices, but this creates
significant network security issues. Security inci-
dents that previously occurred only in conventional
networks are now occurring in mobile communica-
tion networks, such as explosive worms, viruses, and
distributed denial-of-service (DDoS) attacks. The
openness of the mobile network makes application
developers and interactive business more accessible
to core networks and databases. Thus, effectively
monitoring and processing security incidents that oc-
cur on the mobile Internet is an important challenge
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for network managers.
Real-time collection of network traffic is impor-

tant for network service providers. In addition to
monitoring malicious behaviors, collected traffic can
be used to predict possible traffic conditions and op-
timize the network environment through selection
of optimal routing paths and configuration of load-
balancing policies. When connecting to a high-speed
link, most detection systems use server cluster tech-
nology that collaboratively analyzes a traffic stream
without sacrificing detection accuracy and must re-
sort to specialized hardware for front-end traffic dis-
tribution to a set of back-end servers (Vallentin et al.,
2007). However, the size of the cluster will be
very large and incur greater costs when transmission
speeds are improved. Although many researchers
focus on the optimization of the packet capture
engine through software-based solutions (Vasiliadis
et al., 2011; Rizzo, 2012; Cisco Systems, Inc., 2013)
or hardware acceleration (Han et al., 2010; Intel
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Products, Inc., 2010; Peemen et al., 2013; Kekely
et al., 2014), these approaches are still limited to
only a few common protocols (e.g., HTTP) and can-
not satisfy the requirements of mobile networks.

Different access networks are consolidated to
connect the radio access network and the traditional
Internet in the mobile core network. The 3GPP2
standard (China Communications Standards Asso-
ciation, Inc., 2006) sets several packet encapsula-
tion protocols (e.g., GPRS tunneling protocol (GTP)
and generic routing encapsulation (GRE)) and com-
pression structures for packet transmission optimiza-
tion. The packet structure determines the com-
plexity of the process, and advanced analysis of the
message content (e.g., deep packet inspection) con-
sumes much of the processing capability. With the
constantly increasing of network bandwidth, high-
performance real-time collection of network traffic in
a limited time and without loss is still a challenge.

In Cheng et al. (2016), we have presented a
simplified system for mobile core network measure-
ment, which sketchily introduced a two-level pre-
processing mechanism for collecting and distributing
packets. However, it was not well established. To
further refine our research, in this paper, we propose
a real-time pre-processing system with a hardware
accelerator for mobile core networks. The imple-
mented prototype can quickly process each encapsu-
lated packet and effectively distribute the restored
packet to back-end servers. Fig. 1 gives the overview
of our implemented pre-processing system architec-
ture. The packet processing procedure has two com-
ponents. First, the hardware accelerator, based on
a field-programmable gate array (FPGA), performs
processing which has a simple calculation procedure
but consumes plenty of computing resources, such
as packet decapsulation and character transforma-
tion of PPP frames in the CDMA2000 core network.
Then for those operations that require significant re-
source overhead, such as packet decompression and
recombination, we use a multi-core processor to sig-
nificantly improve the processing capacity in a high-
speed mobile core network. The hardware accelera-
tor uses two distribution approaches to satisfy differ-
ent packet distribution requirements from back-end
servers. In most cases, we use the five-tuple in each
packet, and flows are split roughly equally across
equal length paths. If a suspicious user must be
tracked, a distribution approach based on the user’s

terminal address is proposed to make ensure the in-
tegrity of the bidirectional data stream. The main
idea is the cooperation between the hardware accel-
erator and the multi-core processor to identify the
user terminal IP address of each data packet. Ex-
periments on a real dataset demonstrate that our
processing prototype can provide high throughput
and can be applied to all kinds of International
Telecommunication Union (ITU) standards, includ-
ing CDMA2000, WCDMA, TD-SCMDA, and LTE.
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Fig. 1 Structure of the real-time pre-processing
system

2 Related work

In this section, we list some packet process-
ing engines. Section 2.1 introduces the software-
based solutions, which have achieved significant per-
formance improvements in packet capture compared
with the Linux native approach. Section 2.2 summa-
rizes the hardware acceleration approaches, which
give us a better way to implement packet processing.
Section 2.3 points out the advantages of the hard-
ware method and proposes our research direction.

