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Abstract: Frequency-hopping (FH) is one of the commonly used spread spectrum techniques that finds wide applications in 
communications and radar systems because of its inherent capability of low interception, good confidentiality, and strong anti- 
interference. However, non-cooperation FH transmitter classification is a significant and challenging issue for FH transmitter 
fingerprint feature recognition, since it not only is sensitive to noise but also has non-linear, non-Gaussian, and non-stability 
characteristics, which make it difficult to guarantee the classification in the original signal space. Some existing classifiers, such as 
the sparse representation classifier (SRC), generally use an individual representation rather than all the samples to classify the test 
data, which over-emphasizes sparsity but ignores the collaborative relationship among the given set of samples. To address these 
problems, we propose a novel classifier, called the kernel joint representation classifier (KJRC), for FH transmitter fingerprint 
feature recognition, by integrating kernel projection, collaborative feature representation, and classifier learning into a joint 
framework. Extensive experiments on real-world FH signals demonstrate the effectiveness of the proposed method in comparison 
with several state-of-the-art recognition methods. 
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1  Introduction 
 

The largest difference between frequency- 
hopping (FH) and fixed-frequency communication is 
the pseudo random jump over time; as a result, the 
research in FH signal reconnaissance focuses mostly 
on signal detection and parameter estimation. An-
gelosante et al. (2010) proposed a sparse linear re-
gression based multiple FH parameter estimation 
method. Zhao et al. (2015) proposed a robust FH 
spectrum estimation method based on sparse Bayes-
ian. Liu et al. (2018) proposed an FH spectrum esti-
mation method based on structure-aware Bayesian 

compressive sensing, which can be used for condi-
tions which lack observations. However, these algo-
rithms are all about parameter estimation, and there is 
relatively little research on the feature extraction and 
classification of FH signals. 

With the increasing amount of radiation such as 
radar and communications, the electromagnetic en-
vironment is increasingly complicated, and the sig-
nals received by electronic receivers are increasingly 
complicated. Specifically, in the case of various types 
of radiation with the same type of systems and pa-
rameters, how to effectively identify these radiation 
sources has been a major problem in the field of sig-
nal processing. Due to the high anti-jamming per-
formance of FH communication and the low proba-
bility of interception, individual identification of FH 
transmitters as a specific application of radiation 
source identification has been of considerable con-
cern for scholars. 
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For individual recognition of FH transmitters, 
there are individual nuances between the internal 
originals of any two identical transmitters even if they 
are from the same production line. Transient signals 
transmitted by FH transmitters contain different im-
pulse responses during radio switching on, mode 
switching, frequency switching, power supply exci-
tation changes, etc. Therefore, these transient re-
sponse signals contain abundant information about 
inherent transmitter features. In the meantime, during 
the normal communication process of an FH trans-
mitter, the steady-state signal includes the individual 
nuances of certain FH transmitters, and these inherent 
features are unique to individual transmitters. Be-
cause of the individual nuances of FH transmitters, 
there exist inherent features, and these can be used to 
identify individual transmitters. Such an inherent 
feature based on individual nuances can be called the 
fingerprint of the transmitters. 

Recently there have been many classification 
algorithms for the individual recognition of radiation 
sources, such as the decision tree algorithm (Yoshi-
kawa et al., 1995; Tadjudin and Landgrebe, 1996; 
Friedl and Brodley, 1997; Lawrence and Wright, 
2001), which has the advantages of high flexibility, 
good intuition, strong robustness, and high computa-
tional efficiency, and is applied mostly in image 
classification. However, there are still limitations. For 
example, Quinlan proposed an ID3 algorithm in 1979. 
This method uses local non-retrospective heuristics of 
information gain, from which it is difficult to obtain 
the global optimal decision tree. Subsequently, 
Quinlan (1993) proposed the C4.5 algorithm to im-
prove ID3, but because of the need for multiple se-
quential scanning and sorting of the sample dataset, 
the algorithm is inefficient. The k-nearest neighbor 
algorithm (k-NN) (Cover and Hart, 1967; Wu XD  
et al., 2008) is a common clustering method because 
of its advantages of being simple, effective, and easy 
to implement. However, its clustering performance is 
affected by the nearest neighbor parameter k, the 
similarity measure of neighbor points, and the size 
and distribution of data sets, and therefore there are 
significant differences in the efficiency of different 
algorithms. The support vector machine (SVM) al-
gorithm (Cherkassky, 1997; Cherkassky and Mulier, 
1998), which is a pattern classification technique 
proposed by Vapnik in 1995, is effective in solving 
the small sample classification problem. At the same 

time, this method can realize the classification of 
non-linear problems, using the kernel trick to map the 
original non-linear problem into its linear high-  
dimensional feature space, where samples belonging 
to the same class can be better grouped. However, the 
major disadvantage of this method is that when the 
number of training samples is too large, the efficiency 
of the algorithm is very low, and different kernel 
functions have different classification results. 

