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Abstract: With the development of cloud computing technology, data can be outsourced to the cloud and conve-
niently shared among users. However, in many circumstances, users may have concerns about the reliability and
integrity of their data. It is crucial to provide data sharing services that satisfy these security requirements. We
introduce a reliable and secure data sharing scheme, using the threshold secret sharing technique and the Chaum-
Pedersen zero-knowledge proof. The proposed scheme is not only effective and flexible, but also able to achieve the
semantic security property. Moreover, our scheme is capable of ensuring accountability of users’ decryption keys
as well as cheater identification if some users behave dishonestly. The efficiency analysis shows that the proposed
scheme has a better performance in terms of computational cost, compared with the related work. It is particularly
suitable for application to protect users’ medical insurance data over the cloud.
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1 Introduction

With the development of cloud computing tech-
nology, the cloud has demonstrated superiority in
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areas of computation and storage. Although there
is much convenience provided by the cloud, secu-
rity issues in the cloud have recently attracted more
and more attention from both academia and indus-
try. Considering that the cloud service can be pub-
licly accessed by all users, the data owner will lose
physical control of the data outsourced in the cloud.
However, most existing research focuses on only how
to guarantee the confidentiality of data, while little
research considers incorporating accountability and
auditing mechanisms into secure cloud storage. One
approach uses the encryption method, in which the
data stored in the cloud were encrypted using cryp-
tographic primitives. Alhat et al. (2014) and Liang
et al. (2014) discussed the security modes for the
desirable protocols. Another approach focuses on
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encryption keys. Kale and Vaidya (2016) and Shen
et al. (2017) provided an efficient and secure method
for key management. The former approach employs
the key aggregate method from the system layer,
and the latter one is based on the key agreement
protocols. Moreover, Yang et al. (2015) combined
cryptography with statistical analysis so that multi-
ple paradigms of the data can be provided. Li et al.
(2014) and Mohammed et al. (2014) used differen-
tial privacy to protect data security in the cloud.
This method adds some noise into the data. The
negative aspect is that although the overall data are
still useful, the individual data are no longer accu-
rate. Therefore, the applications of this approach
have been restricted. It should be used only in cir-
cumstances where the accuracy of individual data
is not required. Apart from the above works, se-
curity analysis is crucial for secure data storage in
the cloud. Since the Rivest-Shamir-Adleman (RSA)
algorithm has been widely used in the cloud to pro-
tect data, Yang et al. (2017) evaluated the security
of data storage using RSA and introduced a paral-
lel block algorithm using strip, cyclic, and improved
strip to enhance the performance in the general num-
ber field sieve algorithm. In addition, to handle a
complex large amount of data efficiently, an orthog-
onal tensor singular value method for higher-order
data decomposition has been analyzed in cyber se-
curity (Feng et al., 2018).

To design provably secure and scalable proto-
cols for data sharing in the cloud, fine-grained and
flexible cryptography tools are required. Yu et al.
(2010) first presented a data sharing method in
the cloud by key-policy attribute-based encryption
(ABE). To support multiple owners, Liu et al. (2013)
used group signature and broadcast encryption to
design an anonymous data sharing scheme. Liang
et al. (2014) and Liu et al. (2014) independently pre-
sented a revocable data sharing scheme by employing
revocable key-policy ABE schemes with the proxy
re-encryption technique. However, the scheme intro-
duced in Liu et al. (2014) has high computational
overhead as it is designed based on a bilinear group.
There exists a security flaw because the root secret
key can be learnt by the cloud. Furthermore, it was
pointed out that when the attributes as well as the re-
quired components are handled by ABE, the design is
inefficient to be used in real-world applications (Liu
et al., 2014). Xu et al. (2018) combined the complete

subtree method and time tag to frequently update
user membership for large user groups. Moreover,
a secure, private, and scalable data sharing proto-
col based on ciphertext-policy style was presented in
Dong et al. (2014).

Despite its great convenience and benefits, data
storage in the cloud faces many new security chal-
lenges. For example, some special requirements in
practical applications have been overlooked. To il-
lustrate this issue, we consider the following sce-
nario (Fig. 1). As a special field, medical treatment
needs to access patients’ personal health informa-
tion. With a wide deployment of medical treat-
ment through the Internet, the problem of patient
privacy is particularly prominent in saving medi-
cal costs, improving patient experience, and opti-
mizing resource allocation. Meanwhile, to realize
information exchange between social insurance cen-
ters and designated medical institutions, as well as
the exchange of clinical test results, electronic med-
ical records, financial information, and other data
in different information systems between medical in-
stitutions, it is necessary to ensure that these ex-
changes are carried out without exposing patients’
private personal information. If the patients’ elec-
tronic medical records, health records, consultation
information, image data, and financial information
are improperly contacted, stored, intercepted, and
tampered with in the process of information trans-
mission, it will cause serious information security
problems. In particular, sometimes the disclosure
of health information or financial information of im-
portant persons not only violates individual privacy
and enterprises’ interests, but also has a major im-
pact on public confidence, or even influences inter-
national situations. Therefore, how to enhance the
ability to protect the privacy and security of pa-
tients’ health data has become an important issue
of medical care through the Internet. In the scenario
of cloud-based medical care, a patient (data owner)
stores the above-mentioned important personal in-
formation, such as electronic medical records, health
records, consultation information, and financial in-
formation, in ciphertext in the cloud, separates the
access rights of the file into multiple copies, and as-
signs the rights to different types of groups, such as
family group, friend group, medical staff group, and
financial information management group, where each
group is composed of multiple users. When a patient
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Fig. 1 Framework for privacy-preserving data sharing service in the cloud

(data owner) encounters an emergency or accidental
death such that the evidence of the information men-
tioned above needs to be extracted, the information
can be recovered by a group of entities even if the pa-
tient cannot provide it. In this process, to maintain
the fairness of information extraction, it is crucial
to allow the access rights to be invalidate for a few
users, prevent deceivers from violating personal in-
terests, and prevent dishonest users from providing
false rights.