2.1 Software-based solutions

Software-based solutions often focus on paral-
lel processing or optimization of processing architec-
ture based on the traditional CPU. In Rizzo (2012),
NETMAP was proposed to optimize the packet cap-
ture engine. It adopts batch processing and pre-
allocates a fixed cache space (2048 bytes) in the ini-
tialization phase. NETMAP implements memory-
mapped technology to allow applications to directly
access the metedata structures in the kernel pack-
age, which is called NETMAP-RING. Note that
the receipt and delivery of each receive slide scal-
ing (RSS) queue can use the NETMAP-RING to
directly achieve parallel data channels. On the other
hand, conventional computing platforms usually use
an inefficient raw socket or a packet capture (PCAP)
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interface to transmit packets to the user applica-
tion level. MIDeA (Vasiliadis et al., 2011) adopts
PF_RING to quickly pass the packet to the user
layer space and runs the snort intrusion detection
system on a common multi-core computing plat-
form. Experimental results show that the system can
achieve 5.2 Gb/s network packet processing capabil-
ity by using the multi-queue and GPU accelerator
technologies. After receiving the packet, MIDeA in-
vokes snort’s decoding engine to process the content
of the packet, and then passes packets to the GPU
for intrusion detection. The data packet distribution
tool in MIDeA is a hardware component. Compared
with the pipelined model composed of traditional
processing cores, the hardware solution is more effi-
cient and the whole system has better scalability.

In a mobile core network, some access servers are
implemented by software. For instance, the Cisco
ASR 500 Series packet data serving node (PDSN)
product’s (Cisco Systems, Inc., 2013) packet process-
ing card is implemented by a 2.5-Hz, quad-core x86
architecture processor and 16 GB of RAM, support-
ing a maximum of 2 million PDSN sessions, with a
maximum processing capacity of 5 Gb/s. The multi-
core processor can be seen as an integrated multiple
core system on chip (SoC). Each core is a separate
operation unit, and has its own separate instruction,
data cache, and operating system scheduler. We can
execute each core business concurrently without dis-
turbing other units and set up multiple threads on
each core.

2.2 Hardware acceleration

With the rapid growth of network bandwidth,
the performance of software-based solutions was un-
able to satisfy line-speed packet collection require-
ments. Hardware acceleration based on FPGAs,
application-specific integrated circuits (ASICs), and
graphics processing units (GPUs) are of interest to
system developers. The main idea of these commod-
ity components is to offload a part of CPU packet
processing functions to the hardware to improve
performance.

In the field of custom chips, Intel proposed a
high-speed packet processing platform, Crystal For-
est (Intel Products, Inc., 2010). The structure of
the ‘multi-core CPU + dedicated accelerator’ uses
an ASIC to implement the acceleration function. It
can effectively undertake some complicated packet

processing functions, offload the pressure of the
multi-core processor, and improve overall process-
ing efficiency. However, ASIC’s shortcomings in-
clude expensive customization and lack of scalabil-
ity. On the other hand, many studies have recently
experimented with the GPU to accelerate packet
processing in network applications. This provides
a significant performance boost when compared to
the CPU-only solution. Han et al. (2010) proposed
PacketShader, which adopts a heterogeneous packet
processing architecture of ‘CPU+GPU’ to acceler-
ate packet processing. This approach offloads the
packet protocol processing functions to the GPU,
including IPv4 and IPv6. The CPU is responsible
for only receiving and sending the packets. Cav-
igelli et al. (2015) presented a convolutional network
accelerator that is scalable to network sizes that
are currently handled by only workstation GPUs,
but remains within the power envelope of embed-
ded systems. It can significantly improve the ex-
ternal memory bottleneck of previous architectures,
is more area efficient than previously reported re-
sults, and comes with the lowest-ever reported power
consumption when including I/O power and exter-
nal memory. Recently, Go et al. (2017) discussed
eight popular algorithms widely used in network ap-
plications and suggested employing integrated GPU
in recent accelerated processing unit (APU) plat-
forms as a cost-effective packet processing acceler-
ator. Results demonstrate that network applica-
tions based on APUs can achieve high performance
(over 10 Gb/s) for many computation- and memory-
intensive algorithms. However, the consumption of
the GPU-based accelerator is too high, causing un-
necessary waste.