The above classification algorithms are not ideal 
when they are used for the FH transmitter recognition 
problem. At the same time, the fingerprints of FH 
transmitters are subtle, when it comes to the condition 
of serious noise and a complicated electromagnetic 
environment, especially when the transmitters are 
non-cooperative. The practical classification of such 
methods is not ideal. In recent years, with the 
advantages of being insensitive to noise and having 
good classification performance, some methods based 
on sparse representation have been developed in 
various fields of classification. Wright et al. (2009) 
proposed a sparse representation based classifier 
(SRC) for a given set of testing data. This method 
codes every sample over the training data as a sparse 
representation, and then classifies it into the class 
with the least representation error. However, this 
method turns the sparse representation problem into 
L1-minimization optimization, which is very compu-
tationally demanding. This method uses an individual 
representation rather than a collective one to classify 
such a set of data, and in doing so obviously ignores 
correlation among the given data. Consequently, a 
collaborative representation classifier (CRC) based 
on L2-minimization was proposed in Zhang et al. 
(2011) and Yang M et al. (2012). The experimental 
results verified that CRC is significantly more com-
putationally efficient and can result in a similar per-
formance to SRC. Also, Wang and Chen (2017) pro-
posed a joint representation classification (JRC) for 
collective face recognition. This codes all the testing 
samples over the base samples simultaneously to 
facilitate recognition. Experimental results showed 
that this method not only greatly reduces computa-
tional cost but also achieves better performance. 
However, all these methods are conducted in the 
original signal space rather than the non-linear high- 
dimensional feature space. The performance of the 
FH transmitter fingerprints is generally of an irregular 
non-stationary, non-linear, and non-Gaussian nature, 
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and thus the effectiveness of these methods for the 
recognition of the FH transmitter fingerprint feature is 
difficult to guarantee in the original signal space. To 
address these weaknesses and make sufficient use of 
the collaborative relationship among the given set of 
training data, a novel FH transmitter fingerprint fea-
ture recognition method is proposed, by integrating 
kernel projection, feature representation, and classi-
fier learning into a joint framework. Here the pro-
posed method extracts the square integrated bi-spectral 
(SIB) feature of the original FH signals to character-
ize the fingerprint features of the individual FH 
transmitters first, and then a Gaussian kernel is used 
for feature representation. Given that the given sam-
ples are generally related to each other, this method 
takes the correlation of multiple samples and a single 
representation into account. Then a joint representa-
tion framework is designed for the recognition prob-
lem. At the same time, a unified expression of recog-
nition is developed for the final optimization problem. 
Extensive experiments on real-world FH signals show 
the effectiveness of the proposed method. Fig. 1 gives 
the process of FH transmitter recognition based on a 
kernel joint representation classifier.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The main contributions of this paper are sum-
marized as follows: 

1. The FH transmitter fingerprint feature recog-
nition method is proposed by integrating kernel pro-
jection, feature representation, and classifier learning 
into a joint framework. Using a kernel function, this 
method maps the original signal space into its 
non-linear higher-dimensional feature space, in which 
features belonging to the same class can be better 
grouped. 

2. Given that the given samples are generally 
related to each other, the collaboration among the 
given samples is considered in our formulation to 
obtain robust experimental results.  

3. By joint representation this method can im-
plement the kernel function, feature representation, 
and classifier learning simultaneously, which is more 
economical and efficient.  

4. The proposed method boosts the recognition 
results of the frequency-hopping transmitter finger-
print feature on five real-world transmitters in com-
parison with state-of-the-art classification methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  The transmitter fingerprint feature classification process of our method 
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2  Preliminaries 

2.1  Kernel trick 

The kernel trick is a well-known technique in 
pattern recognition that can project a linear algorithm 
to its non-linear counterpart by a mapping function. 
After such non-linear transformation, the recognition 
can be conducted in the intrinsic non-linear higher- 
dimensional feature space where a decision line can 
be used to classify samples efficiently rather than the 
original signal space. 

In kernel learning the following idea is used via a 
non-linear mapping (Muller et al., 2001): 

 
: ,  ( ).dΦ Φ→ →x x                     (1) 

 
The data x in the original signal space d is mapped 
into a potentially higher-dimensional space  , where 
the intrinsic non-linear features can be better repre-
sented. For a given learning problem one now con-
siders the same algorithm in   instead of d, i.e., 

( ) .Φ ∈x   Given this mapped representation a sim-
pler classification or regression might be found in   
than in d. 

The key of the kernel trick is to provide a method 
to perform statistical learning by directly using the 
inner product function (namely kernel function  
k(x, y)=<Φ(x), Φ(y)>) defined in the data feature 
space. Since there is no need to specify a specific 
non-linear mapping, the corresponding mapping Φ(x) 
could have complex expressions or high dimensions 
(Boser, 1992). 

The basis of the kernel method is the Mercer 
condition, which gives the necessary and sufficient 
conditions for any function to be a kernel function. 

