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Abstract: With supercomputers developing towards exascale, the number of compute cores increases dramatically,
making more complex and larger-scale applications possible. The input/output (I/O) requirements of large-scale
applications, workflow applications, and their checkpointing include substantial bandwidth and an extremely low
latency, posing a serious challenge to high performance computing (HPC) storage systems. Current hard disk drive
(HDD) based underlying storage systems are becoming more and more incompetent to meet the requirements of
next-generation exascale supercomputers. To rise to the challenge, we propose a hierarchical hybrid storage system,
on-line and near-line file system (ONFS). It leverages dynamic random access memory (DRAM) and solid state drive
(SSD) in compute nodes, and HDD in storage servers to build a three-level storage system in a unified namespace.
It supports portable operating system interface (POSIX) semantics, and provides high bandwidth, low latency, and
huge storage capacity. In this paper, we present the technical details on distributed metadata management, the
strategy of memory borrow and return, data consistency, parallel access control, and mechanisms guiding downward
and upward migration in ONFS. We implement an ONFS prototype on the TH-1A supercomputer, and conduct
experiments to test its I/O performance and scalability. The results show that the bandwidths of single-thread and
multi-thread ‘read’/‘write’ are 6-fold and 5-fold better than HDD-based Lustre, respectively. The I/O bandwidth of
data-intensive applications in ONFS can be 6.35 times that in Lustre.

Key words: High performance computing; Hierarchical hybrid storage system; Distributed metadata management;
Data migration
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1 Introduction

Supercomputers deploy parallel storage systems
to accommodate the tremendous amount of applica-
tion data, such as Lustre (Wang et al., 2010), general
parallel file system (GPFS) (Schmuck and Haskin,
2002), and parallel virtual file system (PVFS) (Carns
et al., 2000). Parallel storage systems have provided
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high aggregated bandwidth to applications by of-
fering parallel access to their hundreds of storage
servers. Hard disk drive (HDD) has been used widely
in building parallel storage systems due to its low
price and large storage capacity (Seagate, 2017). The
capacity of a single HDD-based storage system has
reached dozens of PBs (NERSC, 2017b). Although
redundant array of independent disks (RAID) has
been leveraged to improve the performance of storage
systems, HDD’s costly overhead of disk-head move-
ments prevents it from meeting the extreme amount
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of input/output (I/O) and low I/O latency require-
ments of future exascale systems (Yildiz et al., 2016).

Nowadays, supercomputers are developing
rapidly towards exascale with an increasing num-
ber of central processing unit (CPU) cores. For ex-
ample, TaihuLight, the 1st-ranked supercomputer in
the latest TOP 500 List (http://www.top500.org),
has about 10 million general purpose CPU cores.
The rapidly growing amount of concurrent I/O from
compute cores poses a serious challenge to storage
systems. Meanwhile, the growing computing power
enables scientists and engineers to solve and under-
take more and more complex scientific problems and
engineering simulations. The data sets processed in
scientific research continue to grow dramatically, in-
cluding research areas of earth (Qiao et al., 2013),
gene (Ocaña and Oliveira, 2015), universe (Kuhlen
et al., 2012), etc. Taking a typical petroleum seismic
exploration application named ‘reverse time migra-
tion (RTM)’ (Dai et al., 2011) as an example, its
total input is about 5.08 TB and the total amount
of I/O traffic is up to 2433 TB during execution.
These data-intensive applications require substantial
I/O bandwidth of storage systems. Workflow appli-
cations (Bharathi et al., 2008) aggravate such I/O
pressure. The latter sub-applications need to read
and process the written-out data of the former sub-
applications, causing frequent data movements be-
tween compute nodes and storage systems (Shibata
et al., 2010). In addition, with the increasing scale
of applications, they need to write larger checkpoint
data more frequently (Sato et al., 2014). This gener-
ates an enormous amount of write traffic to storage
systems (Rajachandrasekar et al., 2013). Much work
(Ali et al., 2009; Dongarra, 2010; Shalf et al., 2010;
Bent et al., 2012; Lofstead et al., 2016) has shown
that current HDD-based storage systems have been
stretched to their limits in handling the tremendous
amount of I/O.

To alleviate the I/O pressure on storage sys-
tems, many leadership supercomputers insert an I/O
forwarding layer to the current high performance
computer (HPC) I/O stack, such as BlueGene/Q se-
ries (IBM, 2017), Tianhe-2 (Liao et al., 2014), Cori
(NERSC, 2017b), and Mira (ALCF, 2017). I/O re-
quests from compute nodes are forwarded to I/O
nodes, and I/O nodes access data in storage systems
on behalf of compute nodes. Since the ratio of com-
pute nodes to I/O nodes varies from 16:1 to 128:1

(IBM, 2017), the number of clients served by the
storage system reduces from tens of thousands (i.e.,
the number of compute nodes) to hundreds (i.e., the
number of I/O nodes). However, this architecture
segregates compute nodes from underlying storage
systems with an I/O forwarding layer and makes
the I/O path longer. As a result, the data move-
ments between compute nodes and storage system
must traverse the network and the I/O nodes. The
long I/O latency brought by the deepening storage
hierarchy impacts the achieved I/O performance.

Flash-based solid state drive (SSD) has become
a research focus over the past few years due to its
high performance and low power consumption (Vet-
ter and Mittal, 2015). As shown in Table 1, the per-
formance of SSD is orders of magnitude better than
HDD. There should be a position for SSD between
HDD and dynamic random access memory (DRAM)
in the traditional storage hierarchy. A straight for-
ward approach to integrate SSD into a current HPC
I/O stack is to build a hybrid storage server with
HDD and SSD (Soundararajan et al., 2010; Face-
book, 2013; Zhao and Raicu, 2013). However, this
approach does not change the storage architecture
segregating computing and storage; hence, the I/O
bottleneck remains.

Table 1 Performance comparison of storage devices

Device
Access speed

Latency Capacity
Read Write

HDD 249MB/s 225 MB/s 2–5ms ≤10TB
SSD 3200 MB/s 1575 MB/s Read: 82μs; ≤4TB

write: 30μs
DDR4 63 GB/s 75 GB/s 50 ns ≤128GB

HDD: hard disk drive; SSD: solid state drive; DDR4: double-
data-rate fourth generation

Dongarra (2010) estimated that future exascale
supercomputers will require approximately storage
system bandwidth of 60 TB/s to meet checkpoint-
ing demands. To the best of our knowledge, the
currently largest storage system deployed on Cori
provides only 700 GB/s peak bandwidth (NERSC,
2017b), which is 100-fold lower than the requirement.
Furthermore, approaching this by providing a high-
bandwidth external storage system will be very ex-
pensive and likely be underused much of the time
due to bursty I/O patterns. A survey on Intrepid re-
veals that during 98% of the time, the storage system
is used at less than 33% of peak bandwidth (Carns



1942 Liu et al. / Front Inform Technol Electron Eng 2017 18(12):1940-1971

et al., 2011). Therefore, the majority of work on
improving the performance of HPC I/O focuses on
studying storage tiers in the higher storage hierarchy.
The storage tiers closer to compute nodes are provi-
sioned for bandwidth, while the underlying storage
systems are provisioned for capacity and resiliency
(Ovsyannikov et al., 2017).

The US Department of Energy and seven lead-
ing US national laboratories initiated a project
named ‘fast forward storage and I/O (FFSIO)’ (Lof-
stead et al., 2016) to develop an I/O stack suitable
for extreme-scale systems. It suggests processing the
enormous amount of concurrent I/O in a staging area
closer to compute nodes, so that applications can re-
turn to computation as soon as possible. The storage
architecture in FFSIO is shown in Fig. 1. HDD is left
out of the consideration of building fast data stag-
ing areas, due to its low performance and reliability.
In FFSIO, there are multiple SSD-based data stag-
ing areas located in the higher hierarchy of the I/O
stack, including the SSDs in I/O nodes and compute
nodes. As a step of locating fast SSD devices closer
to compute nodes, a burst buffer (Liu et al., 2012)
was used to quickly absorb bursty I/O traffic from
compute nodes by installing SSD on I/O forwarding
nodes. The burst buffer has been proven to be a cost-
effective solution and deployed on many HPC facili-
ties (NESRC, 2017a; Schenck et al., 2017). Although
there is a budget pressure in equipping every com-
pute node with an SSD (Lofstead et al., 2016), both
academia and industry are exploring the expansion
of the deployment scale of SSD devices by installing
them on part of the compute nodes as the price
of SSD decreases. Much recent work has been de-
voted to managing the node-local SSD (Wang et al.,
2016; Yu et al., 2017). Cray DataWarp (Ovsyannikov
et al., 2017) uses a temporal file system to manage
burst buffer nodes (i.e., compute nodes with SSD)
in Cori. Users can use the large temporary storage
space to accelerate their applications by manually
staging their data in and out.

In supercomputers, as the computing capabil-
ity of each compute core grows, the average memory
used by each core increases accordingly. For exam-
ple, TaihuLight has a memory of 32 GB per node
and a total memory capacity of 1.31 PB. However,
not all applications running on supercomputers are
memory-intensive; hence, there can be a lot of un-
derused memory in a large production system. We

POSIX

Compute nodes

I/O nodes (IONs) or
burst buffer nodes (BBNs)

Storage servers
(Lustre, GPFS, etc.)

In
te

rc
on

ne
ct

in
g 

ne
tw

or
k

Application

MPI-IO

I/O forwarding client

I/O forwarding server

I/O dispatcher

Lustre client

S
to

ra
ge

 in
te

rc
on

ne
ct

in
g 

ne
tw

or
k

Lustre 
server

Fig. 1 Storage architecture of future extreme-scale
supercomputer
MPI: message passing interface input/output; POSIX:
portable operating system interface; GPFS: general paral-
lel file system

conducted a system-wide investigation on TH-1A,
and found that about half of the compute nodes have
more than 50% free memory. This part of idle mem-
ory, which consumes a significant power and has not
been effectively used, is a huge waste.

In this paper, to rise to the I/O challenge of ex-
ascale supercomputers, we construct a hierarchical
file system, on-line and near-line file system (ONFS),
to manage both the SSD-based data staging area
near the compute nodes and the underlying HDD-
based storage system, so that applications can trans-
parently have a high performance and a huge storage
capacity. Furthermore, we construct a faster data
staging area which is located closer to compute nodes
with the borrowed underused memory in the system.
Its scale can be dynamically adjusted depending on
the I/O workload. We call the memory-based and
SSD-based storage tiers the ‘on-line storage system’.
With the SSD-based tier complementing the limited
storage space, the memory-based storage tier seam-
lessly provides an extremely high performance for
applications. The HDD-based storage tier is a near-
line storage system that provides mainly tremendous
storage capacity. The on-line and near-line storage
systems are managed in a unified namespace. We
further propose various techniques to enhance the
performance of the on-line and near-line file system
(ONFS). Our main contributions are as follows:

1. The architecture of a three-level hierarchical
hybrid storage system (ONFS)

We leverage memory, SSD, and HDD to con-
stitute a three-level storage system, each of which
has different I/O bandwidth and storage capaci-
ties. ONFS can provide high bandwidth and a low
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latency with a memory-based storage tier, and a huge
storage capacity with an HDD-based storage tier.
The SSD-based storage tier bridges the performance
and capacity gaps between memory- and HDD-based
tiers.

2. Distributed metadata storage and manage-
ment (user group sub-directory (UGSD))

We propose a method to distribute and man-
age metadata based on UGSD. It preserves the tree
structure and locality inherent in metadata directo-
ries, and does not generate metadata migration dur-
ing dynamic workload adjustment. It can effectively
support data migration between storage tiers.

3. Memory management and grouping parallel
(MM-GP) access control

We propose the MM-GP method to solve the
following key issues: (1) memory borrow and return;
(2) ‘write’ operation control under different avail-
able storage space; (3) reliability of volatile memory
storage; (4) grouping multiple memory-based stor-
age servers together to achieve a larger storage space
and higher parallel I/O bandwidth.

4. File coolness measurement (FCM) based on
file open-close status and least recently used (LRU)
features

We implement data migration in file granularity
and introduce file coolness to identify the files for mi-
grating. We set up thresholds of available memory
capacity in storage servers to trigger downward mi-
gration. The FCM method leverages metrics such as
file access status in applications to guide migration.

5. Active upward pre-migration (AUPM)
We propose an AUPM migration policy based

on characteristics, in which user programs access and
process files. With the set of APIs we developed,
users can manually designate which file to migrate.
We further leverage the file access logs in previous
runs of applications to guide the file migration in the
later runs.