In Fig. 1, since the medical insurance informa-
tion is sensitive, to protect patients’ private personal
data, the data owner authorizes who is allowed to
access the data before they are outsourced to the
cloud. Therefore, those users with the access right
are carefully selected and authorized by the owner.
Specifically, for the benifit of the valid users and
the stability of the whole system, these users are
not easily or frequently revoked. To guarantee fair-
ness in data extraction, the master secret is divided
into several parts and assigned to several user groups
so that the decryption can be supervised under a
scientific control mechanism. Although ABE is a
fine-grained access control mechanism, the autho-
rized users are determined by their attributes. How-
ever, the management of these users using the at-
tributes will become intricate and complicated. To
simplify the management of users, we choose to use
the secret sharing technique. To ensure that both

the data owner and the users perform correctly ac-
cording to the protocol and to achieve supervision
between these users, we apply symmetric encryption
and verifiable secret sharing. Although our method
is less efficient than the ones that use differential pri-
vacy, the individual data in our proposed scheme re-
main accurate, so the data can be analyzed directly.
Hence, it is more versatile and it has potential to
find more applications. When decrypting the cipher-
text in the above scenario, the users should reveal
their partial decryption keys. So, the correctness of
the partial decryption keys is crucial for the decryp-
tion process. In other words, the identification of
fake keys is very important for decryption. In exist-
ing works, the Reed-Solomon (RS) coding technique
(Obana and Tsuchida, 2014; Hoshino and Obana,
2016) is often used to identify dishonest users. How-
ever, RS decoding needs to assume that the number
of malicious participants is smaller than one-third of
all participants, and this method does not need to
rely on computational assumptions. Instead, we use
the non-interactive Chaum-Pedersen zero-knowledge
proof to identify the dishonest users who have pre-
sented false keys in the reconstruction phase. The
advantage of our method is that it can identify every
malicious participant.

In this study, we propose a flexible and semantic
security data sharing scheme for the cloud environ-
ment. This scheme provides the following benefits
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with respect to both security and efficiency: (1) The
cloud server can assist record search using data file
tags, but it cannot learn any meaningful information
about owner’s data or owner’s personal sensitive in-
formation. (2) The users who can access the data file
are authorized by the data owner, and they can verify
the decryption keys sent by the owner. Even if some
partial decryption keys from the authorized users
are incorrect, the system can still function properly
without affecting the reliability of data. (3) Dishon-
est users who present fake decryption keys can be
identified in advance, without leaking the decryp-
tion keys for the honest users. Hence, the ciphertext
can be safely and correctly decrypted under the su-
pervision of these groups of users.

2 Preliminaries

2.1 Secret-sharing schemes

Secret-sharing schemes (SSSs) (Shamir, 1979)
divide a secret into multiple parts. Each part is called
a secret share and the secret can be recovered when
accumulating the required number of these secret
shares. Linear (t, n) secret sharing is an important
primitive in threshold cryptography (Shamir, 1979).

To share the secret s ∈ Zp, the dealer D ran-
domly selects a polynomial f (x) = a0 + a1x +

· · · + at−1x
t−1 over Zp of degree at most t − 1,

where a0 = s. Then D sends the shares yi = f (xi)

(i = 1, 2, . . . , n) to each shareholder through private
channels, where x is the public value associated with
the shareholders.

To reconstruct the secret, any subset A of these
shareholders can reconstruct the secret using polyno-
mial interpolation, if |A| ≥ t, s =

∑

i∈A
yi
∏

j∈A
j �=i

xj

xj−xi
.

For simplicity, in the following content, we denote

Li (x) =
k∏

j=1
j �=i

x−xj

xi−xj
.

2.2 Threshold encryption cryptosystem

Threshold secret sharing is used to design the
encryption scheme in our protocol. A threshold en-
cryption cryptosystem consists of the following five
algorithms:

1. The key generation algorithm (KeyGen)
takes as input a security parameter κ, the number

of the decryption parties n (n ≥ 1), the threshold
number t (1 ≤ t ≤ n), and a random string x. It
outputs a public key pk, a set of secret key shares
{y1, y2, . . . , yn}, and a number of verification keys
{v1, v2, . . . , vn}.

2. The encryption algorithm (Enc) takes as in-
put the public key pk, a random string x, and a
plaintext M. It outputs a ciphertext CT.

3. The partial decryption algorithm (PartDec)
takes as input the public key pk, a ciphertext CT, an
index i (1 ≤ i ≤ n), and the corresponding secret key
share yi. It outputs a decryption share ci and a proof
pi that proves the validity of partial decryption.

4. The verification algorithm (Veri) takes as in-
put a ciphertext CT, an index i (1 ≤ i ≤ n), the ver-
ification keys {v1, v2, . . . , vn}, the decryption share
ci, and its proof pi. It outputs “1” if the proof is
valid, and otherwise stops.

5. The combing algorithm (Comb) takes as in-
put the public key pk and any subset of t valid de-
cryption shares. It outputs the plaintext M.