The Mercer condition is described as follows 
(Mercer, 1909): For any given continuous symmetric 
function k(x, y), which is an inner product of a feature 
space, the necessary and sufficient condition is that 
for any non-constant zero function Φ(x) where 
∫Φ(x)dx<∞,  

 
( , ) ( ) ( )d d 0.k Φ Φ >∫ x y x y x y               (2) 

 
The kernel learning method transforms the low- 

dimensional linear inseparable pattern classification 
problem into a high-dimensional linear separable 

problem, and at the same time provides an effective 
method of constructing the kernel function. In this 
way, the traditional linear classification method can 
be used to achieve non-linear data classification in the 
high-dimensional feature space of data. 

Some commonly used kernel functions include 
the linear kernel k(x, y)=(x·y), polynomial kernel  
k(x, y)=(1+x·y)d, Gaussian radial basis function (RBF) 
kernel k(x, y)=exp(−γ||x−y||2), and sigmoid kernel  
k(x, y)=tanh[−v(x·y)+c]. The performance of these 
kernels varies on different datasets. However, in 
many works on kernel learning (Cherkassky, 1997), it 
has been indicated that the Gaussian kernel can be 
used for general purpose classification and regression 
tasks, because it will output moderate results for most 
testing datasets. Therefore, in this study we use the 
Gaussian RBF kernel. 

2.2  SIB feature of the FH signal 

Compared with the traditional first- and second- 
order spectra, a high-order spectrum can extract more 
significant features of non-stationary, non-Gaussian, 
and non-linear signals. In this study, we extract the 
square integral bi-spectral features to characterize the 
fingerprints of the FH transmitters in the feature 
space.  

If x is a continuous random variable with a 
probability density of f(x), then the characteristic 
function of x is 

 

j j( )= e ( )e d .x xE f x xω ωΦ ω
∞

−∞
  =  ∫           (3) 

 
Taking the logarithm of Eq. (3), the cumulant 

generation function Ψ(ω) of the random variable x is 
as follows: 

[ ]( ) ln ( ) .Ψ ω Φ ω=                      (4) 
 

Then the kth-order cumulant ck of the random 
variable x is defined as the value of the kth-order de-
rivative of its cumulant generation function Ψ(ω) at 
the origin: 

0

d ( ) .
d

k

k kc
ω

Ψ ω
ω

=

=                       (5) 

 
Similarly, the characteristic function of the 

k-dimensional random variable x=[x1, x2, …, xk]T is 
 

( )T
1 1jj( )= e e ,k kx xE E ω ωΦ + +   =   

xωω         (6) 
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where ω=[ω1, ω2, …, ωk]T. Correspondingly, the cu-
mulant generation function of x is 
 

[ ] [ ] Tj
1( ) ln ( ) ln ( , , ) ln e .k EΨ Φ Φ ω ω  = = =  

ω xω ω  

 (7) 
Then, the kth-order cumulant of x is 

 

1 2

1 2

0

d ( , , , )( j)
d

( j) ( ).
k

k
k k

k k

k k

c
ω ω ω

Ψ ω ω ω
ω

Ψ ω
= = = =

= −

= −

x




      (8) 

 
Given that the random variable x obeys the Gaussian 
distribution with μ mean and σ2 variance, the charac-
teristic function of x is 

 

j 2 21( ) ( )e d exp .
2

xf x xωΦ ω µω σ ω
∞

−∞

 = = + 
 ∫   (9) 

 
Therefore, its cumulant generation function is 
 

[ ] 2 21( ) ln ( ) .
2

Ψ ω Φ ω µω σ ω= = +           (10) 
 

Developing Eq. (10) by Taylor series, we have 
 

2

1 2( ) ,
2! !

k

kc c c
k

ω ωΨ ω ω= + + + +         (11) 

 
where c1=μ, c2=σ2, ck=0, k>3. From Eq. (11) we can 
see that the high-order cumulant of the Gaussian 
process is always equal to zero; that is, the high-order 
cumulant is “insensitive” to the Gaussian signal. Thus, 
if we have the kth-order cumulant, the bi-spectra of 
noise suppression data x can be defined as 
 

( ) ( ) ( )1 1 2 2j
1 2 3 1 2 1 2, , e d d ,B c ω τ ω τω ω τ τ τ τ

+∞ +∞ − +

−∞ −∞
= ∫ ∫x x  

(12) 
 

where c3x(τ1, τ2) is the third-order cumulant of x. After 
obtaining the bi-spectrum, we use the square integral 
bi-spectra analysis method to process the bi-spectral 
estimation result. As shown in Fig. 2, the integral path 
is a square centered at the origin, and each point 
represents a bi-spectral estimate. Based on the 
bi-spectrum, a number of other integral bi-spectra 
have been proposed, i.e., radial integral bi-spectra 
(RIB) (Chandran and Elgar, 1993), axial integral 

bi-spectra (AIB) (Tugnait, 1994), and circular integral 
bi-spectra (CIB) (Liao and Bao, 1998).   