2 Background and related work

2.1 High performance computing storage
architecture

In the recent development history of supercom-
puters, three systems stand out as notable mile-
stones. TH-1A (Yang et al., 2011) adopts het-
erogeneous architecture and achieves an extreme

computing performance by leveraging CPU and
GPU. Since that time, design focus has been mainly
on the HPC storage architecture. IBM BlueGen/Q
Sequoia (LLNL, 2012) first introduced an I/O for-
warding layer in HPC I/O stack. I/O nodes ac-
cess data on behalf of compute nodes, alleviating the
tremendous amount I/O concurrency faced by stor-
age systems greatly. Cray Cori (NERSC, 2017b) is a
recent supercomputer deployed in Lawrence Berke-
ley National Laboratory (LBNL). It further installs
SSD on burst buffer nodes and provides storage
space fast to applications dynamically. The enor-
mous amount of I/O traffic is absorbed in the data
staging area near compute nodes.

Parallel file systems have been adopted widely
by supercomputers because of their features of
global data sharing, high performance, linear scal-
ability, high availability, and easy management.
Lustre and GPFS are the two most popular par-
allel file systems in the recent TOP 500 List
(http://www.top500.org). In these parallel file sys-
tems, metadata flows are separated from data flows
so that applications can access data without query
metadata in every I/O request. Data is striped
across all the storage servers to offer a high aggre-
gate bandwidth. However, HDD-based parallel file
systems also have some disadvantages, such as high
I/O latency to retrieve data and low performance of
processing large numbers of small files. The costly
disk-head movements of HDD make it hard for HDD-
based storage systems to meet the I/O requirements
of exascale systems.

The US Department of Energy proposed a hi-
erarchical storage architecture for future exascale
applications in its FFSIO project (Lofstead et al.,
2016), as shown in Fig. 1. To reduce the concur-
rency faced by underlying storage systems, compute
nodes are segregated from storage nodes by an I/O
forwarding layer. I/O requests from compute nodes
are forwarded to I/O nodes, and I/O nodes access
data on behalf of compute nodes. Since only I/O
nodes can access the underlying storage system, the
number of storage system clients is greatly reduced
(Iskra et al., 2008). Furthermore, by installing SSDs
in I/O nodes as burst buffers, applications can dump
data in the staging area closer to compute nodes and
return to computation as soon as possible (Liu et al.,
2012). As an aggregation point in the I/O path, I/O
nodes can reschedule and aggregate small or random
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requests into large sequential ones, and further pro-
mote the cache efficiency inside the nodes. Most
leadership supercomputers adopted the hierarchical
architecture, such as Tianhe-2 (Liao et al., 2014),
Cori (NERSC, 2017b), and Mira (ALCF, 2017).

Because of the proven benefits of burst buffers
and the declining price of SSD, researchers have been
exploring the possibility of expanding the scales of
SSDs by installing them on compute nodes (Wang
et al., 2016). There is still a budget pressure in
equipping an SSD on each of the hundreds of thou-
sands of compute nodes. Therefore, installing SSDs
on part of the compute nodes is a more feasible ap-
proach (Yu et al., 2017). Hence, the majority of
work on promoting HPC I/O performance has been
focused on studying the fast storage tiers close to
compute nodes. However, the use of the node-local
fast storage devices has not been well-studied yet,
and there is no standard software interface across
systems. Hence, how to effectively use the node-local
fast storage devices is still an open and hot research
topic.

2.2 Hybrid storage server

Much work has been devoted to improving the
performance of storage servers by installing SSD on
them. A straight forward approach is to replace
part or all of the HDDs on the server with SSDs.
Many storage vendors have introduced such prod-
ucts. For example, NetApp uses SSDs to construct
RAID drivers (NetApp, 2016). EMC also introduced
its SSD-based RAID storage system (Dell EMC,
2017).

Another approach is to use SSD as a cache of
HDD (Canim et al., 2010; Soundararajan et al., 2010;
Cheong et al., 2011). Flashcache (Facebook, 2013) is
a block-level SSD cache middleware that effectively
improves HDD-based storage servers. It has been
deployed on Facebook time line servers and can re-
duce over 50% write traffic to HDD. HyCache (Zhao
and Raicu, 2013) is a user-space caching middleware
that uses SSD devices to cache data in the data nodes
of HDFS. Flashtier (Saxena et al., 2012) is an SSD
cache that provides a unified logical address space to
reduce the cost of cache block management within
both operating system (OS) and SSD. Hystore (Chen
et al., 2011) manages both SSDs and HDDs each as
one single block device with minimal changes to OS
kernels.

The hybrid storage server approach can boost
the performance of storage systems simply by replac-
ing backend storage devices, without introducing too
many changes to existing storage architecture. How-
ever, there are some limitations in placing SSDs at
the lowest end of the storage hierarchy.

First, although the performance of storage sys-
tems can be enhanced with SSD, the segregation of
computing and storage remains, and can hardly rise
to the I/O challenge of exascale systems. Second,
as shown in Table 1, today’s NVMe SSD delivers up
to bandwidth of 3000 MB/s with an I/O latency as
low as 30 μs (Intel, 2017). It is becoming a research
focus in integrating NVMe SSD into HPC I/O stack
because of its declining price and increasing accep-
tance. However, the network latencies and software
overhead in the long I/O path between each pair of
compute node and storage node can seriously de-
grade the performance of NVMe SSD if placed in
storage servers. The hybrid device solution cannot
effectively deliver the performance benefits of NVMe
SSD. Third, the storage servers are far fewer than the
compute nodes in a supercomputer. Therefore, the
deployment scale of hybrid storage servers is much
smaller than that in placing SSDs in compute nodes,
resulting in a limited parallel performance.

The above limitations of hybrid storage servers
have driven academia and industry to explore the
potential of integrating SSDs in higher storage hier-
archy of an HPC I/O stack (Lofstead et al., 2016).

2.3 Solid state drive based and memory-based
storage tiers

With the growing amount of memory in com-
pute nodes and increasing acceptance of node-local
SSD, there has been a rapidly expanding amount of
work on integrating fast storage with a current HPC
I/O stack. There are two ways to organize the fast
storage space: file system and cache.

Much work has extended conventional file sys-
tems or proposes novel file systems to organize fast
storage near compute nodes. Uta et al. (2016)
proposed an in-memory runtime file system named
memFS, which uses memory in dedicated storage
servers to store data. FusionFS (Zhao et al., 2014)
is a user-level file system that leverages memory in
compute nodes. It distributes file data and meta-
data to nodes with a hashing function, and migrates
jobs to the node where the data resides. BurstFS
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(Wang et al., 2016) is a temporal file system that
has the same life cycle as a batch-submitted job. It
uses a distributed key-value store to manage meta-
data and supports scalable and efficient aggrega-
tion of I/O bandwidth from node-local burst buffers.
Cray DataWarp (Ovsyannikov et al., 2017) also uses
temporal file systems to manage the burst buffer
nodes with local SSD. It strips files across multiple
SSDs and supports on-demand apportioning of burst
buffer nodes for user jobs.

Caching is an alternative approach for orga-
nizing the node-local fast storage. Congiu et al.
(2016) proposed a set of message passing interface
I/O (MPI-IO) hints to cache data in locally attached
fast storage. Dong et al. (2011) used SSDs in com-
pute nodes as write-back cache to store huge num-
bers of checkpoint data. These two studies do not
relate to general purpose cache systems; thus, they
do not need to consider the cache consistency issues.
Holland et al. (2013) pointed out that the coherency
maintenance of a distributed cache system can se-
riously degrade its performance. NetApp Mercury
(Byan et al., 2012) avoids the costly consistency is-
sues by keeping no dirty data in its cache. Many
other distributed cache systems solve the consistency
issue by establishing a system-level metadata man-
agement agency, such as BurstMem (Wang et al.,
2014), SFDC (Dong et al., 2015), and WatCache (Yu
et al., 2017). These systems make the I/O requests
query metadata through a hash-based strategy be-
fore accessing data. This ensures that all requests
access up-to-date data.

Therefore, using the file system and distributed
cache to manage the memory or SSD in compute
nodes are just two different design options, since
they all need to keep track of the data location by
maintaining metadata. In this study, as we intend
to manage three different kinds of storage media in
HPC systems, we choose to use a file system to im-
plement our ideas for unified management.

In production HPC systems, since not all jobs
are memory-intensive, we find that more than 1/4
of the total memory is idle on TH-1A most of the
time. Therefore, we intend to make full use of the
idle memory and construct a fast storage tier closer
to the applications. The premise of our utilization
of idle memory in a compute node is that we can-
not affect the normal running of the original jobs on
that node. To the best of our knowledge, current

memory-based storage systems either use dedicated
memory servers or have not considered this issue.
Therefore, we propose a memory borrow and a re-
turn strategy to minimize such impacts to the jobs.

2.4 Hierarchical storage system and data
migration

As the number and size of files on a storage
system grow rapidly (Agrawal et al., 2007), the hier-
archical storage system has become an effective so-
lution to increasing storage efficiency while offering
a high I/O performance. For example, Facebook de-
signs a binary large objects (BLOB) storage system
which isolates warm BLOBs from hot BLOBs and
stores them in a separate storage hardware (Muralid-
har et al., 2014). Prabhakar et al. (2011) proposed a
multi-tiered data staging area in Jaguar Oak Ridge
National Laboratory (ORNL), using node-local re-
sources such as DRAM and SSD. It seamlessly uses
these devices under different resource contribution
constraints and offers an excellent I/O throughput
to checkpointing applications. It differs from our
work in dedicating a percentage node-local devices
to form an in-job staging pool. In contrast, ONFS is
a global hierarchical file system provided for all jobs.

In hierarchical storage systems, data migration
is the key to offering a high I/O performance of
fast storage hardware at the cost of slow storage
hardware (Anderson et al., 2001). Most existing
work focuses mainly on migration between HDD
and SSD (Cheong et al., 2011; Appuswamy et al.,
2012), including topics such as migration granu-
larity, data heat identification, static data place-
ment, and dynamic data migration. Many papers
have leveraged the block as the unit of data migra-
tion and data-hotness identification (Hitachi, 2010;
Chen et al., 2011). Relevant parameters include I/O
size, access frequency, etc. With block granular-
ity, high accuracy of data-hotness identification can
be achieved; however, the cost of computing data-
hotness is high. There are also file-based or extent-
based data-hotness identification mechanisms, such
as HRO (Saito and Oikawa, 2012) and HybridStore
(Kim et al., 2011). Large granularity can effectively
reduce the number of metadata records and the com-
puting cost. Data migration can be controlled in
static or dynamic ways. Static migration control
cannot react to real-time changes, while dynamic mi-
gration is triggered by specific conditions (Lee et al.,



1946 Liu et al. / Front Inform Technol Electron Eng 2017 18(12):1940-1971

1999; Tan et al., 2013). Since there are many differ-
ences among the structure of storage systems and the
workloads, there will be a large difference between
choosing parameters for processing data-hotness and
trigger conditions and choosing control strategies of
migration. It is necessary to determine the technical
method based on the application environment of the
storage system.

Our migration approach differs from the afore-
mentioned related work as follows: We conduct data
migration at the granularity of file based on our
investigation of access patterns of real applications
running on TH-1A. We leverage file attributes such
as file lifetime (open-to-close time) and file activity
degree (close-to-open time) to assess the value of the
file to be migrated. We further develop a set of APIs
to allow users manually specifying the files to be dis-
carded and those to be migrated to upper tiers. We
find that a class of users run programs under a pe-
riodic pattern. Therefore, we leverage the file access
logs in previous runs to guide the file migration in
the latter runs.

2.5 Distributed metadata management

Since the single metadata server can easily be-
come the bottleneck in a large-scale distributed file
system, a lot of literature has studied the distributed
metadata management. The following methods are
on the storage and management of distributed meta-
data: The first is static subtree partitioning. The di-
rectories of a file system are partitioned based on the
directory subtrees, and each metadata server man-
ages one or more sub-directories. NFS (Pawlowski
et al., 1994) and Coda (Satyanarayanan et al., 1990)
use this strategy. Its problem is that when a large
number of requests access the same directory sub-
tree, the corresponding metadata server (MDS) may
become the bottleneck.

The second is dynamic subtree partitioning pro-
posed by Weil et al. (2006) first. It divides file di-
rectories at subtree granularity and allows nested
subtree delegates to different MDSs under different
subtrees. When a directory becomes a hot spot, the
directory is delegated dynamically to a lighter MDS
by copying and transferring metadata to achieve dy-
namic load balancing. It may cause problems of
metadata migration and introduces a large mainte-
nance overhead for MDS consistency.

The third is the hash-based metadata service,
which uses a hashing algorithm to distribute file di-
rectories and metadata to different MDSs. It not
only provides better load balancing by leveraging
multiple MDSs, but also offers high metadata per-
formance since clients can quickly retrieve metadata
by mapping file path to data location. The hash-
based metadata service has been adopted by many
file systems, such as FusionFS (Zhao et al., 2014),
BurstFS (Wang et al., 2016), and zFS (Rodeh and
Teperman, 2003). Its problem is that the relation-
ships and locality of directories are corrupted, and
directory operations (such as ‘ls’) are costly. In ad-
dition, when the number of nodes changes due to re-
turning borrowed memory, files need to be migrated
and the mapping function of hashing needs to be ad-
justed, resulting in a significant overhead. Hence,
the hash-based metadata service is not suitable for
our hierarchical storage system which has a frequent
file migration among memory-based nodes.