FPGA is more flexible and scalable than other
network acceleration. It can be adjusted according to
different platform requirements, not only to satisfy
high-speed Internet traffic processing needs, but also
to reduce energy consumption. Kekely et al. (2014)
proposed an optimization method called software de-
fined monitoring (SDM), which is based on a config-
urable hardware accelerator implemented in FPGA
and some smart monitoring tasks running as software
on a general CPU. SDM is an optimization of a flexi-
ble flow-based network traffic monitor that supports
application protocol analysis. Lavasani et al. (2014)
presented a method for accelerating server appli-
cations using a hybrid ‘CPU+FPGA’ architecture.
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It processes request packets directly from the net-
work and avoids the CPU in most cases. Fast-path
and slow-path techniques were proposed to specula-
tively execute a hot path by slicing the application
and generating the fast-path hardware accelerator.
Neil and Liu (2014) introduced an event-driven neu-
ral network accelerator. It can be integrated into
existing robotics or it can offload computationally
expensive neural network tasks from the CPU. Re-
searchers have also proposed FPGA-based accelera-
tors to compute over a billion operations per input
image (Peemen et al., 2013; Zhang et al., 2015).

2.3 Comparison

Subject to the constraints of CPU processing
capacity, a software-only solution no longer satis-
fies the requirement of core network processing. In
the above hardware acceleration approaches, FPGAs
are less costly and more scalable than ASICs. In
the meantime, FPGAs have better flexibility than
GPUs. According to the packet characteristics in the
mobile core network, we propose an FPGA+multi-
core processor architecture to effectively process en-
capsulated and compressed packets.

3 System architecture

Fig. 2 depicts the architecture of the pro-
posed real-time pre-processing system with a hard-
ware accelerator. The system consists of a multi-
core processor, a hardware accelerator, and pe-
ripheral units such as ternary content-addressable
memory (TCAM) and static random access memory
(SRAM). The hardware accelerator and multi-core

processor are implemented on an Alterla Stratix V
GX FPGA and a Broadcom XLP432 processor, re-
spectively. To reduce the processing time, we use
a two-stage structure to handle packets from the
mobile core network. Upon receiving a packet, the
hardware accelerator performs the processing which
has a simple calculation procedure but consumes
plenty of computing resources, such as escape char-
acter decoding and packet decapsulation. Then the
pre-processed packet is transferred to the multi-core
processor for in-depth processing. The multi-core
processor performs the complicated calculation pro-
cedure, such as fragment reassembly, decompression
of Van Jacobson (VJ) compressed packets, and inter-
nal frame reassembly. A multi-threading approach
and an MIPS64-based architecture in the processor
guarantee high performance. When the packet feeds
back to the hardware accelerator, the distribution
based on pre-set rules is done by the hardware accel-
erator, TCAM, and SRAM. A standard RJ-45 and a
COM connector are deployed to allow the adminis-
trator to control the system for rule issuing, system
monitoring, and debugging.

3.1 Deployment scenario

The key components of the 3G and LTE net-
works and the deployment of our pre-processing sys-
tem are illustrated in Fig. 3. In WCDMA and TD-
SCDMA packet core networks, we deploy our sys-
tem to process packets through all Gn links between
the serving GPRS support node (SGSN) and the
gateway GPRS support node (GGSN). From the Gn
interface, we can analyze a large volume of user busi-
ness data and control signaling such as PDP activate
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signaling, route update information, location area
update information, and mobile management infor-
mation. In the CDMA2000 packet core network, we
do the same thing through all A10/A11 links between
the packet control function (PCF) and the PDSN.
There are many differences between LTE and 3G in
both network structure and wireless technology. We
receive packets from interfaces S1-MME, S11, and
S1-U.
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Fig. 3 Deployment in the 3G and LTE core network

3.2 Hardware accelerator

To accelerate processing, the hardware acceler-
ator performs processing which has a simple calcu-
lation procedure but consumes plenty of computing
resources. The parallel architecture of the FPGA
means it can act as an extremely effective offload
engine to relieve CPU bottlenecks. Shifting criti-
cal code to the FPGA and running those algorithms
using multiple streaming processes in the FPGA
can provide overall acceleration of 10 times or even
more over CPU-only solutions. As shown in Fig. 2,
we first assign packet decapsulation and character
transformation to the hardware accelerator for pre-
processing and reconstitute a custom packet struc-
ture for direct interaction between the hardware ac-
celerator and multi-core processor. After receiving
the restored packet, several distribution strategies
are ready to allocate each packet to the back-end
servers.

3.2.1 Packet processing acceleration

Processing acceleration is the most critical func-
tion of our system. First, to filter the packet that
contains no user information, we discard all non-
GRE and non-GTP packets, which may account
for nearly 50% of the total traffic before process-

ing. Then we process different communication stan-
dards in different approaches. In the WCDMA, TD-
SCDMA, and LTE core networks, the user packet is
directly encapsulated in the GTP header and it is
simple to decapsulate and extract the user informa-
tion. Hence, the hardware accelerator will process
all GTP data packets and directly forward the in-
ternal user packet to the back-end servers through a
distribution strategy without any processing in the
multi-core processor. In practice, we always need to
manage a lot of traffic from different operators at
the same time. Thus, the complete treatment of the
GTP packet in the hardware accelerator can remove
significant processing pressure from the multi-core
processor, and provide better performance in pro-
cessing complicated packets in CDMA2000.

