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extremely realistic. We tested identification of the 
authenticity of these brains generated by using several 
brain anatomists who were blind to this study. None 
of them can correctly tell the artificial ones from the 
real ones, and some of them believed that all the im-
ages were real-world imaging data. 

In the second experiment, we added one feature, 
cortical thickness, to this model. Based on our past 
studies in method development (Bansal et al., 2007) 
and those studying cortical thickness changes in 
healthy individuals (Sowell et al., 2007), children of 
Tourette’s syndrome (Sowell et al., 2008), attention 
deficit/hyperactivity disorder (ADHD) (Bansal et al., 
2007), high-risk familial depression (Peterson et al.,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2009; Dubin et al., 2012), and chronic neuropsychi-
atric illness (Bansal et al., 2012), we simulated indi-
vidual cortical thickness profiles for the five base 
brains, and tested deducing results based on them 
under various conditions. Traditional statistical anal-
ysis for studying cortical thickness will provide only 
one final set of results under a given condition, for 
example, the statistical pattern of group average. In 
contrast, our model can provide dynamic views of the 
results, freely and selectively use parts of the samples 
that are of interest for intuitive examination of possi-
ble results, and thus evaluate the difference among 
different subsets of the population (Fig. 4).  
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Fig. 4  Deducing cortical thickness 
The upper row shows the pattern of the five base brains, and the bottom row shows several simulations based on the base brains 
using different control settings 
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Fig. 3  Preliminary examples of generating realistic new brains using MSAG 
The current generation involves only shape and intensity to demonstrate the feasibility of our design. The first row shows five 
different base brains, and the second row shows the generated brains, either with or without scalp, which look very realistic. The 
new brains vary in size, shape, and structures, as they blend features from the base brains with different weights. For example, 
G1 used the shapes of B1 and B2, but adopted different combinations of weights of structures and voxel intensities from all the 
five base brains; G2–G5 are additional instances of using various weights. Adding more variables such as imaging parameters 
will allow more delicate and complex controls over the results, and will generate more drastically different results 
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For example, we can selectively see the statisti-
cal pattern from individuals 1, 3, and 5 of the same 
age (e.g., 32), or inspect the pattern of female, black 
subjects who hold a bachelor’s degree, by conducting 
MSAG based on only subjects who hold these attrib-
utes. When the system has an adequate number of 
samples as the base brains, this work can be used to 
check dynamically the possible evolution course of 
the pattern from one age to the other, and simultane-
ously from healthy to diseased people that are hybrid 
of more than one race, although possibly none of the 
base brains was actually of more than one race. Sim-
ilarly, our model can artificially deduce a prescribed 
virtual brain, for example, defined as female, aged 
35.5, genetically 5-HTTLPR_rs25531AA who is 
developing post-stroke depression (Mak et al., 2013). 
The model can thus help investigators actually visu-
alize and examine various possibilities, while no such 
person actually exists in the real world. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the third experiment, we deduced MR images 
in different imaging conditions. The full details of this 
piece of work have been reported separately else-
where (Jiang et al., 2017). In this experiment, we first 
acquired MRI data Img1 under one imaging setting 
defined by a set of imaging parameters Set1. We then 
used knowledge of physical properties (in particular, 
the T1/T2-relaxation times) that we have collected 
from standard samples of the base brains, and used 
them to deduce, for each voxel in Img1, a new value in 
a virtual image Img2 that is supposed to be collected 
under a different imaging setting defined by another 
set of imaging parameters Set2. We also collected the 
actual dataset Img2a in reality from the same person 
using the parameters defined by Set2. We then com-
pared Img2 with Img2a to inspect the effectiveness of 
our method (Fig. 5). The results showed that the de-
duction was successful, and that the deduced results 
were highly correlated with the actual scan (Fig. 6). 
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Fig. 5  Deducing T1w data using knowledge extracted from only four sample brains 
(a) An actual scan Img2a of subject J using imaging setting Set2 (TR/TE/TI=9000/10/900 ms). (b) and (c) are J’s artificially 
deduced images Img2 at the same imaging setting of Set2: (b) was smoothed with a 1-voxel (0.72 mm) kernel, and (c) was not 
smoothed. (d) is the actual scan acquired under imaging setting Set1 (TR/TE/TI=9000/10/1500 ms), which was the initial 
image from which (b) and (c) were deduced. It can be seen that the deduced versions (b) and (c) are almost identical to (a) 
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Fig. 6  Correlation r between the scanned and deduced data 