In this study, we incorporate the directory infor-
mation of real users in TH-1A to construct our scal-
able distributed metadata service. We use a meta-
data server cluster to balance the metadata loads.
Different metadata servers handle metadata queries
of different subsets of users. Since different users
have no authority to access the directories of other
users, any metadata modification (e.g., renaming file
or directory) made by a user happens inside a single
metadata server. It significantly reduces the main-
tenance of metadata consistency in the metadata
server cluster.

3 Overview of ONFS design

3.1 Architecture of ONFS

ONFS consists of three storage tiers (memory,
SSD, and HDD) and metadata clusters. The first
and second storage tiers are composed of memory
and SSD from compute nodes, respectively. HDD
is configured and managed by a dedicated storage
server to build the third storage tier. The metadata
clusters are configured specifically. The system ar-
chitecture of ONFS is shown in Fig. 2, and the main
components of ONFS are shown as follows:

Node: compute node in the system, including
mainly CPU, memory, and network interface card
(NIC). Some of them may also include SSD;
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Fig. 2 Architecture of the on-line and near-line file
system (ONFS)
SSD: solid state drive; HHD: hard disk drive; CPU: central
processing unit; MDS: metadata server; MDSS: metadata
storage server

HDD server: ordinary server that includes a
group of HDD and NIC;

MDSS and MDS: metadata storage server and
metadata server.

The main functional units of ONFS are as
follows:

MDS cluster: It consists of a set of MDSs and
MDSSs. MDS and MDSS are responsible for meta-
data processing and metadata storage, respectively.
All MDSs and MDSSs are dedicated servers.

Data server (DS): There are three types of data
server. One is the memory-based data server that
distributes in computer nodes, labeled as DS-m.
Another is the SSD-based data server in computer
nodes, labeled as DS-s. The third is the HDD-based
data server, DS-d, which controls dozens of HDDs.
DS-m and DS-s are logical data servers.

Client: It is the software running on compute
nodes. Users can access ONFS through Client soft-
ware to read and write data.

3.2 Logical structure and workflow of the on-
line and near-line file system

Fig. 3 illustrates the logical structure and the
workflow among various units in ONFS. We imple-
mented ONFS in Linux user level with a unified
namespace, and ONFS supports portable operating
system interface (POSIX) semantics. Therefore, user
applications can access ONFS just like accessing lo-
cal file systems mounted on Linux without modifying
programs. DS-m and DS-s tiers provide file accesses

Client-0
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MDS-0 MDS-y
DS-m-0

DS-m-1

Client-n

DS-m-p

DS-s-0

DS-s-1

DS-s-q
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File
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File 
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MDSS-0 MDSS-1 MDSS-m...

...

...
Fig. 3 Logical structure of on-line and near-line file
system

with high bandwidth and a low latency. The DS-d
tier provides a huge storage capacity.

File requests generated by user programs are
forwarded to Client via virtual file system (VFS) and
filesystem in userspace (FUSE). To open or create a
file, Client first accesses MDS to obtain or create
file metadata, which includes file id, data distribu-
tion information (DS id), etc. The metadata will be
cached by Client for subsequent uses. After that,
Client sends the ‘read’/‘write’ requests to the corre-
sponding DS to ‘read’/‘write’ data. A file is stored in
one storage tier, and can be kept in two tiers during
the migration. Client can access any DS, and files
can be migrated between any two tiers.

The research topics in implementing ONFS in-
clude distributed metadata storage and manage-
ment, memory borrowing and return, the reliability
of storage, the grouping mechanism of data servers
and parallel access control, file coolness measure-
ment, file migration control, etc.

3.3 Data consistency in ONFS

In parallel file systems, multiple clients can ac-
cess shared data simultaneously through the net-
work. To support the vast majority of HPC appli-
cations, ONFS is designed to be POSIX-compliant.
According to the UNIX POSIX semantics, any mod-
ification of a file made by a process should soon be
perceptible by other processes. Lock is the most pop-
ular mechanism for implementing concurrent access
control.

Some distributed file systems avoid the intri-
cate distribute lock management by getting rid of
the client-side cache (Gluster, 2017). However, some
HPC applications issue lots of small I/O requests,
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such as applications that solve high-dimensional ma-
trix problems (Yu et al., 2017). The client-side cache
can significantly accelerate the small I/O. Therefore,
we decided to keep the client-side cache, and used
a distributed lock management mechanism to main-
tain cache consistency.

As ONFS is implemented with FUSE, requests
from applications first go into VFS via system calls.
Then VFS forwards the requests to ONFS Client
through kernel FUSE. VFS caches data in the kernel
page cache. However, the user-space ONFS cannot
control the kernel page cache. As a result, ONFS can
neither discard a stale page nor flush a dirty page
when a data inconsistency occurs. To address this,
we disable the page cache by mounting ONFS with
option direct_io. All requests from applications will
not be cached in kernel page cache when traversing
through VFS. Instead, we design a user-space cache
in ONFS Client to cache the application data.

The designed cache has several optimizations on
the basis of the kernel page cache. First, the kernel
page cache is designed mainly to cache data in lo-
cal storage. Hence, it has a small cache granularity
(4 KB). However, transferring small data blocks over
HPC fabrics is very costly since the transferring time
accounts for only a small part of the total I/O time
and software latency is the main overhead. We in-
crease the cache granularity to improve the caching
efficiency. Second, FUSE divides a large I/O request
into multiple small requests with sizes no larger than
MAX_size, and sends them to ONFS successively.
Our cache prefetches data more aggressively to effi-
ciently serve large file I/O.

The distributed lock management mechanism
of ONFS is developed based on Lustre DLM. It con-
tains two kinds of lock, a metadata lock handled by
MDS and a data lock handled by DS-i. The meta-
data locks resolve the metadata conflicts occurring in
file metadata operations such as ‘open’, ‘close’, and
‘create’. The data locks resolve data conflicts oc-
curring in concurrent data accesses. DS-i maintains
a namespace and locks of data objects stored in it.
Any ‘read’ or ‘write’ operation in clients must apply
for a lock in DS-i in advance. When inconsistency
occurs, DS-i will inform the corresponding client to
discard stale data or flush dirty data, so that any
client can retrieve up-to-date data.

4 User group sub-directory: dis-
tributed metadata storage and man-
agement

File systems store file data and metadata. There
are three important factors indicating that dis-
tributed metadata storage and management are es-
sential. First, the total amount of metadata is in-
creasing rapidly. The ratio of metadata size to file
size is usually between 0.1% and 1.0% (Miller et al.,
2011). When the amount of files increases to dozens
of PBs or even hundreds of PBs, the corresponding
metadata size will reach TB scale or even dozens of
TBs.

Second, metadata operations account for more
than 50% of total file operations (Roselli et al., 2000).
Therefore, a single MDS may become an obvious
bottleneck. Current Lustre uses a single MDS, and
the Lustre Union considers a multi-MDS solution to
address this issue.

Last, the future generation of supercomput-
ers will have more than millions of compute cores.
Each core generates I/O requests independently, may
causing tremendous load pressure on MDS.

In this study, we leverage a scalable distributed
metadata management approach from our previous
work, named ‘UGSD’ (Liu et al., 2017b). To make
the technical content of this study more complete,
we briefly illustrate the main ideas in the study.

Fig. 4 describes how Lustre, named ‘Vol6’, is
mounted under the Linux root directory ‘/’. ONFS is
mounted to the local file system in the same manner.

/

usretc bin home

Vol6

home

Usr-0 Usr-1 Usr-n

Lustre mount point

Lustre file 
system 
named 
‘Vol6’

Local file 
system on 
compute 
nodesvar lib tmp

usretc var binlib tmp

...

Fig. 4 Basic structure of Lustre and Linux directories

4.1 Metadata division unit

The metadata division unit is the basic to
achieve metadata storage and management. We use
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Lustre as an example to illustrate user directories.
Users in Lustre ‘Vol6’ create their own directories un-
der Lustre’s ‘home’ directory, which has the highest
level among all sub-directories. Each sub-directory,
such as ‘Usr-i’, represents a user group. We refer
to the sub-directory as a UGSD. Table 2 represents
the statistical data of UGSDs in Lustre ‘Vol6’ that
is deployed on TH-1A.

Table 2 Statistical data of user group sub-directories
(UGSDs) in TH-1A Lustre ‘Vol6’

Parameter Value

Total number of UGSDs 1183
Total number of secondary sub-directories 13 608
Number of directory layers for the deepest

27
UGSD

Total number of directories in UGSD A 418 246
Total number of files in UGSD A 2 217 243

It shows that there are 1183 UGSDs in total.
The maximal directory depth under one UGSD is 27.
When an HPC system is running steady, the number
of UGSDs does not change much. It is reasonable
that there are tens of thousands of UGSDs in the
system. We use UGSD as the basic unit for directory
partitioning.

4.2 Composition of the metadata system

The composition of the metadata system is
shown in Fig. 5. MDS and MDSS are responsible
for metadata processing and storage, respectively.
Peak-shaving metadata server (MDSps) is responsi-
ble for MDS load balancing and MDS scale expan-
sion. DS-mi represents the ith DS-m, and so on.

4.3 Mapping relationship between the user
group sub-directory and metadata server

Denote n the value of UGSD. We planned to
use a specific algorithm, such as MD5, to transfer

Interconnecting network

MDS 0 MDS 1 MDS n

MDSS 0 MDSS 1 MDSS g

DS-mi DS-sj DS-dk

MDSps

...

...

...

...

...

Node 0
client

Node 1
client

Node p
client

Fig. 5 Composition of the UGSD metadata system
DS: data server; MDS: metadata server; MDSS: metadata
storage server; UGSD: user group sub-directory; MDSps:
peak-shaving metadata server

the name of UGSD (a serial of characters) to an
integer N . Since the total number of UGSDs is not
large, the values of N ’s are not evenly distributed.
Therefore, a sequential number n is added after the
name of sub-directory, such as Ocean-n, where n is
used as the input of the MOD function as it is evenly
distributed.

To balance the loads of metadata storage, one
MDSS provides metadata storage for several MDSs.
Since the number of MDSs and MDSSs are not large
(usually dozens), we use a look-up table to map MDS
to MDSS. The mod function and the look-up ta-
ble constitute a two-level mapping, shown in Fig. 6.
In Table 3, we show a mapping example with eight
MDSs and four MDSSs.

MDSS 0 MDSS 1 MDSS m

Mapping: MDS MDSS

MDS 0 MDS 1 MDS k

Node 0
client

Node 1
client

Node n
client

Mapping: user group sub-directory MDS

...

...

...

Fig. 6 Two-level mapping relationship

MDS: metadata server; MDSS: metadata storage server

Table 3 Mapping relationship between metadata
server (MDS) and metadata storage server (MDSS)

MDS No. MDSS No. MDS No. MDSS No.

0 0 4 0
1 1 5 1
2 2 6 2
3 3 7 3

4.4 Dynamic metadata modification and
updating

One of MDSSs is used as duty MDSS that col-
lects metadata modifications from each MDS pe-
riodically. We set up some parameters in each
MDS to help achieve metadata synchronization
and consistency between MDS and MDSS. There
are two pointers (P-metaP and P-metaB) pointing
to two buffers (buffer0 and buffer1), respectively,
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and one synchronization time point T syn. Modi-
fied metadata is stored in two buffers during the
synchronization period to form a latest, complete
metadata. When MDSS informs MDS to send back
all modified metadata that is generated from the last
synchronization time T syn to current time T, MDS
first sets T syn to current time T and clears the buffer
pointed by P-metaB. Then MDS exchanges the val-
ues of two pointers and sends the data in the buffer
pointed by P-metaB to MDSS. New metadata mod-
ification records will be saved to the buffer pointed
by P-metaP. Hence, we can achieve the synchroniza-
tion and consistency of metadata between MDS and
MDSS. Fig. 7 shows the relationship between point-
ers and buffers, in which tail0 represents the pointer
for data write and tail1 represents the pointer for the
last data of read.

Buffer0

Buffer1

tail0

tail1

P-metaP

P-metaB

Fig. 7 Relationship between pointers and buffers

After the duty MDSS has finished collecting the
latest metadata modifications from all MDSs, it up-
dates the system-wide metadata, and informs other
MDSSs and MDSps to obtain modifications of all
MDSs and to update their local full metadata copies.
In this way, the metadata on all MDSSs and MDSps
are consistent. Dynamically updated and complete
metadata on MDSps is the basic for dynamic MDS
load balancing and MDS scale expansion.