1. Character transformation
In the CDMA2000 EV-DO core network, the

user packet is encapsulated into a PPP frame and
transmitted through the GRE tunnel. One GRE
packet may encapsulate multiple PPP frames and
each frame may contain incomplete IP packets. To
distinguish each individual PPP frame, RFC 1661
(Internet Society, Inc., 2014) defines that when 0x7e
and 0x7d occur in the information field, they are
converted to 2-byte sequences 0x7d5e and 0x7d5d,
respectively. Therefore, it is necessary to scan the
entire PPP frame to complete the character trans-
formation to restore the inside user packet. The
conventional algorithm, which usually runs in soft-
ware, is to process PPP packets sequentially and
detect if there is a special character 0x7e or 0x7d.
Apparently, the overall scanning will generate large
amounts of overhead (the time complexity is O(n),
where n is the length of the PPP packet). Specif-
ically, when the server receives many data streams,
the processor has to spend great effort on scanning
every byte, which is the biggest bottleneck restrict-
ing CPU processing performance. In addition, in
a 2n-bit CPU platform (n ≥ 3), the range of data
width is {1, 2, . . . , 2n−3} bytes. For example, a 32-
bit or a 64-bit CPU can read-write only four or eight
bytes, respectively. Therefore, we use the parallel
feature of the FPGA to improve processing efficiency.
In the hardware environment, the data width can
be defined according to the availability of resources.
Algorithm 1 proposes a 16-byte parallel approach
on FPGA to improve the efficiency of the overall
scanning.
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As shown in Algorithm 1, we define Bc =

(B0, B1, . . . , B15) as the current 16-byte stream from
the input first in, first out (FIFO) to the register,
and Bp and Bn as the previous and next 16-byte
streams. The FIFO in the hardware accelerator can
hold at least one packet (assuming a maximum of
2048 bytes). In lines 1–11, the following conditions
are processed. In line 1, if there is no 0x7d in Bc,
write the bytes into data alignment component and
read Bn into the register. If B1 ends at 0x7d (line
4), then the first byte needs to be transformed be-
fore writing to the data alignment component. Fi-
nally, if any other byte is 0x7d (line 7), we write
the current byte b to the (b + 1) byte after trans-
forming, and shift each byte from 0 to (b − 1) by
one bit. To reduce the logic complexity, each cycle
deals with only one 0x7d, and if there are multiple
0x7d in Bc, we process sequentially from right to left.
After transformation, we need to remove the invalid
bytes before writing to the FIFO. As shown in Fig. 4,
the data alignment component is composed mainly
of a padding state machine, a read buffer state ma-
chine, and two sets of registers (Buffer0 and Buffer1).
The padding state machine receives data containing
a ‘blank’ from the character transformation compo-
nent, and then completes data aligned with Buffer0
and Buffer1. The read buffer state machine sequen-
tially reads the padded data and writes it to the
FIFO. Throughout this process, we configure FIFO
as 256×134 bits, of which two bits are used as flag

Algorithm 1 Parallel character transformation
Input: addr_ppp: the starting address of PPP packet;

invalid_len: length of invalid byte.
Output: len_ppp: the length of PPP packet after de-

capsulating.
1: if 0x7d /∈ Bc then
2: Bc → data alignment
3: end if
4: if Bp,16 = 0x7d then
5: Bc,1 ⊕ 0x20 and invalid_len + 1
6: end if
7: if Bc,b = 0x7d, 1 ≤ b ≤ 14 then
8: Bc,b+1 ⊕ 0x20 → Bc,n

9: (Bc,b+2, . . . , Bc,16) � 1

10: invalid_len + 1
11: end if
12: if Bc,15 = 0x7d then
13: Bc,16 ⊕ 0x20 → Bc,15

14: invalid_len+1
15: end if

bits and another four bits represent the number of
invalid data bytes; the data width is 128 bits.