2.3 Bloom filter

To protect the owner’s personal information,
we use the Bloom filter to hide the information,
including home address, email address, job, and
age. The Bloom filter is a kind of random data
storage structure. It consists of multiple func-
tions BF(x) = (bh1 (x) , bh2(x), . . . , bhk (x)). The
Bloom filter is used to hide the value of the at-
tribute and the partial information of the attribute
(Lai et al., 2012). In the proposed scheme, the
Bloom filter is used to anonymously store the
data file and the data file is performed as the
verification for the searched tags by verifying the
output (bh1 (x) , bh2(x), . . . , bhk (x)) to match the
input x. Denote the owner’s data file as Valueowner =

{HomeAddowner,EmailAddowner, jobowner, ageowner},
and Tagowner = Hash (Valueowner), where the
Hash function is a public parameter. The
owner’s data file after being processed by the
Bloom filter is BFowner = BF (Tagowner) =

(bh1 (Tagowner) , bh2(Tagowner), . . . , bhk (Tagowner)).

The Bloom filter has the very attractive char-
acteristic of concise space and convenient query
(Bloom, 1970) .
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2.4 Proof of equality of discrete logarithms

The Chaum-Pedersen proof protocol can be
used to prove the equality of discrete logarithms
(Chaum and Pedersen, 1992). Let p and q be two
large primes such that q |(p− 1) . We denote Gq as
the subgroup of Z∗

p with order q. Let g and h be
two generators of Gq. We can prove that the values
y ≡ gx (mod p) and t ≡ hx (mod p) have the same
exponent value x without revealing it. The proof
works as follows:

1. The prover P randomly chooses a value r ∈
Zq, and then sends U ≡ gr (mod p) and V ≡ hr

(mod p) to the verifier V .
2. V sends a random challenge e ∈ Zq back to

P .
3. P computes z = r+ xe mod p and sends z to

V .
4. V accepts the proof if gz ≡ Uye (mod p) and

hz ≡ V te (mod p); otherwise, V rejects the proof.
The correctness of the above protocol is obvious. The
above protocol can be made non-interactive using
Fiat-Shamir heuristics.

Special soundness holds because for two ac-
cepting conversations with the same first move
(U, V, e1, z1) and (U, V, e2, z2), where e1 �= e2, the
witness x that satisfies y ≡ gx (mod p) and t ≡ hx

(mod p) can be extracted as x ≡ (z1 − z2)/(e1 − e2)

mod p. Honest verifier zero-knowledge holds because
for any random values e ∈ Zq and z ∈ Zq, the fabri-
cated tuple (gzy−e, hzt−e, e, z) will be an acceptable
conversation, and its distribution is perfectly indis-
tinguishable from a real proof.

3 System model and security
definitions

3.1 System model

The system model involves four main partici-
pants: data owner, data consumers, cloud server,
and public key generator (PKG). PKG builds and
maintains the public key infrastructure. The data
owner (the patient) generates his/her ciphertext and
stores it in the cloud. He/She also generates the
shares for the decryption key and secretly delivers
the share to every authorized consumer. When the
consumer receives the decryption key share, he/she
first verifies the validity of his/her share and then
keeps it securely. When the owner’s data file is

found by the arbitration institution, the consumers
and the trusted third party ask for the ciphertext of
data from the cloud by providing Tagowner. After the
verification of Tagowner by a Bloom filter, the cloud
sends back the ciphertext to these consumers and the
trusted arbitration institution. Before these users
cooperatively decrypt the ciphertext, the trusted ar-
bitration institution first checks the correctness of
the decryption key share using the Chaum-Pedersen
protocol to identify every malicious user who has
provided a fake key share. Finally, the plaintext of
the data is obtained through the cooperation of these
honest cloud consumers. This framework for secure
flexible reliable data sharing for the cloud on a med-
ical scenario is shown in Fig. 1.

3.2 Security definitions

To provide a rigorous security analysis for our
proposed protocol, we use the following security
definitions:
Definition 1 (Correctness) If there exist t honest
decryption parties, a threshold encryption cryptosys-
tem can decrypt a ciphertext and output the correct
plaintext, even in the presence of some adversary
who has full control of (t − 1) corrupt decryption
parties.
Definition 2 (Threshold semantic security) The
definition was first defined by Fouque et al. (2000),
and it is an extension of the semantic security def-
inition for non-threshold encryption. Consider the
following series games:

G1: AdversaryA chooses (t−1) decryption par-
ties to corrupt. A can force them to surrender their
private information, and A has full control of their
behaviors for the rest of the game.

G2: The trusted dealer D runs the KeyGen al-
gorithm to generate the keys. The public key pk
and all verification keys {v1, v2, . . . , vn} are broad-
casted, and each decryption party receives his/her se-
cret share. Adversary A learns the secret key shares
held by the corrupted parties.

G3: Adversary A has access to a partial decryp-
tion oracle. For example, A can encrypt a message
m and input its ciphertext CT into the oracle. Then
the oracle returns n decryption shares of CT, along
with proofs of their validity. A can use this oracle as
many times as he/she likes.

G4: Adversary A issues two messages m0 and
m1 in the message space, and sends them to an
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encryption oracle. This oracle randomly selects a
bit b, encrypts the message mb, and returns its ci-
phertext CT to A.

G5: Again, adversary A uses the partial de-
cryption oracle as many times as he/she likes. The
requirement is that A cannot use CT to query the
partial decryption oracle.

G6: Adversary A outputs a bit b′.
The adversary’s advantage is defined to be the

absolute difference between 1/2 and the probability
that b = b′. A threshold encryption is said to be
threshold semantically secure if for any probabilistic
polynomial time (PPT) adversary A, his/her advan-
tage of running the game is negligible.