4.5 Load balancing

There are two cases where the loads on MDS
may increase. One occurs locally, such as on one
MDS. The other happens globally which involves all
MDSs. We use the following methods to balance the
loads:

When a hot spot of workload appears on MDS-
h, metadata requests sending to MDS-h will be redi-
rected from MDS-h to MDSps. After the requests
have been fulfilled by MDSps, the result is trans-
ferred to the requesting Client. Before starting
to transfer the requests, MDSps synchronizes with

MDS-h to obtain the modified metadata generated
after previous synchronization time point T syn.

When the number of the whole workloads on
MDS cluster increases, a portion of UGSDs can be
taken out of some or even all MDSs and served by
MDSps. We express the UGSD suffix number n in
binary representation, and divide it into lower k bits
and higher (n − k) bits. The partition is shown in
Fig. 8.

MDS number Group of UGSD
n−1 k k −1 0

Fig. 8 Segmented diagram of the suffix number n in
user group sub-directory (UGSD)

The Client calculates MDSs by using higher (n−
k) bits of the suffix number. When adding a new
MDS is required, UGSDs mapped to original MDS
are divided into 2k groups according to the lower
k bits. Group 0 of UGSD or multiple groups can
be transferred to MDSps. Duty MDSS notifies all
Clients of the number of groups to be taken out and
the command of load balancing. Before starting the
load balancing, MDSps synchronizes with each MDS
to update metadata.

With the above processes, the UGSD method
neither generates metadata migration nor suspends
metadata services. It has a good performance in
MDS load balancing and shows a good scalability in
MDS scale expansion. We have discussed the details
in our previous paper Liu et al. (2017b).

We then discuss the data migration among stor-
age tiers. It involves maintaining data consistency.
We have discussed how to maintain consistency of
metadata between MDSS and MDS. Maintaining
data consistency includes two cases. Under a non-
migrating status, the file is stored in one DS, and
its sharing by multiple processes gives a consis-
tency problem. ONFS manages metadata uniformly
through the metadata cluster, and supports POSIX.
Therefore, we adopt the lock mechanism of Linux-
based file systems to maintain the data consistency
for shared ‘read’ and ‘write’. For files under mi-
grating status, corresponding methods should be em-
ployed to maintain data consistency. We will discuss
the main technical methods in Section 7.3.



Liu et al. / Front Inform Technol Electron Eng 2017 18(12):1940-1971 1951

5 Memory management and grouping
parallel access control (MM-GP)

The memory resource used by DS-m belongs to
the compute node. It is owned by the user who has
the right to access it. ONFS cannot occupy memory
by force. It can leverage idle memory only by borrow-
ing it, and has to return the borrowed memory when
user programs require. The maximal memory capac-
ity that DS-m can use is just dozens of GBs. There-
fore, ‘write’ operations need to be controlled under
different available storage capacities in case that the
node runs out of memory and causes the writes to
be terminated abnormally. To enlarge the available
storage capacity and to improve ‘read’/‘write’ band-
width, it is necessary to make N DS-m’s into one
group to provide parallel data access. Since memory
is a volatile storage device, it is required to solve the
reliability problem of storage. We discuss the above
technical issues in Sections 5.1–5.4.

5.1 Memory borrowing and return

5.1.1 Borrowing memory resources

We first discuss how to borrow memory, and
how much memory can be borrowed. It is a very
important issue that many studies have overlooked.

We have analyzed the memory use of compute
nodes (referred to as node) in TH-1A (Liu et al.,
2017a) and found that 85% of the CPU-intensive
programs use less than 50% of the nodes’ mem-
ory. The number of nodes that run CPU-intensive
program accounts for more than 50% of the total
number of nodes. Therefore, we divide the whole
nodes into two partitions based on the programs’
memory requirements. One is full-memory-partition
(FMP), in which programs can use all memory of a
node. The other is small-memory-partition (SMP),
in which programs can use only some part of the
memory resources of a node, such as 1/2. The entire
memory-based storage tier can borrow about 1/4 of
the total memory resources in the supercomputer.

In SMP, we allow users to use 1/2 of total mem-
ory capacity in nodes in an explicit and forced man-
ner. Users are aware of this restriction and they agree
to accept. Therefore, user programs running in SMP
usually do not apply more than 1/2 of the mem-
ory capacity. If the memory requirement of a user

program exceeds 1/2 of the restriction, the program
will be terminated as out of memory.

5.1.2 Returning memory resources

Once the number of nodes in FMP becomes in-
sufficient to fulfill programs’ requirements, ONFS
begins to move one or more compute nodes from
SMP to FMP. We first select free compute nodes in
SMP to move. If there is no free node in SMP, we
must wait for users to release nodes. We preferen-
tially sort them based on used memory capacity, and
choose nodes that have used the least memory ca-
pacity as ‘to be returned’. The purpose is to reduce
the amount of data migrated. Files stored on the ‘to
be returned’ node will be migrated to other nodes,
or to DS-s. As we employ dual-replicas to maintain
reliability, the memory return follows the features of
dual-replicas, and we move a pair of nodes (primary
and secondary nodes) together at one time.

During data migration, the primary node with
the original file continuously provides data accesses,
and the secondary node migrates the replicas to the
new primary and secondary nodes. We first set a
synchronous time point T. The ‘write’ requests to the
‘to be returned’ node after time T will be stored in a
log file in the primary node without replicating to the
secondary node. After all data in the secondary node
have been migrated to a new pair of nodes, following
data accesses to the primary node will be blocked.
Then the data in new nodes will be updated by the
log file in the old primary node, and the metadata of
the mapping between files and DSs will be modified.
At this time, blocked Clients will be informed to
access MDS again for the information of new DS-m’s.
The original DS will be closed to all Clients, and any
access to the original DS will be timed out. Then
they can re-access MDS to obtain the new metadata
of the file. Hence, the data migrations in the primary
node and the secondary node are completed. After
that, we modify the restriction of memory use of
‘to-be-returned’ node and move the nodes to FMP.
If none of the compute nodes have enough memory
to store migrated data, the data in ‘to-be-returned’
node will be moved to DS-s with similar procedures.

Besides static memory borrowing, we can bor-
row idle memory from 1/2 of the remaining mem-
ory reserved for user programs in SMP nodes with
dynamic memory borrowing and return approaches.
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We have discussed the technical problems in detail
in Liu et al. (2017a).

5.2 Write management based on available
memory space

In current HPC applications, the average size
of user files is usually several MBs, and the size of
large files can be several GBs. The available storage
space of a DS-m is about tens of GBs, and it can
be exhausted easily by sharing to all users. When
the available storage space becomes insufficient for a
‘write’ request, the write will be terminated abnor-
mally. It seriously affects the availability of ONFS.
Hence, there are two problems which need to be
solved. One is how to control the ‘write’ operation
so that it can be processed correctly when a DS-m’s
available storage space is insufficient. The other is
how to expand the available storage space of a DS-m
effectively to support large file storage.

The storage space is allocated as follows. After
the Client receives the ‘write’ request, it determines
DS by the metadata of the requested file, and ac-
cesses DS directly. If the ‘write’ request requires
new storage space, then DS allocates a storage al-
location unit (SAU). We choose the size of SAU as
4 MB, and discuss the specific reasons for this in
Section 8.6. On the available storage space, there
are two related questions. First, the Client does not
know whether there is enough storage space in DS-
m. Second, DS-m does not know the amount of data
to be written for the ‘write’ operation. If there is not
enough storage space in DS-m, in general, the ‘write’
request will be terminated abnormally. This may se-
riously affect the availability of ONFS. In this case,
we set a threshold Cs-w. When the available storage
spaces reduce to Cs-w, if the ‘write’ request requires
SAU, DS first blocks the ‘write’ request, and resumes
the execution until DS-m releases the storage space
that can meet the requirements. The relationships
between the available storage space and the control
of the ‘write’ operation is shown in Table 4.

To maximize memory utilization, Cs-w is cho-
sen to be near zero. To prevent the available storage
space from decreasing to or under Cs-w, we leverage
the dynamic migration method to move selected files
from DS-m to DS-s to release the storage space. We
set two thresholds of available storage space to con-
trol the migration for closed and opened files to DS-d
and DS-s, respectively (referred to as in Section 6.2).

Table 4 Thresholds for ‘write’ operations

Type of Available
Operation

DS storage space

DS-m ≤ Cs-w
Suspending writing and waiting

for available storage space

DS-s ≤ Cs-w
Suspending writing and waiting

for available storage space

DS: data server

5.3 Implementations of grouping and parallel
access control

Since the maximal available memory space in a
DS-m is only tens of GBs, it is difficult to effectively
support large file storage. We propose a method that
groups multiple DS-m’s together to provide parallel
data access. We set G-count and G-size parame-
ters. G-count is the number of DS-m’s in a Group.
Files are divided into blocks with a size of G-size and
distributed to DS-m’s within a Group in a circular
manner.

As the ‘read’/‘write’ bandwidth under a sin-
gle process reaches 1800 MB/s, we gather four
DS-m’s within one Group. Hence, the aggregated
‘read’/‘write’ bandwidth of four DS-m’s can be
7200 MB/s. Though there exists other overhead,
its bandwidth may match Client’s external commu-
nication bandwidth (the unidirectional bandwidth of
NIC is about 5–6 GB/s). In addition, as we choose
4 MB as SAU_size, we set G-count as four and G-
size as 4 MB. The values can be adjusted as needed.

As we cannot require user programs to write in
strict accordance with the appended write manner,
there may be empty segments in a file’s logical ad-
dress space. In each DS-m, we use pointers to con-
nect discontinuous segments in the address space.
Hence, when a ‘write’ operation is completed, the
written data in each DS-m in a Group may not be
similar. Hence, we manage the storage space of four
DS-m’s in one Group in an independent manner. DS-
m takes the responsibility for allocating storage space
for a ‘write’ request, and all management methods
are the same with a non-group pattern.

From the view of the composition of the Group,
it is similar to the Lustre striping mechanism. The
main reason for our discussion here is that the group-
ing method faces special problems during the migra-
tion, such as how to determine all DS-m’s within
one Group by DS-m that triggers the migration,
and how to control the migration. Grouping and
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parallel storage can be used to solve the thorny prob-
lem that the available storage space is insufficient
due to the limited memory in one DS-m. They also
further improve the bandwidth of data access.

5.4 Reliability of DS-m storage

DRAM-based memory is a volatile storage de-
vice. In practical use, any breakdown of memory or
a compute node will cause loss of the data that is
stored in memory in nodes, and this is unacceptable.

There are many ways to improve the reliability
of data storage, such as multi-replicas, RAID, and
erasure code. DS-m has two obvious features: high
‘read’/‘write’ bandwidth and low available storage
space. The memory space occupied by RAID and
erasure code is small. However, it takes a long time to
calculate the parity and erasure code, which decrease
the I/O bandwidth of DS-m dramatically. Though
multi-replicas require additional storage space with
the same size, a replica can be generated within a
short time, and this has little impact on the speed of
data access. As a result, we choose dual-replicas to
maintain a high reliability.

We design a dual-replicas policy with a primary
node and a secondary node, which are distributed
to different cabinets. From the experience of run-
ning TH-1A, the probability that two cabinets fail
simultaneously is very low. The number of compute
nodes can be divided into two parts. The lower n
bits of the number express the number of compute
nodes in the cabinet. In TH-1A, n is 6, indicating
that there are 64 compute nodes in one cabinet. The
remaining higher bits represent the number of cabi-
nets. To simplify the design of the Client, only the
primary node communicates the control information
with the Client. The control procedure of a ‘write’
request is discussed as an example. The Client sends
the ‘write’ request to the primary DS-m, and the pri-
mary DS-m forwards the messages to the secondary
DS-m. Then the primary and the secondary DS-m’s
use RDMA_read to obtain the data simultaneously.
The primary DS-m waits for the completion of the
secondary DS-m. Once the primary DS-m receives
the completion report from the secondary DS-m, it
replies to the Client. The Client then completes the
‘write’ request. Fig. 9 illustrates the write process
with dual-replicas.

MDS uses a heartbeat mechanism to check the
status of DS-m. Client also introduces a timeout

Client

Receive
Message Data Store

Receive
Message Data Done

Primary
node

Secondary
node

1. Write

5. Reply

3. RDMA

2. Forward

3. RDMA

4. Completion

Fig. 9 ‘Write’ operation with dual-replicas
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Yes
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Yes

No

No

Fig. 10 Recovery procedure when one node crashes
(MDS: metadata server)

reporting mechanism. There are three kinds of
breakdowns: either the primary or the secondary
node crashes, or both nodes crash. The situation
that both nodes crash at the same time is a disaster
which cannot be recovered from. Fig. 10 shows the
recovery procedure when one node crashes.

If the primary node crashes, MDS changes the
secondary node to the primary node and modifies
the metadata. Then MDS assigns a new secondary
node, and backs data up in the new primary node
to the new secondary node. During data replica-
tion, all newly written data are also written into the
new primary node and stored in log files. Once the
data replication completes, the primary node uses
the data in log files to update data in the secondary
node. After that, the dual-replica mechanism con-
tinues.