The performance of the algorithm is analyzed
below. From the above analysis, we can see that the
performance bottleneck is the character transforma-
tion component. For one channel of the FPGA, we
calculate the theoretical processing throughput P as

P =
Br

N · (1/M)
, (1)

where M is the frequency of the FPGA, N is the
number of clock cycles, and Br is the maximum num-
ber of bytes that can be processed in parallel in each
cycle (i.e., 16 bytes). Because we can process only
one character at a time, N = n + 1, where n is the
number of 0x7d. In other words, the frequency of
the appearance of 0x7d determines the processing
performance. In practice, we assume 0x7d and 0x7e
appear randomly, then the average expected value E
of the number of 0x7d is 0.125. In general, when n =
0.125, P is about 20 Gb/s. Altogether we configure
eight channels to run the above task. So, it is easy
to implement line-speed processing.
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2. Packet reconstitution
As we described above, we perform the decapsu-

lation of GRE and GTP tunnel packets and character
transformation of the PPP packet. However, the en-
capsulation header actually contains some important
information for association of the user session, such
as the source and destination IP addresses, the GRE
key, and the tunnel endpoint identifier (TEID) num-
ber. As depicted in Fig. 5, we add an extra header
to transfer information between the hardware accel-
erator and the multi-core processor. It reduces the
processing pressure by decreasing the length of the
packet while ensuring information integrity. Then
the control packet will directly transfer to the multi-
core processor for gateway address learning, which
we will describe in Section 3.3.2.
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3.2.2 Distribution strategy

In addition to packet processing acceleration, we
combine the hardware accelerator with TCAM and
SRAM to build a quick packet distribution mech-
anism. In practice, our system receives packets
from multiple operator networks. Thus, when the
distribution step begins, we define four groups to
distribute packets from different mobile operators
to different back-end servers. Each group has a
corresponding output port list, which can be pre-
configured. Moreover, our system provides three
distribution approaches to allocate each packet to
back-end servers. In most cases, we use the five-
tuple in each packet, and flows will be split roughly
equally across paths of equal length. If a specific user
must be tracked, we propose a distribution approach
based on the user’s terminal IP address to ensure
the integrity of bidirectional data. The multi-core
processor restores the IP packet and extracts the
PDSN/GGSN address. By identifying the location
of the PDSN in the IP address field, the transmission
direction of the packet can be uniquely determined.
Then we can identify the terminal IP address from
the internal IP packet based on the transmission di-
rection. We use the gateway IP address to allocate
the control packet because the back-end server needs
to extract the international mobile subscriber identi-
fication (IMSI) number and associate it with the user
data. Based on the above approach, the hardware ac-
celerator calculates the hash function to match the
corresponding back-end server, and then rewrites the
destination MAC address of each packet.

3.3 Multi-core processor

With the rapid increase in mobile core networks,
the traditional general-purpose CPU has many per-
formance bottlenecks in the packet processing pro-
cedure, which cannot meet the demands of a high-
speed network environment. Thus, we implement
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IP packet
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Fig. 5 Structure of self-defined packet transmission

some functions on a Broadcom XLP432, which is
an SMP network processor consisting of 8 identical
cores with 32 threads, and a shared 8-MB L3 cache.
After the hardware accelerator performs packet pre-
processing, the multi-core processor performs further
in-depth processing. Our goal is to extract and re-
store the IP packet in each PPP frame and reorganize
the possible IP fragmentation. The whole procedure
consists of outer IP reassembly, decompression of the
VJ compressed packet, internal frame reassembly,
and out-of-order packet reassembly. These opera-
tions have complex processing logic, so it can hardly
be implemented on an FPGA.

In the multi-core processor, there are several
packet capture engines based on zero-copy and multi-
core technology. The fast messaging network (FMN)
is an important part of the multi-core processor. As
depicted in Fig. 6, the FMN station is the connection
point between the various functional units of the pro-
cessor and the FMN message ring. The multi-core
processor connects the functional units through the
FMN station. Each physical core of the multi-core
CPU has a corresponding station on the FMN (e.g.,
the XLP432 has eight physical cores, so there are
eight stations and one-to-one correspondence). Each
station has eight buckets; each bucket has a global
bucket ID, which is unique in the FMN message ring.
If the station sends a message to a bucket, it will be
placed in the corresponding bucket according to the
purpose of the message, and each thread or interface
will read the message from the bucket and process
it. Based on the above technology, we first complete
the reorganization of the outer IP fragment. Then
for a packet that has a PPP fragment, we do reor-
ganization and then decompress the VJ packet to
restore the user data. Finally, we deal with the out-
of-order packet. In the real link, we find that the
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outer IP fragment accounts for less than 3% of the
total packet stream. However, the compressed VJ
packet will account for more than 20%. Hence, the
processing efficiency of VJ packets will greatly af-
fect the processing performance of the whole system.
In the next section, we introduce the procedure for
decompressing the VJ packet.