4 The proposed scheme

We propose an effective, reliable, and integrated
data sharing scheme about Internet medical care
to ensure semantic security and effective usage of
owner’s data on cloud storage. The patient’s sensi-
tive information (such as name, age, job, and home
address, unrelated to the important data) is hidden
by a Bloom filter and the important data files (such
as electronic medical records, health records, con-
sultation information, and financial information) are
encrypted and stored in the cloud.

To achieve the secret information decrypted un-
der mutual supervision between groups, decryption
key sharing is used to distribute the right in cloud de-
cryption users. In detail, these authorized users are
divided into several groups, such as family group,
friend group, medical staff group, and financial in-
formation management group, and they are enrolled
with the protocol by their identity.

Each data file is determined by the set of these
group secrets, and for every group Uk there has been
appointed one secret decryption key sk, and then the
data file can be successfully decrypted when these
group secrets are correctly recovered. Each user is
allocated a decryption key share SKj|k of the group
secret key sk by employing Shamir’s threshold secret
sharing.

4.1 System initialization

1. The public key generator chooses a group G1

of prime order p, an independent generator g of G1,
and a collision-resistant hash function H .

2. Then it takes a grouping function ϕ (·) and

divides these users U into N different groups, such
as doctors and nurses, relatives and friends, and le-
gal officers, by user’s identity, which are denoted as
U1, U2, . . . , UN satisfying U = U1

⋃
U2

⋃
. . .
⋃
UN .

Here, U denotes the set of users who want to share
an owner’s data file.

Suppose the user ID is partitioned into Uϕ(ID),
where ϕ (·) is defined as ϕ (ID) : ID �→ {1, 2, . . . , N};
i.e., user ID is assigned to one of group 1 to N . If
ϕ (ID) = k, where k ∈ {1, 2, . . . , N}, then user group
Uϕ(ID) is also denoted as Uk for short, namely the
group ID.

3. Uk is a partitioned group and the number
of the users in group Uk is nk. The data file owner
selects a random sk and random polynomial fk (x) =
ak,0 + ak,1x+ . . .+ atk−1,1x

tk−1 over Zp of degree at
most tk − 1, where ak,0 = sk for every group Uk for
k = 1, 2, . . . , N .

4.2 Key generation

User IDi is a user of the universal user set, which
is partitioned into group Uk by grouping function
ϕ (·), where |Uk| = nk. To sign the user IDi in group
Uk, if user IDi is the jth in group Uk, then it is
denoted as IDi→j|Uk

, IDj|k for short.

The data owner computes yj|k = fk
(
xj|k

)
us-

ing group polynomial fk (x) for each user IDj|k
in group Uk, where j = 1, 2, . . . , nk. Here,
{
x1|k , x2|k, . . . , xnk|k

}
are public values associ-

ated with
{
IDj|k

}
, where j = 1, 2, . . . , nk,

k = 1, 2, . . . , N .

The data owner first computes Ai|k = gak,i ,
i = 0, 1, . . . , tk − 1. We denote the verification
key v = g. Now the other verification keys are
calculated as vj|k = vyj|k , j = 1, 2, . . . , nk. The
values

(
g, gsk , Ai|k , v, vj|k

)
are public, where i =

1, 2, . . . , tk − 1, j = 1, 2, . . . , nk, and k = 1, 2, . . . , N .

Then, the data owner sends the secret key shares
{
SKj|k

}
=
{
yj|k

}
to the corresponding decryp-

tion parties
{
IDj|k

}
by a private channel, where

j = 1, 2, . . . , nk.

After user IDj|k receives the secret share SKj|k ,
he/she first verifies whether his/her received share

key SKj|k is valid as gyj|k =
t−1∏

j=0

Aj
(xi|k )

j

. After

secret share SKj|k is verified, the user takes SKj|k as
his/her secret share.
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4.3 Data file generation

M is the data to be encrypted, the data owner
takes a random rk ∈ Zp and random exponents
{sk}, and the encrypted data file is published as
CP = {G1, G2, . . . , Gk, . . . , GN , C0}, where Gk =

grk , C0 = M · g
N∑

k=1

rk·sk
, k = 1, 2, . . . , N .

If we denote the owner’s information as
(Valueowner), then the tag of the file is Tagowner =

H (Valueowner). Then the tag of retrieval and match-
ing can be constructed as BFowner = BF (Tagowner)

by a Bloom filter.
The owner uploads his/her data file CP anony-

mously to the cloud server. Each stored data file is
a format as ID||Tagowner||CP.

4.4 Partial decryption algorithm

Ak is an authority set of group Uk and
{Ak |Ak ⊆ Uk , k ∈ {1, 2, . . . , N}} are the union of
the N authority sets for N groups.

These authorized users of the N sets Ak com-
pute Tagowner = H (Valueowner) of the data file that
they want to decrypt and then send it to the cloud
server.

The cloud server receives Tagowner and verifies
BFowner = BF (Tagowner), where Tagowner is pro-
vided by these users. If it is satisfied, the ciphertext
CT is sent back to the users.

Given the ciphertext CT, each decryption user
partially decrypts it. The decryption user IDj|k uses
his/her secret share key yj|k to compute the partial
decryption share Cj|k = G

yj|k
k . He/She also gener-

ates a non-interactive proof pj|k to prove that Cj|k
and vj|k have been raised to the same power yj|k .