If the secondary node crashes, the ‘read’ and
‘write’ operations are processed ordinarily. After
choosing a new secondary node, the primary node
begins to load data to the new secondary node. The
following operations are the same as from step 3 in
processing primary node crashes.
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If the primary node crashes while processing a
‘write’ request, the current ‘write’ request will be ter-
minated abnormally. Then it follows the processing
steps of primary node crashes.

Ensuring the reliability of DS-m is a complex is-
sue. Specific and in-depth research work is required.

6 File coolness measurement (FCM)
for downward migration

In existing studies, the characteristics of data
access, such as access frequency, latency, and file
size, have been employed to select files or data to be
migrated. The granularity of data migration, such
as block, is often fine-grained. This will lead to a
great migration control overhead. When the scale
of the storage system is large, the aggregated cost
is too large to bear. We use the file as the migra-
tion granularity based on the characteristics of file
processing.

To prevent the ‘write’ operation from failing due
to capacity overflow on DS-m, some files need to be
moved out. This is triggered by available capacity
threshold. The migration direction and migration
conditions are different from the usual methods. We
refer to the migration condition as the coolness, not
the usual hotness. We determined the factors related
to the coolness of the file and proposed a method to
measure the coolness.

6.1 Migration granularity

The migration granularity is related mainly to
the purpose of migration and the way that users read
and write data. We take RTM as an example to an-
alyze how data-intensive applications read and write
data. In one instance, RTM processes about 200 000
input files, and the size of each file is about 207 MB.
It applies K nodes to process files in parallel (e.g., K
is 1024). For the input files, each file is read contin-
uously from the beginning to the end. Other typical
examples, such as genetic and climate applications,
share the same characteristics. This implies that
opened files are usually read in sequence.

Based on the analysis above, taking the file as
the unit of migration is reasonable. In ONFS, files
are created in DS-m or DS-s to achieve high band-
width for data accesses. For ease of discussion, we
refer to data migration from DS-m to DS-s, from
DS-s to DS-d, and from DS-m to DS-d as downward

migration. Migration in the opposite direction is
considered as upward migration.

Upward migration is triggered by open com-
mands or instructions from user programs. The main
purpose of downward migration is to release storage
space. We determine the following migration strate-
gies: (1) When migrating out opened files from DS-
m, we first choose DS-s as the destination; (2) Closed
files will be migrated to DS-d; (3) The files in DS-s
will be migrated to DS-d.

6.2 Controlling strategies of downward
migration

In upward migration, files to be migrated are
determined by user programs. Therefore, it is not
necessary to analyze the hotness of the file. ONFS
migrates files that are least used recently from an
upper storage tier to a lower tier. The condition to
choose files is called ‘file coolness’. It varies with dif-
ferent available storage space. As shown in Table 5,
we set up two thresholds of available memory space,
Cn-m and Cf-m, to control the migration. Cn-m is
larger than Cf-m. We explain the meaning and role
of Cn-m and Cf-m, and set C as the available storage
space in DS-m.

Table 5 The control of file migration

Type Available storage Downward
Destination

of DS space (C ) migration

DS-m Cf-m < C ≤ Cn-m Normal out DS-s or DS-d
C ≤ Cf-m Forced out DS-s or DS-d

DS-s Cf-m < C ≤ Cn-m Normal out DS-d
C ≤ Cf-m Forced out DS-d

DS: data server

When Cf-m < C ≤ Cn-m, closed files that sat-
isfy certain conditions will be moved out. We refer
to this condition as ‘normal out’. When C ≤ Cf-m,
opened files that satisfy certain conditions will be
moved out, referred to as ‘forced out’.

In the calculation of file coolness, we consider
static features of files and dynamic characteristics
of file operations. Static features include file size,
file type, etc. Dynamic characteristics include ac-
cess frequency (e.g., LRU), file status (open/close),
access pattern (random/sequential), operation type
(‘read’/‘write’), etc. Since the factors affecting file
coolness in ‘normal out’ and ‘forced out’ are differ-
ent, we discuss these two cases in Sections 6.2.1 and
6.2.2, respectively.
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6.2.1 Normal out

In a ‘normal out’ scenario, only closed files can
be selected to be migrated. Files in open status will
not be migrated. The other condition is the time for
which a file has been closed, referred to as T closed.
Files with a greater T closed are less active. Other
factors are the time periods between open and close
operations, T co and T oc. T co stands for the time
between the close and subsequent open operations.
Files with greater T co are used less frequently. T oc

stands for the time between open and subsequent
close operations. Files with shorter T oc are worth
less to be stored.

File size is a factor which is difficult to choose.
From the perspective of releasing memory space, mi-
grating files with a larger size can release more space.
However, if the file will be reused in the near fu-
ture, keeping it can bring more performance benefits.
Given this contradiction, we do not take file size into
consideration. In addition, since only closed files are
selected, parameters such as operation type, access
pattern, and access size are not considered.

Based on the analysis above, we choose the fol-
lowing expression to calculate file coolness for ‘nor-
mal out’:

Close · T closed · (T co/T oc),
where Close is either 0 or 1 to present the file status.

6.2.2 Forced out

To prevent using up the memory space of DS-
m’s and thereby resulting in a failure of file write,
DS-m migrates some files to a lower storage tier to
release a certain amount of memory space by force.
In ‘forced out’ status, some opened files need to be
migrated to a lower storage tier. We introduce LRU-
open queue to record the time order of file accesses
after files are opened. Other factors are T co and T oc.
According to the above analysis, the file size is still
not considered. We choose the following expression
to calculate file coolness for ‘forced out’:

Open · LRU-open · (T co/T oc),
where Open is either 0 or 1 to present the file sta-
tus. As a queue, we select files from the head of
LRU-open.

DS-s follows the same migration policies for
‘normal out’ and ‘forced out’.

6.3 Determination of file coolness

In this subsection, we discuss how to obtain
the aforementioned parameters: T closed, LRU-open,
T co, and T oc.

To determine T closed and LRU-open and select
files to be migrated to a lower storage tier, we design
two tables for each DS-m and DS-s, the ObjectID
table and the LRU table. Fig. 11 shows the compo-
sition of tables.

OB-0
OB-1
OB-2
OB-3

OB-i
OB-j
OB-k

Index

ObjectID table LRU table

Header

Tail

Closed-tail

OB-2
OB-i

OB-0
OB-j

OB-k
OB-3

Fig. 11 Compositions of ObjectID table and least
recently used table (LRU-table)

LRU table is a double-linked-list which records
the status of files (closed/open) and the time se-
quence of file status. There are three pointers:
Header, Closed-tail, and Tail. Files recorded be-
tween Header pointer and Closed-tail pointer are
closed. Opened files are stored from the next entry
of Closed-tail pointer to Tail pointer. For an opened
file, its active degree is determined by file reading
and writing. Hence, we need to modify the location
of the file in the LRU table in time when reading
and writing the file. We adjust the position of the
file in the LRU table to Tail when the address of a
‘read’/‘write’ request is within the first 1 MB range
of an SAU (4 MB size), and we record the address
for this adjustment. Files are arranged in descending
order of modification time.

ObjectID table maps the ObjectID to the entries
of the LRU table. When MDS allocates DS to a
file, it assigns an ObjectID to the file on DS. The
Client uses this ObjectID to communicate with DS
and completes data reading and writing. For ease of
management, we generate a finite sequence number
OB-i starting from zero on each DS. DS assigns an
OB-i to each newly arrived ObjectID, and retrieves
OB-i for reallocation when the ObjectID is deleted.
OB-i is used as an index in ObjectID table. There
is a pair of pointers mapping each OB-i in ObjectID
table to the corresponding OB-i in the LRU table.
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T co and T oc relate to the time point when a
file is opened or closed, respectively. Since a file is
only temporarily stored in DS-m or DS-s, once it is
removed from DS-m or DS-s, the historical records
of file accesses are cleared. MDS is responsible for
calculating T co and T oc. We calculate the sum of
T co-i and T oc-i. Since current open and close sta-
tuses of files are recorded, it is necessary to record
only the time of the last open or close. MDS cal-
culates the average of T co and T oc each time when
receiving a file-open or file-close request from the
Client. MDS sends the average values of T co and
T oc to the Client, and the Client then forwards the
values to DS-m or DS-s.

6.4 Determining the values of thresholds
Cf-m and Cn-m

The relationships among thresholds are shown
in Fig. 12, where Max shows the maximal available
memory space in a DS-m, and Cs-w, Cn-m, and Cf-
m represent the remaining available memory space.

0                       Available storage space  

Cs-w Cf -m
Cn-m

Max

Fig. 12 Relationships among thresholds (References
to color refer to the online version of this figure)

According to the above analysis, Cs-w notifies
the control module of ‘write’ operations that there is
no available SAU, and asks for suspension of ‘write’
requests that require new SAUs. Therefore, we can
set Cs-w to 0. Cn-m and Cf-m determine when
to migrate closed and opened files, respectively. If
the threshold is too large, files will be migrated out
prematurely and the service quality will be reduced
when the migrated file is accessed again. We intro-
duce the quality-of-service (QoS) method to meet
the requirement of service quality (Lu et al., 2002).
There are two main requirements for service quality:
(1) the latency of ‘write’ request should be short,
and (2) the number of migrated files should be small.
With thresholds Cs-w, Cf-m, and Cn-m, the avail-
able storage space is divided into three regions. Ta-
ble 6 presents the service quality and corresponding
control policy for each region.

Table 6 Determining the quality of services and con-
trol policies with available storage space

Region Quality of service Control policy

MAX–Cn-m Speed of writing in No adjustment
Cn-m–Cf-m Balancing the Only migrating

speed of out closed files,
writing in and C > Cf-m
migrating out

Cf-m–Cs-w Balancing the Controlling the
speed of speed of
writing in and migrating out
migrating out and writing in,

C > Cf-m

To meet the control requirements in the above
table, the speed of migrating files needs to be man-
aged, and the speed of writing files that apply a new
SAU also needs to be controlled.

Taking migrating closed files from DS-m to DS-
d as an example, we discuss how to determine Cn-m
and manage writing in and migrating out. We lever-
age 24 independent HDDs to constitute a DS-d. As
the ‘read’/‘write’ bandwidth of a single HDD is low,
if the number of files to be migrated is large, the con-
trol and management of file migration will be more
complicated, hence more representative. The input
parameters are: (1) ‘write’ requests from one or mul-
tiple Clients that require new SAUs (referred to as
“ ‘write’ request” in following discussions), and (2) a
file list for closed files, which are sorted in descending
order of LRU. We choose the following parameters:
average file size (S-avg-f), ‘write’ bandwidth of a
single DS-d (B-1w-DSd), and ‘write’ bandwidth of
DS-m (B-w-DSm).

We first show how to determine ΔCn =Cn-m−
Cf-m. The principle is to prevent the speed of ‘write’
request that applies for SAUs from being affected by
available storage space. The number of files to be
migrated (N ) can be calculated as follows:

N = (B-w-DSm)/(B-1w-DSd). (1)

The total size of migrating N files simultane-
ously is N · S-avg-f, which can be set as the initial
value of ΔCn. In the same manner, we can determine
ΔCf (=Cf-m−Cs-w). With values of ΔCn, ΔCf, and
Cs-w, we can construct a producer-consumer model,
as shown in Fig. 13.

When determining the values of thresholds, we
assume that there is no ‘read’ request from user pro-
grams, and all ‘write’ requests are applying for SAU.
Obviously, it is an extreme case. Therefore, the
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ΔCn Cs-wΔCf ReadWrite

Fig. 13 Producer-consumer model

values of thresholds need to be adjusted dynamically
according to real situations.

6.5 Implementations of downward migration

It is not difficult to migrate files that are stored
in a single DS-m or DS-s (non-grouped) to a lower
storage tier. However, migrating files within a Group
is complex since each DS manages files indepen-
dently, and the downward migration is triggered by
one DS which does not know the information of other
DSs within the Group. We take the migration from
a group of DS-m’s to a group of DS-d’s as an ex-
ample to describe the implementations of downward
migration.

When a DS-m submits a migration request to
MDSS, it provides the information of the ObjectID,
such as file name, UGSD, and required storage space.
MDSS finds the corresponding MDS based on the
mapping function from UGSD to MDS, and sends
the migration request with the information to MDS.

The MDS first checks all DS-m’s associated with
ObjectID and the total memory space it occupied in
these Ds-m(s). Then MDS allocates destination DS,
such as DS-s or DS-d, based on an available storage
space, and constitutes a migration control table. On
the source DS, there are the following parameters:
number of DSs per Group (G-count), distribution
granularity (G-size), and data size in each DS (DS-
size-i). The total size of the file (size-file) can be
calculated by

size-file =

G-count−1∑

i=0

DS-size-i. (2)

We use the same parameters (G-size and G-
count) in three storage tiers to construct a Group.
In the following discussion, we set G-count as four,
and G-size also as four. The migration control table
contains mainly four sub-tables. Each sub-table de-
scribes the migration control relationships between
corresponding source DSi (i ∈ {0, 1, 2, 3}) and the
destination DS, especially the distribution of data
storage in source DSi. The destination DS stores
data according to the data distribution requirements
provided by source DSi.