This integral path does not miss out or reuse any 
bi-spectrum value, which ensures the integrity of the 
target information. Furthermore, this calculation 
transforms the results from two dimensions into one, 
reducing the computational complexity (Wang et al., 
2013; Tang and Lei, 2017). Finally, datasets of fin-
gerprint characteristics are established according to 
the square integral bi-spectral features Bx(ω1, ω2).  

 
 
 
 
 
 
 
 
 
 
 

 
 

 
3  Proposed method 
 

In this section, the proposed kernel joint repre-
sentation method is elaborated. From this a kernel 
joint representation classifier is derived. Specifically, 
first the problem formulation is presented in a joint 
framework, in which the kernel trick is directly used 
to generalize the linear algorithm to its non-linear 
counterpart. After that, the collaborative relationship 
among the given samples is considered in this 
framework to obtain a robust recognition. Finally, a 
unified expression of the induced optimization prob-
lem is formulated. 

3.1  Problem formulation 

Suppose that there are C classes of subjects, and 
let 1 2[ , , , ] d n

C
×= ∈X X X X   denote a set of n 

training data with multiple samples per class, where 

,id n
i

×∈X   =∑
C

i
i

n n  is the dataset of the ith class, 

and d is the feature dimension of data points. Then the 
classification function of a new test data d∈y   can 
be formulated as follows: 

Fig. 2  Integral paths of integral bi-spectra 
0
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AIB
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ω1
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1
ˆ arg min=

θ
θ θ                          (13) 

s.t.     ,=y Xθ                              (14) 

2
ˆidentity( ) arg min || || ,i ii

= −y y X θ           (15) 
 

where θ̂  is the coding vector of y over training data X 
via L1-minimization, îθ  is the coding coefficient 
vector associated with class i, and the classification 
result can be obtained by Eq. (15). Note that by di-
rectly using sparse coding the problem of classifica-
tion and recognition can be represented compactly. 
The experimental results reported in Wright et al. 
(2009) showed that this method achieves an amazing 
performance. However, the above formulation of the 
classification function has the following two issues: 
(1) As mentioned before, the performance of the FH 
transmitter fingerprints is generally of an irregular 
non-stationary, non-linear, and non-Gaussian nature, 
and thus it is difficult to guarantee the effectiveness of 
SRC for the recognition of the FH transmitter fin-
gerprint feature in the original signal space; (2) As 
argued in Zhang et al. (2011), since the importance of 
sparsity is much emphasized in SRC, the effect of 
collaboration among the given samples is ignored.  

3.2  Proposed method 

To handle the first issue, a non-linear mapping 
function ( ) : ( )d D d DΦ ⋅ → <<   is introduced to 
map samples to their higher-dimensional feature 
space, i.e., X→Φ(X)=[Φ(X1), Φ(X2), …, Φ(XC)], 
y→Φ(y). Then the objective function can be written 
as 

2 2
2 2

ˆ arg min || ( ) ( ) || || || ,Φ Φ λ= − +
θ

θ y X θ θ      (16) 

 
where Φ(·) can be accessed by kernel function  
k(x, y)=<Φ(x), Φ(y)>=ΦT(x)Φ(y), and k(x, y)= 
exp(−γ||x−y||2) is the Gaussian kernel. After such a 
non-linear transformation, the test data in the high- 
dimensional feature space can be better grouped, and 
thus can be easily recognized. The kernel function has 
been successfully used in several classification algo-
rithms, such as SVM (Cherkassky and Mulier, 1998), 
KPCA (Wang et al, 2013), and KLDA (Yang, 2002).  

One fact in signal data is that test data of dif-
ferent classes share similarities. Some data from class 
j may be very helpful in respect of the testing data 
with label i. That is, when some testing data lack 

samples, it can be solved by taking the training data 
from all the other classes as the possible samples of 
each class. That is, it codes the testing data d∈y   
collaboratively over the dictionary of all training data 

1 2[ , , , ] .d n
C

×= ∈X X X X   This similarity can be 
called a collaborative relationship. To overcome the 
second weakness and make sufficient use of the col-
laborative relationship among the given test/ 
unlabeled data, the coding coefficient vector is for-
mulated into a recent manifold framework (Nie et al., 
2010; Yang Y et al., 2012; Song et al., 2017). Spe-
cifically, the proposed method represents all the 
test/unlabeled data 1 2[ , , , ] d m

m
×= ∈Y y y y   simul-

taneously over the training data and then introduces a 
coding prediction matrix T

1 2[ , , , ] m n
m

×= ∈Θ θ θ θ   
to satisfy the data collaboration. That is, Θ should be 
consistent with the collaborative relationship over all 
data. The final generalized cost function can be for-
mulated as 

 