4.5 Decryption of data file

Authorized users Ak receive the correspond-
ing data file G1, G2, . . . , GN , C0, which are sent
by the cloud server. All the authority users
from those authority sets Ak check the equation
e = H

(
Gk, v, Cj|k , vj|k , Gz

k · C−e
j|k , v

z · v−e
j|k
)

using
the verification keys {v1|k , v2|k, . . . , vnk|k }. If the
proof pj|k is valid, the partial decryption share
Cj|k = G

yj|k
k is a correct decryption share of Gk.

Then if there is no dishonest shareholders in
all of the authority users, these authority users re-
cover the data M using the partial decryption share

Cj|k = G
yj|k
k as

M =
C0

N∏

k=1

(
tk−1∏

j=1

(
Cj|k

)Lj|k

) =
C0

N∏

k=1

(
grk·yj|k ·Lj|k

)

=
C0

N∏

k=1

(grk·sk)
=

C0

g

N∑

k=1

rk·sk
. (1)

In addition, the decryption can be outsourced
to the cloud. In this situation, these autho-
rized users first generate the transformation key
TKCloudk in groups for the cloud before they out-
source the decryption and then obtain group de-
cryption GKk (k = 1, 2, . . . , N). To generate
TKCloudk and GKk, the authorized user group Ak

chooses a random value zk ∈ Zp and computes the
transformation key TKCloudk as {TKCloudk} =
{
SK1|k , SK2|k, . . . , SKnk|k

}
, and outputs the group

decryption key GKk = zk, where k = 1, 2, . . . , N .
We allow these authorized users themselves to gen-
erate the transformation key in the group. This is
more flexible. Then they send the transformation
key TKCloudk to the cloud server for outsourced de-
cryption. The cloud computes the following equation
using TKCloudk:

C̃0 =

tk−1∏

j=1

(
TKCloudj|k

)Lj|k

=

tk−1∏

j=1

(grk·yj|k )
1
zk

·Lj|k

= g
rk·sk· 1

zk ,

(2)

and then sends C̃0 to the user groups Ak. After re-
ceiving C̃0, all the user groups Ak’s compute message

M as C0/C̃0 = C0/
N∏

k=1

(
g
rk·sk· 1

zk

)zk
= M.

5 Security analysis

5.1 Provable security

In the proposed scheme, we use symmetric en-
cryption to hide the message data and use secret
sharing based on the threshold ElGamal scheme to
share the session key within users in every group.
When the security of threshold secret sharing re-
duces to the security of the ElGamal scheme, the
modification does not disclose any information from
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the ciphertext, and the proposed scheme is semanti-
cally secure. The detailed proof of threshold secret
sharing is given as follows:

1. Correctness
We first show that the above protocol achieves

the correctness property. If there exist tk honest de-
cryption parties for each group Uk, the correct plain-
text will be recovered even in the presence of (tk −1)

corrupt decryption parties. If these tk decryption
users are honest, there will exist at least tk valid de-
cryption shares. Then the blind factor of plaintext
M is recovered for

N∏

k=1

⎛

⎝
tk−1∏

j=1

(
Cj|k

)Lj|k

⎞

⎠

=

N∏

k=1

⎛

⎝
tk−1∏

j=1

(
G

yj|k
k

)Lj|k

⎞

⎠=

N∏

k=1

⎛

⎝
tk−1∏

j=1

(grk·yj|k )
Lj|k

⎞

⎠

=

N∏

k=1

⎛

⎝g

tk−1∑

j−1

rk·yj|k ·Lj|k

⎞

⎠=

N∏

k=1

(grk·sk) = g

N∑

k=1

rk·sk
.

(3)
Hence, the combing algorithm will return the

correct plaintext M.
2. Threshold semantic security
We use reduction to show that the proposed pro-

tocol achieves threshold semantic security. Assume
that there exists a PPT adversary A who can break
the threshold semantic security of the proposed pro-
tocol with some non-negligible probability. Then we
prove that using A as a subroutine, an attacker B can
be constructed in polynomial time that breaks the se-
mantic security of the original ElGamal encryption.
To invoke A as a subroutine, attacker B must sim-
ulate all information that A views in the threshold
protocol. A should not distinguish between a simu-
lated conversation and a real run of the protocol.

In the protocol the secret key to encrypt the
data M is divided into the sum of some shares and
each share is associated to every group. This division
is information security. Then we need to prove only
the semantic security for every group Uk. Without
loss of generality, we denote Uk as U in the following
proof if there is no ambiguity.
Theorem 1 In the random oracle model, the
proposed scheme satisfies the semantical security of
the threshold scheme against static adversaries under
the condition that the original ElGamal scheme is
semantically secure.

To break semantic security of the original
ElGamal encryption scheme, attacker B runs a game
with the challenger. First, B is given the public key
(g, gs), and g is a generator of group G1 where s ∈ G1

is random. Then B chooses two messages m0 and m1

from the plaintext space, and sends them to the chal-
lenger who then randomly chooses a bit b and returns
the encryption of mb to B. B guesses which message
has been encrypted. Now, we show in the following
that to invoke A as a subroutine, B can simulate A’s
view in a series of games G1–G6.

G1: AdversaryA chooses (t−1) decryption par-
ties for the group to corrupt. Without loss of gener-
ality, we denote these parties as P1, P2, . . . , Pt−1.