Another question is: what should we use to con-
trol the migration? We choose the destination DS to
control the migration. As the source DSi in the upper
tier provides services for data access, it is busy. If any
of Client, MDS, or MDSS is chosen to control the mi-
gration, data has to forward, introducing much more
overhead. MDS sends the migration control table to
all relevant DSs. In this example, each DS-d(i) com-
pletes its own migration and reports the completion
of migration to MDS. After receiving completions
from all DS-d’s, MDS then modifies the metadata of
the file, and instructs DS-m to release memory.

During downward migration, if an opened file
is read or written, or a closed file is opened, the
migration will be terminated immediately. The cost
is occupying some resources during migration, and
there is no impact on the performance of file accesses.

7 Active upward pre-migration
(AUPM)

Upward migration is to migrate files that are be-
ing accessed or will be accessed to an upper storage
tier for a higher file access speed. It is performance-
critical and time-sensitive. We can migrate files that
are being accessed or to be accessed by automatic
control or active pre-migration from a lower to an
upper storage tier. Researchers have proposed many
automatic upward migration methods. When apply-
ing these methods in ONFS, proper adjustment is
required in line with the workload of ONFS.

7.1 Feature analysis of reading input files

We first analyze the characteristics of user pro-
grams in file reading and writing, and then we lever-
age these features to select the files to be migrated.
We classify files into three categories: input file, in-
termediate result, and final result. Most interme-
diate and final results are new files created by the
program, and they are stored in DS-m or DS-s to
avoid upward migration. Input files already exist in
the storage system before programs run. They are
stored either in the lowest DS-d tier or in users’ stor-
age devices, and they need to be migrated to upper
storage tiers when programs are running. By ana-
lyzing various typical data-intensive applications, we
divide the input files into two categories and summa-
rize their corresponding patterns of processing differ-
ent types of input files.
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1. Large numbers of input files: The total
number of input files (N) is large, and the size of
each file is about several hundred MBs. This kind
of application usually applies for K compute nodes,
where K is much smaller than N. Taking the Gath-
ering program in Section 8.8.1 as an example, N is
210 000 and K is 512. Each node reads one or multi-
ple entire files independently, and processes them in
a complete processing step. After one node finishes
processing the current file, it reads and processes the
next file.

2. One single input file of large size: In this
situation, the input file is dozens of GBs. It is se-
quentially divided into many sections of smaller size,
and these sections are read one by one sequentially.
Each time, a section of the file is read and processed.
For applications such as gene sequencing, the input
file is about 90 GB, and the size of a section is about
2 GB.

In addition, there are other important I/O fea-
tures, such as the starting point of file reading. In
a single run of the user program, each input file is
usually read only once. Therefore, if an input file is
being read, it is worthless to migrate the file to an
upper storage tier as it will not be accessed again.
Based on the above analysis, we divide the upward
migration into two types. One is active upward pre-
migration (AUPM) and the other is passive upward
pre-migration.

7.2 Implementations of active upward
pre-migration

We propose the following three methods for ac-
tive upward pre-migration:

1. Directly upload files to an upper storage tier
In applications such as petroleum exploration,

weather forecasting, ocean exploration, the amount
of data to be processed is large. Taking RTM as
an example again, the raw data to be processed is
about several TBs. When users prepare to run the
program, ONFS uploads the input data from users’
own storage devices to either DS-m or DS-s directly.

2. ‘On-demand’ pre-migrate based on applica-
tions’ instructions

User programs send a list of files to be processed
(including the order in which files are read) to ONFS
by particular APIs. When the program runs, each
compute node reads one entire file and processes it.
The next file is read after the process is completed.

With this workflow, we determine the following pro-
cessing strategies: (1) We determine the first group
of files that will be read by all compute nodes based
on the file list and the number of nodes. These files
will not be migrated as they will be read immedi-
ately. (2) We determine the second group (or the
third group) of files to be read, and migrate this
group of files to an upper storage tier. In addition,
we migrate the following groups of files to the upper
storage tier sequentially. In this way, following data
accesses can be served by the upper storage tier.

3. Start upward pre-migration based on histor-
ical records

By analyzing historical records, we find that
there is a class of users who run programs in a peri-
odic pattern. For example, weather forecasting pro-
gram runs at a fixed time every day. The users pro-
cess the same type of meteorological observational
data in the same directory. To save memory space in
DS-m, input files are originally stored in DS-d. Be-
fore the program runs, we migrate input files to the
upper storage tier. The user I/O feature library can
be built based on these features. Files being used or
to be used will be migrated to a higher storage tier
in advance or on time.

In general, for hierarchical hybrid storage sys-
tems like ONFS, the ‘read’/‘write’ bandwidth of
HDD-based storage tier is an order of magnitude
lower than DS-d and DS-m, and a majority of data-
intensive applications follow features such that they
read one entire input file at one time. When user
programs are reading or writing the files, the benefit
of migrating the files upward in an implicit and au-
tomated manner is low, and mostly non-profitable.
Therefore, it is better to actively control the upward
file migration in an explicit way. For applications
that have similar procedures to gene sequencing in
Section 7.1(2), we can migrate files automatically.
Therefore, it is required to choose the way of mi-
gration, either automatic or AUPM, based on real
situations.

If ‘write’ requests come to the source DS dur-
ing upward migration, then new ‘write’ data will be
stored in the log file. When migration completes,
the source DS suspends the access to this file and
updates the file in the destination DS with the log
file. Then MDS modifies the metadata, and future
file accesses will be directed to the destination DS to
guarantee data consistency after file migration. Due
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to space limitation, we do not provide here detailed
analysis and explanation.

7.3 Data consistency during migration

When a file is migrating to a new DSi, any mod-
ification to the file will cause inconsistency between
the new and old copies. To address this issue, we
propose a log-based migration strategy. We take mi-
grating a file from DS-d to DS-m as an example to
demonstrate our strategy.

When ONFS starts to migrate a file in DS-d,
it first locks the whole file region and copies the file
to DS-m through the network. During copying, all
‘read’/‘write’ requests for this file are still served in
DS-d. ‘Write’ requests are recorded in a log file in
DS-d since the file has been locked. ‘Read’ requests
first look up the requested data in the log file. If their
requested data has been modified, they retrieve the
modified data from the log file; otherwise, they are
served as normal.

After the file is copied to DS-m, DS-d needs
to update all modifications recorded in the log file
to the new file in DS-m. Before that, DS-d invali-
dates all the locks in Clients that have acquired the
lock of the file before, and lets Clients flush all dirty
data. Meanwhile, DS-d sets a ‘migration’ flag in the
Clients to block all subsequent requests for the file.
After the modifications in the log file are updated to
the new file in DS-m, DS-d instructs MDS to modify
the file metadata to the new data location (i.e., DS-
m). The ‘migration’ flag in Clients is cleared and all
blocked requests are resumed. At this time, the mi-
gration finishes and all subsequent I/O requests for
the file can retrieve the updated metadata in MDS
and access the migrated file in DS-m.

8 Evaluations

Lustre is widely used in the HPC environment.
ONFS is also designed primarily for HPC applica-
tions. We tested the performance of both systems
and compare the results. We used I/O benchmark
interleaved or random (IOR), MDtest, and some ap-
plications to analyze and evaluate the performance
of the methods proposed in this study. Experiments
were conducted on the TH-1A supercomputer (Yang
et al., 2011). The architecture of the TH-1A is shown
in Fig. 14.
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Fig. 14 Architecture of TH-1A
CPU: central processing unit; GPU: graphics processing unit;
MDS: metadata server; OSS: object storage server

TH-1A has 7168 compute nodes, each of which is
configured with two Intel X5670 CPUs at 2.93 GHz,
one NVIDIA GPU, and 48 GB memory (DDR3, fre-
quency 1333 MHz). Some compute nodes have con-
figured SSDs. The 1.2 TB SSD is Intel PR840 with
NVMe. TH-1A employs two sets of Lustre, each
of which has two PB storage space and one MDS.
In Lustre, each object storage server (OSS) has two
Intel E5-2620 CPUs and two ARECA1226P RAID
cards. Each RAID card manages eight HDDs con-
stituting one object storage target (OST) in RAID6.
The HDD is 2 TB with 7200 RPM, 128 MB cache,
and an SATA3 interface. The performance of one
OST is better than that of one DS-d since DS-d has
only HDD and no RAID. Therefore, we used OST to
replace DS-d to compare the performance with DS-
m in the following experiments. The communication
subsystem is self-designed with bi-directional paral-
lel communication. The unidirectional peak band-
width is 80 Gb/s and it supports RDMA and socket.
The Linux kernel version is 3.16.48 and the libfuse
version is 2.9.3.

To analyze the impact of low-performance
DS-d on user programs’ I/O performance during up-
ward and downward migrations, we introduced a
storage server, which has two Intel E5-2630 CPU,
64 GB memory, and TH-1A NIC, with 24 inde-
pendent HDDs to constitute a DS-d (referred to
as DS-d24). The HDD in DS-d24 is 4 TB Seagate
ST4000NM.

We employed ‘collectl’ to gather I/O traces from
the Client in Lustre, and a software module in ONFS
to collect the same I/O traces. In the following tests,
we chose a certain number of compute nodes to build
DS-m and DS-s. To minimize the impacts of other
factors on experimental results, we used direct_IO
to disable the page cache in IOR tests. We used
DS-m ‘read’ as an example. The reason is that SSD
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has cache, and it is not sensitive to the main pa-
rameters of ‘write’ operations. The DS-m ‘read’ is
fast. Hence, main parameters of ‘read’ operations
can cause obvious impacts on ‘read’ bandwidth.

8.1 Performance comparison of data servers
in three storage tiers

We used the IOR benchmark to test the per-
formance of DS-m, DS-s, and DS-d. We use the
performance of OST to replace that of DS-d for
comparison.

8.1.1 Performance comparison of a single data server

The performance comparison of a single DS for
read and write in each storage tier is shown in Fig. 15.
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Fig. 15 Comparison of ‘read’ (a) and ‘write’ (b) per-
formance of a single data server in each storage tier
(OST: object storage target) (References to color re-
fer to the online version of this figure)

The test results show that: (1) the ‘read’ and
‘write’ performance of DSs in each storage tier differs
a lot. The maximal bandwidths of DS-m and DS-
s are about nine times and four times larger than
that of OST, respectively; (2) In DS-m, the maximal
‘read’ bandwidth is about 5000 MB/s under multiple
processes. It is restricted by the maximal bandwidth
of NIC, which is about 5600 MB/s.

We used synchronous I/O in above tests, where
one process sends only one sequential ‘read’ or
‘write’ request. Hence, DS-m and DS-s process
the ‘read’/‘write’ requests sequentially under a sin-
gle process. Obviously, the process does not fully

explore the high performance potential of memory
and SSD through internal parallelism. DS-d (OST)
groups eight HDDs to build a RAID, and processes
the ‘read’/‘write’ requests in sequence. The band-
width of RAID is not high. Hence, the difference
in bandwidth under different numbers of processes
is not obvious. Since DS-m does not have cache,
the impact of the number of processes is huge on
‘read’/‘write’ bandwidth. When the number of pro-
cesses increases from one to four, the ‘read’/‘write’
bandwidth increases linearly. Since SSD has cache,
the data to be written are cached. Hence, the num-
ber of processes has little effect on the ‘write’ band-
width. Though SSD has the pre-fetch mechanism,
the aggregated bandwidth of prefetching is limited
by the number of prefetch requests that are executed
in parallel. Therefore, when the number of processes
increases from one to four, the ‘read’ bandwidth in-
creases accordingly.

8.1.2 Performance comparison of four DSs

To improve the performance of file service with
multiple processes and increase the available storage
space in the DS-m tier, we propose the method of
grouping parallel access control. We test the ‘read’
and ‘write’ performance with four OSTs, four DS-s’s,
and four DS-m’s.

The results shown in Fig. 16 reveal that: (1)
the amount of differences of aggregated ‘read’/‘write’
bandwidth under multiple processes is more than
three times of that between DS-m and DS-s, and
more than eight times of that between DS-s and
DS-d; (2) With grouping parallel access, the max-
imal aggregated ‘read’ bandwidth of four DS-m’s
reaches around 15 GB/s, which is a huge progress
for the storage system; (3) In DS-m, since ONFS
is implemented at the user level, the aggregated
‘read’/‘write’ bandwidths with different numbers of
processes have many differences. This also shows
that there is plenty of room for further improvements
in the ONFS prototype system.