2
, 2

,

1min || || ,
2 i j i j

i j
S −∑ θ θ                 (17) 

 
where ,{ } m m

i jS ×= ∈S   is the weight matrix and its 

element Wi,j=exp(−||yi−yj||2) reflects the collaborative 
relationship between two data yi and yj. When the data 
yi and yj are similar, Wi,j is large and the distance 
between θi and θj should be very small to minimize 
(17). Denote L as a Laplacian matrix computed by 
L=D−S, and D as a diagonal matrix whose diagonal 

elements are ,1
,m

ii i jj
D S

=
= ∑  the solution to problem 

(17) can be given by optimizing 
 

Tmin tr( ).
Θ

ΘLΘ                       (18) 
 

By leveraging the kernel trick, feature repre-
sentation, and classifier learning, the proposed 
method integrates Eq. (16) and expression (17) into a 
joint representation framework: 

 

2 2
2 2

1 1

2
, 2

,

min (|| ( ) ( ) || || ||

1 || || ),
2

m m

i i i
i i

i j i j
i j

S

Φ Φ λ

β

= =

− +

+ −

∑ ∑

∑

Θ
y X θ θ

θ θ
  (19) 

 
where β>0 is a regularization parameter and λ>0 is a 
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weight parameter. After a simple transformation, the 
definition of 2

2|| ||Θ  can be rewritten as 
 

2 T
2

1
|| || tr( ),

m

i
i=

=∑ θ ΘΘ                     (20) 

 
where tr(·) denotes the trace operator, and the objec-
tive function of problem (19) can be reformulated to 
 

T

T T

( ) min tr(( ( ) ( ) ) ( ( )

           ( ) )) tr( ) tr( ).

J Φ Φ Φ

Φ λ β

= −

− + +
Θ

Θ Y X Θ Y

X Θ Θ Θ ΘLΘ
  (21) 

 
By taking the derivative of Eq. (21) with respect 

to Θ and setting it to zero, we have 
 

 

T T

T T

( ) 2 ( ) ( ) 2 ( ) ( )

              2 2
( ( ) ( ) ) ( ) ( ).m

J Φ Φ Φ Φ

λ β

Φ Φ λ β Φ Φ

∂
= − +

∂
+ + =

⇒ + + =

Θ X Y X X
Θ

Θ ΘL
X X I Θ ΘL X Y

0    

(22) 
 

In this study, we denote Q=ΦT(X)Φ(X)+λIm, 
P=βL, and W=ΦT(X)Φ(Y), where Im is the m×m 
identity matrix. Clearly, Q is independent of Y such 
that it can be pre-calculated. This reduces the com-
putational complexity. Then we have the matrix 
equation 
 

+ =QΘ ΘP W                        (23) 
 

for Θ, where Θ and W are m×n real matrices, Q is an 
m×m real matrix, and P is an n×n real matrix. Ac-
cording to Jameson (1968), using the notation A×B to 
denote the Kronecker product (Ai,jB) (Bellman, 1997), 
in which each element of A is multiplied by B, the 
equation written out in full for the mn unknowns  
θ1,1, θ2,1, …, θ1,2 … in terms of w1,1, w2,1, …, w1,2 … 
becomes 
 

T[ ( )] .m n+ + =I Q P I wθ                  (24) 
 

If u is a characteristic vector of Q with characteristic 
value μ, and v is a characteristic vector of PT with 
characteristic value ν, then 
 

T T T( ) .µ ν+ = +Quv uv P uv             (25) 

Thus, μ+ν is a characteristic value of system (24). 
This can therefore be solved if and only if  
 

0,i jµ ν+ ≠                          (26) 
for all i, j. 

When Q and P can both be reduced to the diag-
onal form by similarity transformations: 

 

1

21

m

µ
µ

µ

−

 
 
 =
 
 
 



U QU                    (27) 

and  

1

21 ,

n

ν
ν

ν

−

 
 
 =
 
 
 



V PV                    (28) 

 
the solution to Eq. (23) is easily obtained as  
 

1,−= Θ UΘV                           (29) 
where  

, 1
, ,  .i j

i j
i j

w
θ

µ ν
−= =

+



 W U WV             (30) 

 
For each testing sample  ( 1,2, , ),d

j j m∈ =y   

the final recognition result can be formulated as 
 

2
2

ˆclass( ) arg min || ( ( ) ( ) ) || ,j i ji
Φ Φ= −y Y X Θ   (31) 

 
where ˆ

iΘ  denotes the coded matrix associated with 
class i, that is  
 

0

ˆ ˆ ,

0

i iΘ

 
 
 
 =
 
 
 
 





Θ                            (32) 

 
and ˆ( ( ) ( ) )i jΦ Φ−Y X Θ is the jth column vector of 

ˆ( ) ( ) .iΦ Φ−Y X Θ  The proposed method picks out the 
result outputting the least error.  
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The proposed kernel joint representation method 
is summarized in Algorithm 1. 
 