G2: B randomly selects (t−1) values y1, y2, . . . ,
yt−1, and B denotes v as g. For j = 1, 2, . . . , t − 1,
B computes vj = vyj . The other verification keys vj
(j = t, t+ 1, . . . , n) can be calculated as follows:

We define a (t − 1)-degree polynomial f (x) =

s+ a1x+ . . .+ at−1x
t−1, and then have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = s+ a1x1 + a2x
2
1 + . . .+ at−1x

t−1
1 ,

y2 = s+ a1x2 + a2x
2
2 + . . .+ at−1x

t−1
2 ,

...
yt−1=s+ a1xt−1+a2x

2
t−1+. . .+at−1x

t−1
t−1.

(4)

We represent Eq. (4) as

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s

y1

...

yt−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

1 x1 · · · xt−1
1

...
...

...

1 xt−1 · · · xt−1
t−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s

a1

...

at−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5)

From Eq. (5), it can be seen that matrix

⎡

⎢
⎢
⎣

x1 · · · xt−1
1

...
...

xt−1 · · · xt−1
t−1

⎤

⎥
⎥
⎦ (6)

is a Vandermonde matrix, and then

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

1 x1 · · · xt−1
1

...
...

...

1 xt−1 · · · xt−1
t−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(7)

has an inverse matrix. The inverse matrix is denoted
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as ⎡

⎢
⎢
⎢
⎢
⎢
⎣

b11 · · · b1t

b21 · · · b2t

...
...

bt1 · · · btt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (8)

We have
⎡

⎢
⎢
⎢
⎢
⎢
⎣

b11 · · · b1t

b21 · · · b2t

...
...

bt1 · · · btt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s

y1

...

yt−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s

a1

...

at−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (9)

Then from Eq. (9) we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a1 = b21 · s+ b22 · y1 + . . .+ b2t · yt−1,

a2 = b31 · s+ b32 · y1 + . . .+ b3t · yt−1,

...

at−1 = bt1 · s+ bt2 · y1 + . . .+ btt · yt−1,

(10)

and from Eq. (10), we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

va1 = vb21·svb22·y1 . . . vb2t·yt−1 ,

va2 = vb31·svb32·y1 . . . vb3t·yt−1 ,

...

vat−1 = vbt1·svbt2·y1 . . . vbtt·yt−1 .

(11)

Therefore, from Eq. (11) for j = t, t+ 1, . . . , n,
we can compute

vj=vyj =vf(xj)=vsva1·xjva2·x2
j . . . vat−1·xt−1

j . (12)

Finally, attacker B sends the polynomial
f (x) = s + a1x + a2x

2 + . . . + at−1x
t−1,

the public key (g, y = gs), (t − 1) secret key
shares {y1, y2, . . . , yt−1}, and the verification keys
{v1, v2 . . . , vn} to adversary A.

G3: B simulates the partial decryption oracle
and answers A’s decryption queries. If A encrypts
a message M and asks B to decrypt its cipher-
text CT = (G = gr, C0 = M· gr·s), B will compute
Cj = Gyj for j = 1, 2, . . . , t − 1, Gs = C0/M, and
the other decryption shares Cj can be calculated
as Cj = Gyj = Gf(xj) = GsGa1·xj . . . Gat−1·xt−1

j ,
j = t, t+ 1, . . . , n. Next, B needs to generate proofs
for these decryption shares. If B knows yj , the proof
pi is generated in the standard way as described in
Section 4.5. Moreover, in the random oracle model,

attacker B has full control of the hash function,
and B can answer a hash query using any value of
his/her choice, as long as he/she returns a consis-
tent output if the same input is queried multiple
times. Hence, B can fabricate the other proofs where
he/she has no knowledge of their secret shares. This
is done by defining the value of the random oracle
at H

(
G, v, Cj , vj , G

z · C−e
j , vz · v−e

j

)
to be e. Now,

B returns n decryption shares (C1, C2, . . . , Cn) along
with their proofs (p1, p2, . . . , pn) to A.

G4: In this step, B first waits for A to select
two messages m0 and m1 from the plaintext space.
After receiving these two values, B forwards them to
the challenger. The challenger then randomly selects
a bit b, encrypts mb using the original ElGamal en-
cryption scheme, and returns its ciphertext CT to A.
Now, B sends CT to A.

G5: This step is similar to step G3. The addi-
tional requirement is that A is not allowed to use CT
to query the partial decryption oracle.

G6: A outputs a bit b′, and B forwards b′ to
the challenger. It is clear that the above simulation
can be carried out in polynomial time. The remain-
ing task is to prove that a simulated conversation
is indistinguishable from a real run of the proto-
col. Because no view has been simulated in steps
G1 and G6, and step G5 just repeats G3, we need
only to show that adversary A cannot distinguish
between the simulated view and the real view from
steps G2–G4.

Indistinguishability in G2: In the step, the same
g, gs, and f (x) are used. These values are randomly
chosen. Hence, the secret polynomial f (x) and pub-
lic keys g and gs exactly follow the same distribution
as in the real protocol. In the simulation, the secret
key shares yj are randomly distributed in G1. Then
these cannot be distinguished from real ones. The
simulated verification keys {v1, v2 . . . , vn} are ran-
domly distributed in the cyclic group G1, and they
also cannot be distinguished from real ones. Hence,
the simulated view in this step is statistically indis-
tinguishable from a real run of the protocol.

Indistinguishability in G3: In this step, the
simulated decryption shares (C1, C2, . . . , Cn) follow
the same distribution as those in the real protocol.
Both are randomly distributed in the cyclic group
G1. Moreover, the simulated proofs (p1, p2, . . . , pn)

follow the same distribution as those in the real
protocol. Hence, the simulated view in this step is
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indistinguishable.
Indistinguishability in G4: In this step, the ci-

phertext CT is randomly distributed in group G1.
Hence, they are indistinguishable.