3.3.1 Decompression strategy

Due to the limited bandwidth of the air link,
information content is often transmitted using Van
Jacobson TCP/IP header compression technology.
With VJ compression, the TCP payload is encap-
sulated in the PPP protocol, and other information
fields are omitted (including the source and destina-
tion IP addresses and the port number). However,
without restoring the raw packet, it is difficult to
monitor and analyze user traffic.

To take full advantage of the multi-core proces-
sor, we use 30 independent threads to process pack-
ets in parallel and maintain a TCP header flow ta-
ble, which is divided into 30 equal partitions. As
depicted in Fig. 6, the rightmost list contains the
unique identity (source, destination IP, and GRE
key) of the TCP connection, the next pointer, and
the TCP header buffer pointer, pointing to the space
for the different TCP connections, which contain 256
connection numbers. Due to these indexes, packets
are split into each thread and do not access the table
space of different threads, which means that the flow
tables operate independently of each other. Mean-
while, different threads do not need to use a shared
variable lock mechanism, so there is no delay between
threads. Each thread independently completes the
decompression without any communication between
threads. Therefore, 30 message processing threads
can be fully parallel.

When processing the PPP frame, the multi-core
processor calculates the index value of the header
table according to the source IP, destination IP,
and GRE key of the tunnel packet (the session uses
the GRE key to identify different PPP connections),
and then obtains a unique TCP connection accord-
ing to the connection number. For uncompressed
TCP packets, we update the header of the TCP
connection, modify the protocol field, and directly
forward the packet. For compressed packets, the
header is restored according to the header of the TCP
connection.

3.3.2 Gateway address learning

This is another function that involves coopera-
tion between the hardware accelerator and the multi-
core processor. In a CDMA2000 mobile core net-
work, the PDSN serves as the bridge that connects
the mobile core network and the TCP/IP Internet.
Similarly, in a WCDMA/TD-SCDMA mobile core
network, the above functional entity is called the
GGSN. Each packet transferred through the mo-
bile core network encapsulates the IP address of the
PDSN/GGSN in its GRE/GTP header, and we call
it the gateway address. In our system, we use the
gateway address to achieve control packet distribu-
tion and identify the user terminal IP address as the
input key value of the distribution.

As depicted in Fig. 7, by identifying the gateway
address, the transmission direction of each packet
can be uniquely determined. Then we modify the
source MAC address of each data packet by adding
a flag bit to indicate the transmission direction.
When the hardware accelerator receives the restored
packet, the flag bit indicates the user’s terminal ad-
dress. For instance, if the flag bit indicates that it is
an uplink packet, the source IP address is the user’s
terminal address. Meanwhile, the control packet is
transmitted back to the hardware accelerator and
distributed through the gateway address.

PDSN/GGSN 
address 

extraction 

Transmission 
direction 

Control 
packet

Output

Data
packet 

Address table
aT

Confirm user 
terminal IP

Packet
distribution

Key

Key

Multi-core processor Hardware accelerator

Fig. 7 Gateway address learning scenario

3.4 Available extension

Due to the flexibility and scalability of the multi-
core processor and FPGA, our system can also pro-
vide serial access to the mobile core network for iden-
tifying, detecting, and forwarding multiple applica-
tion protocols, such as VoIP, HTTP, and email. Our
system helps discover unsafe content and malicious
behaviors in the network, and plays an important
role in spam detection, traffic statistics, and attack
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behavior analysis. In this extension, collection, filter-
ing, and forwarding can be implemented in FPGA,
and TCAM is responsible for rule matching. The
multi-core processor is responsible for protocol iden-
tification and traffic management. Due to space lim-
itations, we sketch only the modifications, and leave
the detailed descriptions to another paper.

Fig. 8 depicts the overview of the proposed ex-
tension scheme of our system. When a packet is
received, the manager component sets the network
segment that needs to be focused to the filtering and
forwarding module. Then if the traffic matches the
rules, it will be copied and sent to the multi-core
processor for the detection steps as follows:

Behavior analysis

Anomaly detection

Traffic feature extraction

Protocol analysis

Collaborative
detection

Traffic 
cleaning

Processor

Filtering and forwarding

Distribution component

Continuous 
transmission

Manager

Traffic

Fig. 8 Structure of the extension scheme. The dotted
lines indicate the transmission of internal information
and instructions; the solid and hollow arrows indi-
cate the transmission directions of the mirrored traf-
fic and the attack traffic which needs to be cleaned,
respectively

Step 1 (protocol analysis): The multi-core pro-
cessor uses mirrored traffic to analyze TCP and UDP
packets, manage traffic, and detect abnormal pack-
ets. When video stream data must be processed, the
regular expression method is essential to match the
key fields in the payload.