Algorithm 1  Kernel joint representation classifier 
Input: training data 1 2[ , , , ] ;d n

C
×= ∈X X X X   testing data 

1 2[ , , , ] ;d m
m

×= ∈Y y y y   parameters λ and β. 

Output: recognition result of 1 2[ , , , ] d m
m

×= ∈Y y y y   as 

Recognition (yj)= 2
2

ˆarg min || ( ( ) ( ) ) ||i ji
Φ Φ−Y X Θ . 

1: Calculate the collaborative relationship weight matrix S 
2: Calculate the diagonal matrix D and Laplacian matrix L 
3: Calculate Q=ΦT(X)Φ(X)+λI, P=βL, and W=ΦT(X)Φ(Y) 
4: Calculate U and V by SVD of matrices Q and P 
5: Calculate Θ  and W  by Eq. (30) 

6: Calculate the coding result of Θ̂  by Eq. (29) 

 
3.3  Analysis of implementation 

The original kernel joint representation classifier 
takes the collaborative relationship among the given 
samples into account, in which samples belonging to 
the same class can be better grouped. However, this 
method could face a computation problem when ob-
taining the collaborative relationship weight matrix S 
if there are a lot of samples in the dataset. The KJR 
classifier might not be practical for applications with 
many samples. To deal with this computational com-
plexity problem, the proposed method applies the 
recently proposed anchoring graph (Liu et al., 2010; 
Song et al., 2017) to approximate the weight matrix S 
and then obtain L.  

Also, it is worth pointing out that our method 
could be easily extended to noised signal recognition. 
Rewrite Eq. (14) as 

 
s.t.   ,= +Y XΘ E                       (33) 

 
where d m×∈E   is a noise matrix. Substituting 

( )[ , ] d m d× += ∈X X I


 and ( )m d m+ × 
= ∈ 
 

Θ
Θ

E


  for X 

and Θ, respectively, the flexible kernel joint repre-
sentation model can be formulated as  
 

T

T

( ) min tr(( ( ) ( ) ) ( ( ) ( ) ))

            tr( ) tr( ).T

J Φ Φ Φ Φ

λ β

= − −

+ +
Θ

Θ Y X Θ Y X Θ

Θ Θ ΘLΘ



   

   

 

(34) 

Once a solution 
*

* ( )
*

m d m+ × 
= ∈ 
  

Θ
Θ

E



  to Eq. (34) 

is computed, setting Y*=Y*−E* recovers clear data 
from a corrupted subject. To identify the testing data 
yj, we slightly modify the recognition result of yj as 

* 2
2

ˆarg min || ( ( ) ( ) ) ||Recogntion( ) .i jij Φ Φ= − −Y Ey X Θ

The experimental results of the proposed method 
against the noise are shown below. This study will not 
concentrate on this subject. 

 
 

4  Experimental results 
 

To assess the effectiveness of the proposed 
KJRC, we have performed extensive experiments on 
100 records of a real-world signal for each of five 
different FH transmitters and compared several  
state-of-the-art approaches: k-nearest neighbor clas-
sifier, support vector machine (SVM), sparse repre-
sentation classifier (SRC), and collaborative repre-
sentation classifier (CRC). A summary listing the 
particulars of these five transmitters can be found in 
Table 1. For comparison, we use the publicly availa-
ble codes under the best settings. The number of 
neighbors k in k-NN is chosen from {2, 3, …, 
min(Nc)−1}, where Nc is number of data from the cth 
FH transmitter. The kernel function of SVM is a 
Gaussian kernel with the kernel width chosen from 
{2−5, 2−4, …, 24, 25} by cross-validation. SRC uses 
constrained L1-minimization to compute the sparse 
coefficients with the regularization λ=1000 and error 
tolerance ε=0.05. CRC relaxes the sparsity constraint 
by L2-minimization, and the regularization λ is set to 
0.001. 

All experiments are implemented in Matlab 
2014a, and run on a PC with Intel Core i7, 2.93 GHz 
CPU, and 4 GB RAM. 

 
 
 
 
 
 
 
 
 
 

Table 1  Parameter details of the five different FH 
transmitters 

Group Transmitter Type Frequency 
(MHz) 

Hop speed 
(hop/s) 

1 Harris RF5800H-MP 1.6–60 20.0 
2 Q-MAC HF-90 2–30 5.0 
3 Grintek TR2400 1.6–30 10.0 
4 Thales SystEme3000 1.5–30 20.0 
5 Rohde & 

Schwarz 
MR3000H 1.5–108 8.5 
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4.1  Choice of the kernel function 

The kernel function maps the original low- 
dimensional non-linear sample to the high- 
dimensional feature space through kernel function 
transformation, constructing an optimal classification 
plane in the high-dimensional space and transforming 
the classification into a linear separable problem. Any 
function that satisfies the Mercer condition can be 
used as a kernel function.  