8.2 Determining the initial values of Cn-m
and Cf-m

In Section 6.4, we have discussed the method
of determining the initial values of Cn-m and Cf-
m. The main factors related to determining the
initial values of thresholds include parallel ‘read’
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(References to color refer to the online version of this
figure)

(migrating out) and ‘write’ bandwidth of DS-m,
‘write’ bandwidth of DS-d24, and the average file
size. In the following experiments and analysis, the
file size is 8 MB (the reason has been explained in
Section 8.6). Fig. 17a shows the aggregated band-
width of DS-m when executing ‘read’ and ‘write’ op-
erations in parallel. On DS-m, the aggregate band-
widths of multiple ‘read’ and ‘write’ requests in par-
allel are approximately 3700 MB/s and 3400 MB/s,
respectively. Fig. 17b shows the ‘write’ bandwidth of
DS-d24 under a single process (related to one HDD).
When the size of ‘write’ request is greater than 16
KB, the ‘write’ bandwidth of a single process is about
112 MB/s.

Fig. 18a presents the aggregated ‘write’ band-
width of 24 HDDs on DS-d24 in parallel. The aggre-
gate bandwidth increases linearly with the increasing
number of HDDs, and the maximum ‘write’ band-
width is 2200 MB/s. For DS-d24, the main factors
that affect the aggregated ‘write’ bandwidth are the
performance and the number of HDDs.

Fig. 18b presents the changing of ‘write’ band-
width for 24 HDDs in DS-d24. The negative devia-
tion value of ‘write’ bandwidth is about 2000 MB/s,
and the negative deviation is about 9.1%, compared
with the average value of 2200 MB/s. It may affect
the migration speed of files from DS-m.

To balance the writing speed of DS-m, we mi-
grated out files based on the ‘write’ bandwidth of
DS-m, which is 3400 MB/s. The maximal number
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of files to be migrated is about 31 (≈3400/112). The
total size of the 31 files is 248 MB (31×8 MB), which
can be used as the initial value of ΔCn. In the same
manner, the initial value of ΔCf can be determined
as 24 MB. Since the aggregate ‘write’ bandwidth of
24 HDDs in DS-d24 has certain negative deviations,
the values of Cn-m and Cf-m thresholds should be
adjusted dynamically according to practical use.

8.3 Performance of distributed metadata
server clusters

8.3.1 Scalability of metadata server cluster

We used MDtest to test the scalability of MDS
clusters in ONFS. The results shown in Fig. 19 in-
dicate that the performance of distributed metadata
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server clusters in ONFS improves linearly with the
increase of MDS.
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Fig. 19 Scalability of distributed metadata server
clusters in on-line and near-line file system (ONFS):
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8.3.2 Dynamic adjustment of metadata server loads

There are two main situations in MDS dynamic
workload adjustment. One is when the workloads of
a single MDS increase temporarily, then a temporary
adjustment is needed. The other is when the system-
wide metadata workloads increase, then additional
MDS is needed.

MDSps shares part of the workloads on MDS-
h, and the increased service capacity is determined
by the number of UGSDs to be taken out of MDS-
h. In Fig. 20, MDS-h and MDSps are equally di-
vided; thus, the total service throughput in MDS-h
and MDSps is close to twice that of MDS.

8.4 Overhead of filesystem in userspace

FUSE provides interfaces to user-level file sys-
tems and employs techniques such as write-back
cache, 128 KB MAX_size, multi-thread, and splic-
ing, to improve the system performance. FUSE di-
vides users’ ‘read’/‘write’ requests into sub-requests
with a size equal to or smaller than MAX_size. Then
the sub-requests are sent to the Client and processed
synchronously in a sequential order. The default
value of MAX_size is 4 KB, which is originally set for
local HDD and too small for faster storage devices.
The latencies of processing requests and transmit-
ting data and MAX_size can be the main factors
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Fig. 20 Performance of workload adjustment of peak-
shaving metadata server (MDSps) for ‘file create’ (a)
and ‘file read’ (b) (IOPS: input/output operations per
second)

that impact the performance of FUSE-based file sys-
tems.

Vangoor et al. (2017) compared the
‘read’/‘write’ performance of FUSE-based Ext4
(StackfsOpt) and native Ext4. The test results
show that when the size of I/O is 128 KB or
larger, the differences of ‘read’/‘write’ bandwidth
between StackfsOpt and native Ext4 are around
−2.6%–+2.2%. One exception is that with 128
KB I/O size and rnd-rd-1th-1f, the performance
deviation is 12.4%. It indicates that the overhead
introduced by FUSE is relatively small.

To analyze the impacts of MAX_size on
‘read’/‘write’ bandwidth, we adjusted the value of
MAX_size, and compared the performance with
1 MB and 128 KB MAX_size. MAX_size can be
modified to 1 MB by executing the following steps:

define FUSE_MAX_PAGES_PER_REQ 256
define MIN_BUFSIZE 0x101000
//After modification, we re-compile the FUSE

module, and modify the kernel part as follows:
define VM_MAX_READAHEAD 1024
//Then we re-compile the kernel.

We conducted experiments to test the ‘read’
bandwidth of DS-m with 128 KB and 1 MB
MAX_size, respectively. The test results are shown
in Fig. 21. The average bandwidth with MAX_size
of 1 MB is 11.8% higher than that with MAX_size
of 128 KB . We also evaluated the performance of
DS-s, and the tests show similar results. Therefore,
we set MAX_size as 1 MB, which is also aligned to
the transfer size between Client and DS-m.
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8.5 Impacts of various units on ‘read’ and
‘write’ bandwidth during the executions of
‘read’ and ‘write’ requests

We take DS-m ‘read’ as an example to ana-
lyze the influences of various units on the ‘read’
bandwidth during the execution of ‘read’ requests
to guide the optimization and implementation of
ONFS. Fig. 22 illustrates the main steps.
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Fig. 22 Main steps during the execution of a ‘read’
request
FUSE: filesystem in userspace; FIFO: first in, first out;
RDMA: remote direct memory access; VFS: virtual file sys-
tem

In this figure, FIFO stores ‘read’ requests, and
a data buffer stores the requested data. The num-
ber in the figure represents the serial number of the
time point in one process, referred to as Ti. The
operations for some time points are described as fol-
lows: (1) T 1: FUSE instructs the Client to obtain
a ‘read’ request; (2) T 5: the Client instructs FUSE
to fetch the data; (3) T 6: FUSE informs the Client
to finish current sub-request. The time period be-
tween Ti and Tj is the time when the unit’s finish
the particular processes, which is referred to as step
Sij (i represents the beginning time and j the fin-
ish time). The unit represents hardware components
or software modules, such as DS-m and the FUSE
module.

As can be seen from the tests, FUSE syn-
chronously processes each sub-request in sequence.
To analyze the time spent in each unit during the
execution of ‘read’/‘write’ sub-requests and the ratio
of it to total time, we use DS-m ‘read’ as an example
to explain that. The results are listed in Table 7.

Table 7 Main steps during the execution of a ‘read’
request

Step Operation
Time
(μs)

Percentage
of time (%)

S15 Client receives the ‘read’ 133.3 35.06
request, until Client and
DS-m finish reading

S56 FUSE obtains the data from 176.2 46.34
Client, then informs Client
to finish the request

S61 FUSE informs Client to 70.7 18.60
finish current ‘read’ request,
until it informs Client to
receive a new ‘read’ request

FUSE: filesystem in userspace

The test results reveal that the Client and DS-
m take only 35.06% of the total time. FUSE takes
64.94% of total time, which is a relatively large pro-
portion, to obtain data from the Client until instruct-
ing the Client to obtain the next ‘read’ sub-request.
The main reason is that FUSE divides a ‘read’ re-
quest with a large size into several sub-requests with
a size no larger than MAX_size, and all sub-requests
are processed sequentially. In an extreme case that
the time spent by the Client and DS-m in step S15

is zero, the bandwidth of DS-m ‘read’ is determined
by only FUSE. The Client employs the prefetching
mechanism to dramatically decrease the time of read-
ing data from DS-m. If FUSE can process multiple
sub-requests in parallel, it is able to decrease the
impact of FUSE on the bandwidth of DS-m ‘read’.

We also conducted experiments of DS-m ‘read’
with 1 MB MAX_size on FUSE with the old version,
which does not support splice. The time spent on
S56 in Table 7 is about 243 μs, which is 1.38-fold of
the time in FUSE with splice. The time for S61 does
not change much. Hence, splice is important for
reducing the overhead of transmitting data among
FUSE, VFS, and users.

8.6 Average file size and the size of storage
allocation unit

In ONFS, DS allocates storage space to the
‘write’ requests. The size of SAU is related to the uti-
lization of storage space, and to the overhead when
DS processes a ‘write’ request. If SAU is too small,
then the allocation of an SAU may be too frequent.
The average file size has important impacts on de-
termining SAU size.
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Wang et al. (2004) analyzed the distribution of
file sizes on 32 storage servers in an ASCI system.
The results reveal that the majority of file sizes are
around 2–8 MB. We statistically analyze the number
of files according to the distribution of file size in
Lustre ‘Vol6’ in TH-1A. Fig. 23 demonstrates the
results.
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By digging into the files with a size less than
1 MB, we find that most are source code, objective
files, log files, etc. These files take 80% of the total
number of files in Lustre ‘Vol6’. One of the main rea-
sons for such a large number is that the majority of
files are ‘zombie’ files that users left in the file system
for years. From our understanding of the process of
data accessed by users, we can see that most data
are asset data. For reasons such as confidentiality,
most users will delete the data initiative after using
them. In addition, by constraining storage space,
the system administrator may force users to manu-
ally migrate large files to slower and larger storage
devices. Hence, in Lustre ‘Vol6’, files larger than
1 MB are far fewer than those smaller than 1 MB.

In Fig. 23, there are two peak regions in file size
distribution: between 1 MB and 3 MB, and larger
than 64 MB. Files between 5 MB and 12 MB are rel-
atively concentrated. We chose 8 MB in this region
as the average file size.

Then we discuss how to choose the size of SAU
(SAU_size). In Lustre, the default SAU_size is
1 MB (Lofstead et al., 2016), and users can in-
crease it as needed. If SAU_size is too small, e.g.,
1 MB, the storage utilization is high, but the over-
head of allocation and management may be large.
It may easily generate fragmentations in the storage
space and makes sequential ‘read’/‘write’ requests
random requests, and decreases ‘read’/‘write’ band-
width. Hence, we propose to select SAU_size as
4 MB. It can be adjusted according to actual sit-
uations. To facilitate the migration among three

storage tiers, we have employed the same SAU_size
in all three storage tiers.

8.7 Benefits of upward migration

We tested and analyzed the benefits of active up-
ward pre-migration. We assume that data is stored
in DS-d24 before migration and migrated to DS-m.
Fig. 24 illustrates the ‘read’ bandwidth of DS-m and
DS-d in accordance with the time for user programs
to process file data. trfi-DSd24 is the time when the
program reads the ith file from DS-d24. trpfi-DSd24
is the sum of time in which a file is read from DS-
d24 and processed by one process. BW-DSd24 and
BW-DSm are the average ‘read’ bandwidths of DS-
d24 and DS-m under one process, respectively. If the
time required to process a file is more than the time
to read a file from DS-d24, we migrated the next file
to be processed to DS-m.
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Fig. 24 Bandwidth changes when a file is migrated
from DS-d24 to DS-m

The results reveal that BW-DSd24 is around
112 MB/s and BW-DSm can reach 2318 MB/s. With
upward migration, the benefit that user programs
can obtain for the ‘read’ requests is about 16 times,
which is significant.

Taking the Gathering program (Section 8.8.1)
as an example, the total size of one set of input files
is around 6720 MB (= 8 × 840 MB) in one process-
ing step, and the time for processing one set of files
(=trpf1-DSd24−trf1-DSd24) is about 29 s. The time
for migrating one set of input files from DS-d24 to
DS-m is about 64 s. Since the time for migrating
one set of files is larger than that of processing those
files, we begin to pre-migrate from the third set of
input files.

During upward migration, there are four main
steps: (1) Apply and prepare for data migration.
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DS-d sends the upward migration request to MDSS,
and MDSS reports to correlated MDS. MDS then
form the migration control table, and inform related
DS-m and DS-d. (2) DS-d reads files to be migrated
from HDD to local buffer. (3) DS-d migrates data
from local buffer to DS-m. (4) DS-d informs MDS on
the completion of migration, and then MDS modifies
the metadata and finishes the migration. Consid-
ering that data-intensive programs usually process
large files, we ran the experiments with 8 MB files
and 128 MB files to represent two situations. Ta-
ble 8 illustrates the time spent for the first three
main steps during upward migration.