5.2 Security analysis

In the proposed scheme, we use encryption and
the threshold secret share technique to protect the
security of the data. To be more suitable for the med-
ical scene, we deploy some other security properties.

1. Privacy of the owner’s information and su-
pervision of groups

When the data owner stores the data over the
cloud to enjoy the convenience of the cloud service,
it is unnecessary to expose his/her information un-
related to the data to the cloud. Then the owner
can take an anonymous style when the ciphertext is
uploaded to the cloud. Here we choose the Bloom
filter to hide his/her information for the retrieval and
matching of the data file’s tag. Then the privacy of
the data owner is completely protected.

In the proposed scheme, the secret is divided
into each group to hold each group accountable, if
and only if all N groups present the correct secret
shares sk, and the plaintext is correctly decrypted.
Any user who presents a fake share in the authorized
user set would cause the group key sk error, which
leads to a false decryption process.

2. Verifiability of the share key distribution
In our proposed scheme, to prevent fraud on the

data owner, the cloud user can verify the correctness
of the share key distributed by the owner.

Supposing that user IDj accepts the secret key
share SKj|k from the data owner, there is a unique

yj|k such that gyj|k =
t−1∏

j=0

(Aj)
(xi|k )

j

. The effective-

ness of this verification is obvious.
3. Cheating detection
The RS coding technique is a usual method to

identify the cheater. The existing methods are not
based on computational assumptions, but they need
to assume that the number of malicious participants
is smaller than 1/3 of the total number. Our method
is based on computational assumptions through the
zero-knowledge proof technology and can identify ev-
ery malicious participant.

The proof is employed here which shows pre-
vention of the cheaters changing the secret key share
SKj|k . This is used to test the validity of the secret

key shares, because the Chaum-Pedersen protocol
has the ability to verify the same index yj|k in par-
tial share Cj|k and verification vj|k .

The proof works as follows: Take the collision-
resistant hash function H . User IDj|k randomly
selects a value δ, and computes C′ = Cδ

j|k and
v′ = vδj|k . Then the proof pj|k is a pair
(
zj|k , ej|k

)
, where zj|k = yj|k · ej|k + δ and ej|k =

H
(
Gk, v, Cj|k , vj|k , C′, v′

)
. IDj|k broadcasts the de-

cryption share Cj|k as well as its proof pj|k , where
j = 1, 2, . . . , nk and k = 1, 2, . . . , N .

From the above analysis, we can see that our
scheme does not need to restrict the number of ma-
licious participants. Hence, it is suitable for more
practical applications.

6 Performance analysis

The basic operations such as file creation or dele-
tion and user addition or revocation are processed
similarly as in all these schemes. Here, the discus-
sion is omitted.

In these data sharing schemes on ABE (Yu et al.,
2010; Dong et al., 2014; Liang et al., 2014; Liu et al.,
2014; Xu et al., 2018), there was a flaw in the design
of Liu et al. (2014) as the root secret key is known
to the cloud for the re-encryption of the original ci-
phertext. Liang et al. (2014) designed the compos-
ite order groups, which makes the scheme less effi-
cient. Here we compare our scheme with some clas-
sical and efficient data sharing schemes in Yu et al.
(2010), Dong et al. (2014), and Xu et al. (2018). The
schemes in Yu et al. (2010) and Xu et al. (2018) are
based on key-policy ABE, while the scheme in Dong
et al. (2014) is based on ciphertext-policy ABE (CP-
ABE). In our scheme, tk can also be seen as the
attribute involved in the group Uk. Data confiden-
tiality is achieved in all these schemes since the data
file is stored as ciphertext for the cloud server, and
the cloud servers are not able to learn the plaintext
of any data file.

The decryption keys of data are not known by
the cloud server in any scheme in Yu et al. (2010),
Dong et al. (2014), and Xu et al. (2018), as well
as in our scheme, although the proxy re-encryption
key is given to the cloud in Yu et al. (2010) and Xu
et al. (2018). The comparison analysis of the security
properties between our scheme and the schemes in
Yu et al. (2010), Dong et al. (2014), and Xu et al.
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(2018) is summarized in Table 1.

6.1 Computation complexity

In this subsection, we compare the computation
overhead of our scheme with that of Yu et al. (2010),
Dong et al. (2014), and Xu et al. (2018)’s schemes,
considering key generation, encryption, and decryp-
tion. For a fair comparison, we consider a general
situation in which all users have participated in the
decryption stage. In Yu et al. (2010), Dong et al.
(2014), and Xu et al. (2018), the main computa-
tional costs involved in encryption and decryption
algorithms are pairing e (g, g) and scalar multiplica-
tion. In our scheme, there is no involvement in a
pairing operation.

The ciphertext of the proposed scheme is CP =⎧
⎨

⎩
G1=gr1, G2 = gr2 ,. . .,GN =grN ,C0=M·g

N∑

k=1

rk·sk
⎫
⎬

⎭
.