Determining the proper kernel function can re-
alize linear classification in the high-dimensional 
space after transformation without increasing the 
computational complexity. Different kernel functions 
generate different optimal classification planes. 
Therefore, the choice of the kernel function is one of 
the important factors that determine the recognition 
performance. Commonly used kernel functions in-
clude: 

1. Linear kernel k(x, y)=x·y 
The linear kernel function is suitable for  

classifying linearly separable samples in a low- 
dimensional data space. However, most samples are 
linearly inseparable from the low-dimensional space. 

2. Polynomial kernel k(x, y)=(1+x·y)d 

The parameter d represents the dimension of the 
kernel function. When the feature space dimension is 
high, the polynomial order is also relatively high, 
which is very computationally demanding. Also,  
the polynomial kernel function has poor local  
performance. 

3. Gaussian radial basis function (RBF) kernel 
k(x, y)=exp(−γ||x−y||2) 

The local performance of the RBF kernel func-
tion is good, and it has a good classification effect on 
sample data that are closer together.  

4. Sigmoid kernel k(x, y)=tanh[−v(x·y)+c] 
The implementation of the sigmoid kernel func-

tion needs to meet certain conditions. The sigmoid 
kernel function is equivalent to two neural networks 
and has good global convergence. 

The performance of these kernels varies on dif-
ferent datasets. However, in many works on kernel 
learning, it has been indicated that the Gaussian RBF 
kernel can be used for general-purpose classification 
and regression tasks, because it is not subject to 
sample size and feature dimensions and can output 
moderate results for most testing datasets. Therefore, 
in this study we use the Gaussian RBF kernel. 

To evaluate the effect of different kernel func-
tions on recognition results, we have compared the 
proposed method with different kernel functions. The 
training data are the same as those in Section 4.1. The 
experimental results are shown in Table 2. At the 
same time, we add a comparison of the performance 
before and after kernel tricks in our method. The 
experimental results are shown in Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
From Table 2, linear kernel and polynomial 

kernel have poor results. This is mainly due to the 
high non-linearity of the sample data and the high 
dimensionality of the features. The sigmoid kernel 
and Gaussian RBF kernel have similar recognition 
results, but the sigmoid kernel has a strict requirement 
in parameter validation. Compared with the sigmoid 
kernel, the Gaussian RBF kernel function is more 
suitable for non-linearity of sample mapping in the 
high-dimensional space, the parameters to be vali-
dated are fewer, and the complexity is low. Therefore, 
we choose Gaussian RBF as the classification kernel 

Table 2  The recognition rate of the proposed method with 
different kernel functions 

Number of 
training 
samples 

Recognition rate (%) 

Linear  Polynomial  Gaussian 
RBF  Sigmoid  

50 57.5 55.4 72.7 71.9 
100 61.0 62.9 77.1 77.5 
150 68.3 66.5 83.8 80.3 
200 71.9 73.1 86.5 86.7 
250 78.8 79.6 90.2 89.9 
300 85.6 86.8 92.3 92.2 
350 89.4 90.5 93.8 93.5 
400 91.3 92.2 96.4 95.8 
450 92.9 93.1 97.8 97.7 

 
Table 3  The recognition rate of our method before 
and after the kernel tricks 

Number of 
training samples 

Recognition rate (%) 
Before  After  

50 48.9 72.7 
100 55.7 77.1 
150 63.8 83.8 
200 76.4 86.5 
250 85.1 90.2 
300 88.7 92.3 
350 91.6 93.8 
400 93.7 96.4 
450 95.9 97.8 
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function. 
From Table 3, it is obvious that whether or not 

one conducts the kernel tricks has a great influence on 
the final recognition result, especially when the 
training data are relatively small. Therefore, a 
Gaussian kernel is used in our study to improve the 
recognition rate.  

4.2  Recognition results of some real-world FH 
transmitter signals 

Recognition efficiency is important in a real- 
world FH transmitter classification application. In 
this subsection, five kinds of FH transmitter signals 
collected by the external field are used as identifica-
tion targets, and each transmitter has a total of 100 
signals, of which 5%, 10%, 20%, 30%, 40%, 50%, 
60%, 70%, 80%, and 90% signals are used as training 
data, and the remaining signals are used as test data to 
verify the influence of the training data number on the 
individual identification of FH transmitters. The re-
sults are illustrated in Fig. 3. Note that all signals have 
been processed by an SIB feature extraction algo-
rithm as presented in Section 2.2. Namely, the final 
training data and testing data are SIB features of FH 
transmitters. From the results, we can learn that the 
performance is improved for all five classifiers as the 
amount of training data increases, and when the 
amount of training data becomes large enough, the 
recognition rates of different classifier vary slightly. 
Overall, the proposed method always shows superior 
recognition ability to other classifiers. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
To analyze the impact of SIB feature dimension 