Step 2 (anomaly detection): This component is
mainly for detecting DDoS attack through statistical
analysis of traffic address entropy. Source address
entropy continuous increasing or destination address
entropy reduction indicates that the DDoS attack
may occur.

Step 3 (behavior analysis): This component in-
volves statistical analysis of protocol behavior for
suspected victim hosts, such as the number of TCP

SYN and FIN packets in a specific time period.
Step 4 (collaborative detection): This compo-

nent maintains a list of suspected victim hosts to
determine if an attack occurred. It also collects and
sends all the suspicious information about the cur-
rent network to the system manager, such as the
address of the victim host and the type of attack.
Orders from the manager can also be received and
sent to other components.

Step 5 (feature extraction): This component
maintains normal traffic characteristics, such as fluc-
tuations in the TTL range, distribution of packet
length, and protocol, and assists in attack identifica-
tion and traffic cleaning.

Step 6 (traffic cleaning): This component fil-
ters the attack traffic based on session status and
normal/abnormal traffic characteristics.

Fig. 9 provides a snapshot of the implementa-
tion of our pre-processing system. At the core of the
board is an Altera Stratix V GX FPGA, adjacent to
an XLP432 multi-core processor produced by Broad-
com. It can provide high-capacity traffic processing
and distribution with 24×10 Gb/s POS input and
output in standard SFP+ interfaces. Moreover, GE
and COM interfaces have been set for providing con-
sole, Telnet, and a dedicated remote configuration
protocol (RCP) to control the entire system and do
the batch configuration of filter rules.

24×SFP+ 

TCAM

Stratix V FPGAXLP432 processor

4 × DDR3 
DIMM

Fig. 9 Implementation of the processing prototype

4 Experiments

In this section, we evaluate the performance of
the real-time pre-processing system on a real dataset.
We obtained real data from a collector located in
the Gn interface of a TD-SCDMA core network over
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a period of 5 h from 11:00 a.m. to 4:00 p.m. in
Hunan Province on April 21, 2011. We collected
2.69 billion packets, corresponding to 1.5 TB of TD-
SCDMA traffic. Similarly, we collected data from
the A10/A11 interface of a CDMA2000 core network
in Hebei Province and obtained 45.2 million packets,
corresponding to 435 GB of CDMA2000 traffic. Ta-
ble 1 shows the statistical analysis of different types
of PPP frames in the CDMA2000 dataset. We can
observe that more than 70% of the GRE encapsula-
tion packets contain only one PPP frame, including
30.99% of the complete IP packets, which can be di-
rectly forwarded, 13.97% of the VJ compressed pack-
ets, and 37.43% of the IP fragments. Furthermore,
according to our statistical result, the VJ compressed
packets in the core network can account for 23%–25%
of the total number of packets after recombination of
the fragments. The remaining 30% indicates a GRE
packet that contains multiple PPP frames, and most
of them involve at least one fragment (14.72% of the
total number of packets).

Table 1 Proportion of each type of packet

Packet type Percentage Packet type Percentage

Single complete 30.99% (IP) Single piece 37.43%
13.97% (VJ) Multi complete 2.53%

0.36% (others) Multi piece 14.72%

In practice, due to the low utilization of the real
core network, a realistic environment cannot provide
sufficiently large flow for our evaluation, and we used
an evaluation tool to simulate the real mobile core
network. Connected to a four-port optical splitter,
we can generate a maximum input rate of 40 Gb/s.
The experimental environment is shown in Fig. 10.