(a) Figs. 5a and 5c: r=0.7544, y=−87.765+1.04x; if background voxels are included, r=0.9943, y=−3.264+1.00x. (b) Figs. 5a and 
5b: r=0.7371, y=−428.75+1.20x; if background included, r=0.9967, y=−1.945+1.00x. Both are highly linearly correlated and 
matched, with minimum intercepts. The data shown here contained 218 voxels randomly picked from one image slice 
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4  Conclusions and discussion 
 

We proposed an AI platform of digital brain for 
brain research, which can use crowd wisdom to inte-
grate various types of knowledge on the brain. We 
first introduced the theory behind the design, then 
illustrated the idea and a blueprint, and finally 
demonstrated our preliminary progress. The first two 
examples showed how the platform will work based 
on sample datasets—the base brains span a reasoning 
space, and each point in the space is potentially a 
virtual and new human brain to be generated, defined 
by the variables along each feature axis in the rea-
soning space. At each such point, which corresponds 
to a virtual brain, the third example actually expanded 
it to a second level of detail, in which all the imaging 
parameters constitute another reasoning universe for 
reasoning new MRI data for this particular virtual 
brain. By setting the values of a number of different 
imaging parameters, the proposed work may generate 
imaging data under different imaging conditions, as if 
the same virtual person were scanned multiple times 
on a real scanner using different imaging settings. 

Using the small universe thus expanded by the 
third experiment, we demonstrated the complexity of 
our proposed platform, which may nest different lev-
els of a reasoning universe. Within only this small 
reasoning universe, a duplication of our proposed 
method of computational intelligence may also de-
velop advanced and unique abilities: (1) It provides a 
function comparable to the software tool of Adobe 
Photoshop to fix MRI data, certainly, following the 
principles of MR imaging and MRI physics but not 
optics. This is useful if a patient was scanned using a 
set of imaging parameters that were not individually 
optimized and, therefore, the image contrast of the 
acquired data was not optimal. (2) It also provides a 
virtual software MR scanner, and a whole set of im-
aging data can be prescribed and then generated 
without going to an actual scanner, which is usually 
expensive in both time and money. As the method 
may deduce the physical property of the tissue at each 
voxel using prior knowledge that has been built using 
the base brains, the virtual scanner may generate data 
of other imaging modalities. For example, in the 
current case, as we have knowledge of T1/T2 relaxa-
tion times for various tissues collected from base 
brains, T1w data can be used to deduce T2w data, 

which typically can be acquired only by physically 
scanning real human subjects using a real MRI 
scanner. 

The proposed platform is actually a digital brain 
database. Feeding into the system brain data including 
all associated data, such as imaging data, genetic data, 
demographic data, and EEG data, it automatically 
becomes a brain library. Setting values of interest to 
the feature variables that span the reasoning space, 
various information regarding human brains may be 
retrieved and automatically calculated. For example, 
input age=30–39, race=Asian, disease=schizophrenia, 
and sex=male; all brain data meeting these require-
ments will be presented. Moreover, if we set the 
weights equally to all the retrieved datasets, the 
MSAG framework will automatically generate an 
average brain image based on all the retrieved da-
tasets, providing a statistical atlas of all Asian male 
schizophrenia patients in their 30s. 