Table 8 Time spent for each step in upward migration

File
size

(MB)
Step

Time
(μs)

Percentage
of time (%)

Equivalent
bandwidth

(MB/s)

8 1 126 0.17
2 69 258 91.55 116
3 6263 8.28 1277

128 1 129 0.01
2 1 155 198 92.74 111
3 90 299 7.25 1418

From the test results we can see that the time
for DS-d24 to read data from HDD takes 92% of the
total time. Therefore, the speed of upward migra-
tion is determined mainly by the ‘read’ bandwidth
of HDD, which is about 14 times slower than the
‘write’ bandwidth of DS-m. In this case, it is impor-
tant to migrate files that users need to DS-m ahead
of time.

Therefore, it is better to migrate files to be
accessed by users to DS-m as early as possible.
This is also the reason why we proposed upward
pre-migration.

8.8 Benefits for typical data-intensive appli-
cations

8.8.1 Gathering

We used the Gathering program in an RTM
application to verify the benefits of upward migra-
tion. RTM is one of the main methods to process
petroleum seismic exploration data, and the Gather-
ing program processes result files from RTM. It is a
program for production and a typical data-intensive
program. For this experiment, it processes 210 000
input files, each of which is around 840 MB. Hence,

the total size of the input files is about 176.4 TB. It
applies for 512 compute nodes. The whole processing
can be divided into many steps, and eight compute
nodes are grouped to process 8 × 8 files together in
one step. First, each node reads eight files. Then
each node processes the data and generates interme-
diate results. After that, these eight nodes process
the intermediate results together and send the final
results to the master node. All input files are num-
bered and the order of files to be processed by one
node is described in a table.

In this experiment, we measured the I/O perfor-
mance of Lustre (four OSTs with stripe) and ONFS
(four DS-m’s with grouping) under multiple pro-
cesses and heavy workloads. We also compared and
analyzed the benefits of I/O time and the program’s
completion time by migrating files from OST in Lus-
tre to DS-m in ONFS. To analyze and compare the
performance of ONFS and Lustre, input files that
will be processed by one group of nodes are stored in
four OSTs (one stripe) and four DS-m’s (one Group)
for these two systems. Fig. 25 shows the performance
of running the Gathering program on OSTs and DS-
m’s. The I/O traces are collected on one compute
node and the results show 10 steps.
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Fig. 25 Input/output performance on the on-line and
near-line file system (a) and Lustre (b)

There are two conclusions we can draw from the
experiment: (1) The ‘read’ performance of ONFS is
far better than that of Lustre. In one computing
step, 64 files are read and the total size is around
53 GB. The ‘read’ bandwidths of one node to ONFS
and Lustre are about 1810 MB/s and 285 MB/s, re-
spectively. The ‘read’ bandwidth of ONFS is 6.35
times that of Lustre, similar to the IOR results
with the same parameters. (2) We can obtain many
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benefits from the upward migration. When we mi-
grate files to be processed from OST to DS-m, the
‘read’ bandwidth achieves a 6.35-fold speedup. In
this test case, the I/O time decreases by 303 s, which
takes 24.9% of the total time when running the pro-
gram on Lustre. The acceleration effect on program
operation is obvious. In fact, it is related to the ratio
of I/O operation time to computation time. This
shows that for data-intensive applications, it is im-
portant to substantially improve I/O performance.

8.8.2 One-way wave depth migration

This example shows a program for oil seis-
mic data processing: one-way wave depth migration
(OWDM), which is also a program for production.
The number of input files to be processed is 30 170
and the average size of files is about 80 MB. The
number of final results (local image files) is 30 170
and the average size of files is about 940 MB. It ap-
plies for N compute nodes to run the program, and
each node processes 30 170/N input files. The main
steps of processing an input file are shown in Table 9.

Table 9 Main steps of processing an input file in
orthogonal wavelength division multiplexing

Step Operation
Number
of files

File Total
size size

(MB) (MB)

S1 Read an input file 1 80 80
S2 Read a parameter file 1 60 60
S3 Write a parameter file 1 850 850
S4 Write intermediate results 514 254 130 556
S5 Write a local image file 1 940 940
S6 Read total image1 file 1 3000 3000
S7 Write total image2 file 1 2000 2000

In the above steps, the total amounts of ‘read’
and ‘write’ data are about 3.14 GB and 134 GB,
respectively. Since I/O and computing are indepen-
dent among nodes, we used 64 compute nodes for
processing and testing. All files to be processed by
one node are stored in one stripe (four OSTs) in Lus-
tre and one Group (four DS-m’s) in ONFS.

In S4, the intermediate results are the comput-
ing results from a frequency domain, and are stored
for the program to resume execution when it is in er-
ror. It is similar to the checkpointing data. Regard-
less of the physical characteristics of the program and
the programming method, OWDM is a typical data-
intensive and write-intensive program. Figs. 26 and

27 show the results of OWDM performance running
on Luster and ONFS, respectively.

The ‘write’ bandwidth in the middle range of
the total time when running OWDM is summarized
in Table 10. From the results, ONFS ‘write’ band-
width is 4.67 times large as Luster. Under the cache
on/off situation, the total times of running OWDM
in ONFS are only 86% and 24% of the time when
running in Lustre, respectively. Obviously, the per-
formance of ONFS is much better than that of Lus-
ter. Especially with cache off, all I/O requests from
OWDM program flooded into the storage system,
which brings a huge I/O pressure to the storage sys-
tem.
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Fig. 26 Performance of the orthogonal wavelength
division multiplexing on Lustre with cache on (a) and
cache off (b) (References to color refer to the online
version of this figure)
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Fig. 27 Performance of orthogonal wavelength divi-
sion multiplexing on the on-line and near-line file sys-
tem with cache on (a) and cache off (b) (References
to color refer to the online version of this figure)

In Lustre, because of low ‘read’ and ‘write’
bandwidth, the I/O time of the program increases
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Table 10 Summary about OWDM applications

File
system

Cache
on/off

‘Write’
bandwidth

(MB/s)

Run-time
(s)

Percentage
of run-

time (%)

ONFS On 1500 2927 86
Off 1400 3552 24

Lustre On 300 3416
Off 300 15 111

ONFS: on-line and near-line file system; OWDM: orthogonal
wavelength division multiplexing

significantly. Hence, the time for running the pro-
gram in Lustre is 4.25 times longer than that in
ONFS. This demonstrates that the performance of
the storage system has a very important impact on
the performance of data-intensive applications. In
this experiment, we set cache off for creating a test
environment closer to a practical application. If the
program occupies most memory of nodes, the size
of the page cache will reduce, and its effects will re-
duce greatly, or to an extreme case that the cache
does not work anymore. The Gathering program is
a read-intensive and ‘read’/‘write’ mixed test case,
and the OWDM program is a write-intensive test
case. From the results of these two experiments, we
know that ONFS has a very good balanced ‘read’
and ‘write’ performance.

8.9 ‘Read’/‘write’ performance tests on large-
scale systems

We run an IOR benchmark to test the scala-
bility of each storage tier that consists of 32 data
servers. The block size is 1 MB, and the number of
processes varies from 32 to 256. The average size of
data accessed from each data server is around 2 GB.
The results shown in Fig. 28 indicate that both DS-
m and DS-s have the scalability as good as Lustre
and the aggregated bandwidth of DS-m and DS-s is
far better than that of OST.
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Fig. 28 Scalability of each storage tier (OST: object
storage target)

This shows that the performance of memory-
based and SSD-based storage systems has great ad-
vantages over an HDD-based storage system. The
‘read’ performance of all three types of data servers
is improving with the increase of the number of pro-
cesses. However, the ‘write’ performance reaches the
best with 64 processes, where each data server is ac-
cessed by two processes. If the number of processes
continues to grow, the ‘write’ performance will set-
back. This is because more processes occupy the
cache or buffer in data servers. This degrades a
cache’s acceleration effects on programs.

8.10 Comparison with state-of-the-art stor-
age systems

To validate the performance benefits of ONFS,
it is necessary to compare it with state-of-the-art
storage systems based on fast storage media. We se-
lected four recent related studies or products to com-
pare with ONFS, including FusionFS (Zhao et al.,
2014), Cray DataWarp (Ovsyannikov et al., 2017),
Gordon (Strande et al., 2012), and Cray Sonex-
ion 3000 (Cray, 2017). Not FusionFS, but Cray
DataWarp and Cray Sonexion 3000 have already
been deployed in Cori in the National Energy Re-
search Scientific Computing Center (NERSC), and
Gordon is a deployed system in the San Diego Su-
percomputer Center (SDSC). Thus, we used their
information on real systems in Table 11. For Fu-
sionFS, we used the information of the experiments
on Intrepid in Zhao et al. (2014).

FusionFS is a distributed file system based on
memory in compute nodes. It saves an extreme
amount of data movement between compute and
storage resources by storing data in memory. The
chief objection to FusionFS is that it uses memory
in compute nodes without considering performance
impacts on jobs in the nodes.

Cray DataWarp installs SSDs on the burst
buffer nodes and organizes them with a temporal
file system. It handles peaks and spikes in I/O band-
width requirements and reduces job wall clock time.
Its main shortcoming compared with ONFS is that
user jobs must use job script directives or APIs to
manually stage in or out files.

Gordon is a data-intensive supercomputer with
1024 compute nodes. Each group of 16 compute
nodes is connected with an I/O node. SSDs are
located in I/O nodes, acting as burst buffers. The
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Table 11 Comparison of ONFS with the state-of-the-art storage systems

Location
System
features

Bandwidth
Current
system

size
Scalability

Weakpoints
(compared

with ONFS)

Storage Storage- (single node
system media or OST)

(GB/s)

ONFS DRAM Compute Hierarchical 5.10 O(N)[3] Scale to all NULL
+SSD node storage sys- compute

tem, automa- nodes
tic migration

FusionFS DRAM Compute Memory-based 0.16[1] O(N)[3] Scale to all May impact
node storage compute job perfor-

system nodes mance
DataWarp SSD Burst buffer Fast temporal 5.90[2] 288 BBNs Scale to Manual

(CoriBBN) node storage limited migration
system burst buffer

nodes
Gorden SSD I/O node Localfile 2.60 64 IONs Scale to Limited

system in limited I/O scalability
ION nodes

Sonexion SSD Storage- SSD as a cache 1.40 248 OSTs Scale to Limited
3000 (Cori +HDD node of OST limited scalability
Lustre) OSTs

ONFS: on-line and near-line file system; DRAM: dynamic random access memory; SSD: solid state drive; HDD: hard disk drive;
OST: object storage target
[1] The performance of FusionFS is tested with HDD in the paper. If tested with DRAM, it can perform much better with a
speed larger than 0.16 GB/s
[2] The performance of DataWarp is the parallel bandwidth of four SSDs in the burst buffer node
[3] N represents the number of compute nodes in TH-1A and Intrepid

main shortcoming is its limited scale of deployment,
since SSDs can be placed in only a limited number
of I/O nodes.

Cray latest (HDD+SSD)-based Lustre Sonex-
ion 3000 puts two SSDs in each of its SSU, acting as
the cache of eight OSTs. Although it achieves better
performance than HDD-based Lustre, its main limi-
tation is that SSD can be deployed in only hundreds
of OSTs, leading to limited aggregated bandwidth.
In contrast, ONFS leverages idle memory in the sys-
tem, and can scale to tens of thousands of compute
nodes.

To summarize, ONFS provides persistent stor-
age space to applications with high bandwidth and
low latency by transparently migrating files among
memory-based, SSD-based, and HDD-based storage
tiers. It dynamically borrows idle memory from com-
pute nodes without impacting the jobs running on
them. ONFS has better parallel performance and
scalability since it can easily scale to all the compute
nodes in the system, which is much more than I/O
nodes and storage servers.

9 Conclusions

The US Department of Energy and seven lead-
ing US national laboratories initiated a project
named FFSIO to work on solutions to currently
intractable I/O problems of extreme-scale systems.
FFSIO suggests absorbing a tremendous amount of
I/O traffic in the data staging areas closer to applica-
tions by integrating SSD in the compute nodes or I/O
nodes. Although some solutions have already been
deployed in current supercomputers (e.g., DataWarp
in Cori), how to effectively leverage this fast storage
tier has not been well-studied yet, and remains an
open topic.

As an effort to promote the use of the SSD stor-
age tier, we have developed a hierarchical hybrid
file system called ‘ONFS’ to manage the node-local
SSDs and HDD-based storage servers. Furthermore,
we proposed to borrow the underused memory com-
monly existing in compute nodes to construct a faster
memory-based storage tier that is located closer to
applications. ONFS manages the three storage tiers
in a unified namespace and migrates files among
them dynamically and transparently. We proposed
several techniques to enhance the performance of
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ONFS and conducted extensive tests on TH-1A with
multiple micro-benchmarks and real applications to
validate our ideas. Results show that ONFS has sig-
nificant speedups.

Currently, ONFS is implemented with FUSE. In
the future, we plan to re-implement it in the kernel to
further minimize the software overhead. In addition,
we plan to study in depth the caching and prefetching
strategies of the client-side cache in ONFS.
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