on recognition, we have extracted the SIB features of 

FH transmitter signals with different dimensions, i.e., 
64, 128, 192, etc. Fig. 4 shows the identification 
performance of the proposed KJRC method for dif-
fering amounts of training data with different SIB 
feature dimensions. The experimental results verify 
that high dimensionality of the SIB feature is benefi-
cial for the proposed method, and when the dimension 
of the SIB feature becomes large enough, the identi-
fication performance of the proposed method varies 
hardly at all. For the five methods, with different 
training data and SIB feature dimensions, the identi-
fication results are shown in Figs. 5a and 5b, which 
show the comparison results with training data 
amount of 30% and 60% of the whole data, respec-
tively. In the two experiments, the proposed KJRC 
always shows the highest recognition rate. As illus-
trated in Algorithm 1, the proposed method requires 
mainly a kernel function to generalize a linear algo-
rithm to its non-linear counterpart in which the ac-
curacy of recognition can be ensured. The proposed 
method represents all the test samples simultaneously 
over the training data set. Also, the correlation of 
multiple samples and a single representation have 
been considered, and therefore the experimental re-
sults are more robust. 

4.3  Computational time of different methods 

To evaluate the proposed algorithm comprehen-
sively, we also test the efficiency of the k-NN, SVM, 
SRC, CRC methods and the proposed method. The 
training dataset and test samples are the same as those 
in Section 4.1. Fig. 6 shows the computational time 
for different methods. We can see that the computa-
tional time of SVM is much longer than that of other 
methods. This is mainly because SVM involves the 
computation of the inverse of some large matrices. 
This is computationally expensive. SRC is relatively 
slow, and CRC and the proposed method take negli-
gible computational time compared with SVM and 
SRC. The SRC method addresses the sparse repre-
sentation problem into L1-minimization optimization, 
which is very computationally demanding. However, 
CRC and our method are based on L2-minimization, 
and thus are more computationally efficient. k-NN 
takes the least computational time of all the methods 
because the recognition results are generated without 
the learning process, but its recognition rate is also the 
lowest. 

Fig. 3  The recognition rate with different methods 

50 100 150 200 250 300 350 400 450
40

50

60

70

80

90

100

Number of training samples 

R
ec

og
ni

tio
n 

ra
te

 (%
)

 

 

k-NN
SVM
SRC
CRC
KJRC



Sui et al. / Front Inform Technol Electron Eng   2019 20(8):1133-1146 1143 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Robustness of our method to free parameters 

In the above experiments, the fixed parameters 
in the proposed method are used to perform the 
recognition. In this test, we investigate the influence 
of parameters λ and β. The variations of recognition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
rates are shown in Fig. 7. We can see that the best 
recognition can be obtained by choosing suitable 
combinations of λ and β, and there is a wide range to 
choose these best combinations, showing the robust-
ness of our method to the two parameters. We use the 
parameter set of λ=2.0 and β=0.1 for all experiments 
by default. 

Fig. 4  The recognition rate of KJRC with different di-
mensions of the SIB feature and training data 

0 200 400 600 800 1000 1200
75

80

85

90

95

100

Dimension of SIB

R
ec

og
ni

tio
n 

ra
te

 (%
)

 

 

10%-training data
30%-training data
50%-training data
70%-training data
90%-training data

0 200 400 600 800 1000 1200
70

75

80

85

90

95

Dimension of SIB

R
ec

og
ni

tio
n 

ra
te

 (%
)

 

 

k-NN
SVM
CRC
SRC
KJRC

(a)

0 200 400 600 800 1000 1200
70

75

80

85

90

95

Dimension of SIB

R
ec

og
ni

tio
n 

ra
te

 (%
)

 

 

k-NN
SVM
CRC
SRC
KJRC

(b) 

Fig. 5  The recognition rate of different methods with 
different dimensions of the SIB feature: (a) 30% training 
data; (b) 60% training data 
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Fig. 6  The computational time of different methods:  
(a) comparison of five algorithms; (b) partial enlargement 
of k-NN, SRC, CRC, and KJRC; (c) partial enlargement 
of k-NN, CRC, and KJRC 
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5  Conclusions 
 

In this paper, a kernel joint representation clas-
sifier is proposed for frequency-hopping transmitter 
fingerprint feature recognition. It integrates kernel 
projection, feature representation, and classifier 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

learning into a joint framework. First, a kernel func-
tion is used to generalize the linear algorithm to its 
non-linear counterpart, in which features belonging to 
the same class can be better grouped. Then collabo-
ration among the given samples is considered, under 
the assumption that the given samples are generally 

Fig. 7  The recognition rate of different parameters: (a) λ=0.001; (b) λ=0.005; (c) λ=0.01; (d) λ=0.1; (e) λ=1.0; (f) λ=10.0 
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related to each other. Finally, we integrate kernel 
projection, feature representation, and classifier 
learning into a joint framework. At the same time a 
unified expression is developed to solve the optimi-
zation problem. Experimental results on five real- 
world FH transmitters validate the significant per-
formance of the proposed kernel joint representation 
classifier compared to the state-of-the-art classifiers 
in terms of accuracy and efficiency. 
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