The proposed platform is also a digital brain 
phantom. Based on the computational AI model of 
MSAG/SR, the platform can use a limited number of 
sample base brains to deduce numerous new brains, 
just as parents may give birth to as many newborns (if 
age is not an issue). The features extracted from the 
brains span the reasoning space. The more the fea-
tures, the higher the dimensionality of the reasoning 
space, and the more powerful the platform is in de-
ducing new imaging data (phantoms). The deduced 
image can be very useful for testing new methodolo-
gies because affecting variables can now be fully 
controlled. Thus, the effectiveness of new image an-
alytic methods can be well validated. 

The platform is open in its nature, as its kernel, 
the computational MSAR method, is scalable. New 
axes that define new features can be added any time 
into the reasoning space, and new brain datasets can 
also be added any time to expand the bases for rea-
soning (just like more parents join to provide genes). 
Also, the more the brains representing different pop-
ulations are added, the more powerful the platform is. 
For example, if the data contain brains of all ages of 
healthy people and also those with different diseases, 
the system will allow deducing either brain devel-
opment of normal healthy people, or brain evolution 
from the healthy to the diseased, or vice versa. In 
particular, it can deduce brains of mixed disease 
conditions, which may be possibly not available in 
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reality. This gives scientists an ability to predict pos-
sibilities of certain diseases in the future, and they do 
not have to wait until such things actually happen 20 
years later. The deduced results may not be exactly 
true, but the bottom line is that it provides something 
tangible that the scientists may play with and study. 
As another example, to communicate with colleagues 
or explain to a patient the possible route of disease 
evolution, a physician may prescribe the five-year- 
later version of a current diseased brain. The physi-
cian may present it now visually and vividly, instead 
of orally describing the situation, to a patient or a 
colleague, which may very possibly be misunder-
stood because the audience could imagine something 
that is totally different from what is orally described, 
due to variations or degree of the required profes-
sional knowledge. 

The platform is indeed a knowledge system for 
brain and neuroscience. If many brain studies use the 
system, and all findings are fed into the system, the 
platform will be able to merge knowledge, and to 
solve conflicts in findings if findings from similar 
studies disagree with or contradict each other. For 
example, one study may find major depressive dis-
order (MDD) leads to a smaller hippocampus, 
whereas the other may have found that the hippo-
campus of MDD statistically becomes larger. With 
data from both sides available in the same platform, 
the system may now examine where such conflicts 
come from and thereby solve them by a joint and 
cross analysis. 

The current report presented our preliminary 
progress in this project. In this work, we used only 
five subject brains to demonstrate the feasibility of the 
proposed idea. The next step is to expand the number 
of samples, making it more powerful. Obviously, the 
size of the sample data and the number of users are 
important factors to the success of this platform. Big 
data will provide a comprehensive coverage to sup-
port all the feature axes with adequate samples, which 
are the source of the needed knowledge to run the 
system. It also forms the basis on which potential 
users may thereby make effective inquiries, conse-
quently allowing the system to deduce new data pre-
scribed by the users. On the other hand, intensive use 
of the system from various users across different 
disciplines is desirable, as this will provide crowd 
wisdom to the system. A large number of users will 
provide feedbacks of new findings associated with the 

brain data in the system, and their behaviors in using 
the system will thereby provide new domain 
knowledge and information on linking the data enti-
ties in the system. The latter basically forms the edges 
in a knowledge graph, which will enhance the rea-
soning and deducing abilities of our platform. To 
attract more users to use the system, a set of software 
tools for analyzing neuroimaging data is needed, so 
that data and findings can be uniformly processed 
using the same data interfaces and formats, and sub-
sequently the related data can be easily employed in 
the system to implement the goals as discussed earlier. 
The tools can use those we have developed in-house 
(Xu et al., 2003, 2008; Plessen et al., 2006; Liu F et al., 
2006, 2008, 2010; Liu W et al., 2012a, b; Bansal et al., 
2013; Hao et al., 2013; Liu X et al., 2013; Wen et al., 
2013), or those freely available online, such as 
SPM12, FSL, and FreeSurfer. However, using the 
latter would need a set of interfaces for converting the 
data formats for mutual-compatibility. 
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