4.1 Performance evaluation among different
types of packets

To more accurately assess, we chose three differ-
ent types of packets from the CDMA2000 dataset to
evaluate the performance bottleneck. Fig. 11 shows
the packet loss of our system in case of decompres-
sion of the 64-byte VJ compressed packet, the reor-
ganization process of multi-internal fragments in one
GRE packet, and the reorganization process of inter-
nal fragments across two different packets. The main
reason for choosing these packets is because of their
frequent appearance in mobile core networks. Ac-
cording to our statistics, VJ compressed packets and

internal fragments account for about 26% and 52%
of overall traffic, respectively. The decompression
procedure requires caching of the VJ uncompressed
packet while the subsequent VJ compressed packet
is decompressed. Because the existing packets are
out of order, multi-internal fragments and internal
fragments cross two different packets and consume a
large number of resources while waiting for reorga-
nization. In experiments, we extracted three sam-
ples of the above packet types from the CDMA2000
dataset. Although each sample has only a few pack-
ets, we used IPRO to play back 106 times to evaluate
the performance of our system with or without the
hardware accelerator. As depicted in Fig. 11, be-
cause the hardware accelerator accomplishes the pro-
cessing of packet decapsulation and character trans-
formation, results indicate that the performance of
our system improves by 27%, 57%, and 50% when
dealing with the above three packet types.

IPRO tester

Prototype

Optical output Control interface

Fig. 10 Demonstration environment

4.2 Performance evaluation of the overall
system

We used IPRO to play back the overall
CDMA2000 and TD-SCDMA traffic at differ-
ent rates. To estimate the performance in the
CDMA2000 core network, we ran an experiment on
a typical server running Ubuntu Linux with a 3.5-
GHz Intel Core i7 processor and 32 GB of mem-
ory to compare the performance with our system.
Fig. 12a indicates the distribution of packet length
of the CDMA2000 dataset. We can observe that al-
most 54% of packets were longer than 512 bytes and
the average length of a packet was 612 bytes. As il-
lustrated in Fig. 12b, when the incoming packet rate
is increasing, the typical server starts to drop pack-
ets at 450 Mb/s, and the packet loss rate reaches
65% when the incoming packet rate reaches 1 Gb/s.
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Fig. 11 Packet loss experiment on different types of packet: (a) 64-byte VJ; (b) multi-internal fragment;
(c) cross fragment
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Fig. 12 Results of system performance: (a)–(c) are the packet size distribution, packet loss rate, and throughput
in the CDMA2000 core network, respectively; (d)–(f) are the packet size distribution, packet loss rate, and
throughput in the TD-SCDMA core network, respectively

Similarly, the multi-core processor drops packets at
13 Gb/s, which is a nice result for a common user
network, but not enough for a mobile core network.
When the incoming packet rate reaches 30 Gb/s,
the multi-core processor has dropped more than 50%
of the packets. Finally, because of the large work-
load processed in the FPGA-based hardware acceler-
ator, it has no packet leakage, and even the incoming
packet rate reaches 18 Gb/s. In Fig. 12c, we evalu-
ated the throughput of different packet lengths. It is
obvious that the throughput increases as the size of
the packet increases and the processing performance

with the hardware accelerator is much better than
that in the multi-core processor-only solution. In
Figs. 12d–12f, we used the same evaluation scenario
on the TD-SCDMA core network dataset. First, we
provided the distribution of packet length in Fig. 12d
and found that almost 46% of packets have a length
of less than 128 bytes and the average packet length
is 572 bytes. Then as shown in Figs. 12e and 12f, be-
cause the GTP packet was completely processed and
forwarded by the hardware accelerator, our system
was able to process line-speed traffic.
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4.3 Performance evaluation of the extension

Because some functions have not been imple-
mented, we evaluated only the performance of the
protocol analysis component. We separated several
POP3 sessions and video-on-demand (VOD) streams
from the CDMA2000 dataset to build a new syn-
thetic dataset. The whole dataset includes 13 POP3
sessions and 5 VOD streams, corresponding to 13 195
packets. The IPRO tester was used to perform 104

times cyclic playback with randomly changing IP ad-
dresses. For comparison, the protocol analysis com-
ponent was also implemented in a typical server as
mentioned above. Fig. 13 evaluates the performance
of our system with or without protocol analysis. Re-
sults show that there is no significant reduction in
performance when processing the POP3 protocol.
In contrast, due to the implementation of regular
expressions, the multi-core processor is less efficient,
which will inevitably lead to a decline in the perfor-
mance of our system. However, it still far exceeds
the traditional network server. In the future, we in-
tend to employ a separate accelerator chip to achieve
high-speed regular expression matching, such as the
Netlogic NLS2008.
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Fig. 13 Performance evaluation of the extension
scheme

5 Conclusions

In this paper, we have proposed a real-time pre-
processing system for mobile core network. For re-
ducing the processing pressure on back-end detection
server, an FPGA-based hardware accelerator and a
multi-core processor were implemented to handle dif-
ferent stages of packet processing. Evaluation results
showed that our system can achieve a speed of at
least 18 Gb/s with no packet loss.
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