During encryption, the data owner takes all en-
cryption operations and needs to do N scalar
multiplications for C0 and Gk, separately. Thus,
the owner should take 2N scalar multiplications
in total for encryption. Then the computation
complexity of encryption is O (N · tS). In the
decryption phase, to recover the ciphertext, the user
needs at most |U | scalar multiplications to calcu-

late
N∏

k=1

(
tk−1∏

j=1

(
Cj|k

)Lj|k

)

=
N∏

k=1

(
grk·yj|k ·Lj|k

)
=

N∏

k=1

(grk·sk) = g

N∑

k=1

rk·sk
. So, the computation

complexity of decryption is O (|U | · tS). In the
key generation phase, it is only polynomial time
to calculate yj|k = fk

(
xj|k

)
and at most O (|U |)

scalar multiplications to calculate public key
{
g, gsk , Ai|k , v, vj|k

}
, where i = 1, 2, . . . , tk − 1,

j = 1, 2, . . . , nk, and k = 1, 2, . . . , N . Thus, the
computational complexity of key generation is
O (|U | · tS).

In Yu et al. (2010), the data owner needs to do

one scalar multiplication and one pairing to calcu-
late Ẽ = M · e(g, g)ys, and one scalar multiplica-
tion for Ei = gti·s to generate a ciphertext. There-
fore, the computation complexity of encryption is
O (|Iu| · tP + 2 |Iu| · tS). To recover the ciphertext,
it has to compute e (Ei, ski) = e(g, g)

pi(0)s for each
leaf node first. Then the blind factor Y s = e(g, g)ys

is recovered aggregating these pairing results in the
bottom-up manner if and only if attributes I satisfy
access tree T . So, the time complexity for decryption
is O (max (|Im| , |Iu|) · tP). The time complexity for
key generation SK =

{
ski
∣
∣ski = gpi(0)/ti , i ∈ Im

}
is

O (|Im| · tS).
In Dong et al. (2014), the data owner needs

to do two pairing multiplications to calculate
C1,x = e(g1, g1)

λxe(g1, g1)
αρ(x)

rx , one scalar mul-
tiplication for C2,x = grx1 , and two for C3,x =

g
βρ(x)rx
1 gωx

1 . Therefore, the computation complex-
ity of encryption is O (2 |Im| · tP + 3 |Im| · tS). To
recover the ciphertext, the user needs another
2 |Im| scalar multiplications at most to calculate
∏

x

{
C1,x · e (H (IDu) , C3,x)/e

(
skρ(x),u, C2,x

) }
, so

the time complexity of decryption is O(2 |Im| · tP
+ |Im| · tS). The time complexity for key generation
is O (|Iu| · tS).

In Xu et al. (2018), the data owner needs
to do one pairing multiplication and (|V | +

|Iu| + 3) scalar multiplications to calculate ct =

{S, t, C, C1, {C(0)
i }, C(1), {C(1)

j }}, where ct denotes
a ciphertext, C = me(g1, g2)

s, C1 = gs,
{C(0)

i } = {T (i)s|p(i) ∈ S}, C(1) = {U ′S}, and
{C(1)

j |j ∈ V } = {US
i |i = 1, 2, . . . , n + 1} with n the

maximum size of the attribute set used in encryp-
tion. Therefore, the computation complexity of en-
cryption is O (1 · tP + (|V |+ |Iu|+ 3) · tS). To re-
cover the ciphertext, the user first needs to recover
∏

p(i)∈S

(
e(K

(0)
i ,C1)

e(K
(1)
i ,C

(0)
i )

)ωi

with computation complexity

O (2 |Iu| · tP + |Iu| · tS), then needs two pairings to
calculate e(K(0),C1)

e(K(1),Ct)
, and finally needs one pairing

Table 1 Security properties

Scheme
Anonymous Identifiable Verification Revocation

storage cheater of key share of large-scale users

Yu et al. (2010) No No Yes No
Dong et al. (2014) No No No No
Xu et al. (2018) No No No Yes

Our scheme Yes Yes Yes No
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to obtain message m. So, the time complexity
of decryption is O ((2 |Iu|+ 3) tP + |Iu| · tS). The
time complexity for key generation skid,x =

{K(0)
i = gMiu

2 T (i)
ri ,K

(1)
i = gri} is O (2 |U | · tS),

where i = 1, 2, . . . , d and d is the row number of the
access matrix.

The computational complexities of our scheme
and the schemes proposed by Yu et al. (2010) , Dong
et al. (2014), and Xu et al. (2018) are given in Table
2. From the above, we can see that the computation
complexity is related to the total number of the cloud
users in our proposed scheme and the number of at-
tributes that all the users have mastered. In general,
every user would have several attributes, and then
the complexity of our scheme is slightly lower than
that of other schemes.

6.2 Experimental results

The evaluation was conducted through exper-
imentally evaluating the time cost of the proposed
scheme among Yu et al. (2010), Dong et al. (2014),
and Xu et al. (2018) on a computer with Windows 7
Intel i5-4590S-3.00 GHz CPU and 4 GB RAM.

6.2.1 Overload of the key generation algorithm

The key generation algorithm is to compute the
power multipication in all four schemes. To sim-
plify the comparison, we took all cloud users in one
group. Then overloads of key generation of these
schemes are shown in Fig. 2. In Xu et al. (2018), the
decryption keys are based on an attribute related to
the time that is frequently updated. So, the design
of the key is complex, and the overload of key gen-
eration will be very large. It can also be seen from
Fig. 2 that the overload in our scheme is much less
than that in Xu et al. (2018) and Dong et al. (2014)
and a little more than that in Yu et al. (2010).

Number of attributes
1              2               3              4              5

Ti
m

es

0

500

1000

1500

2000

2500

Yu et al. (2010) Dong et al. (2014)
Xu et al. (2018) Our scheme

Fig. 2 Comparison of key generation performance

References to color refer to the online version of this figure

6.2.2 Overload of the encryption algorithm

The encryption costs of our scheme and other
schemes with the number of attributes from 10 to 50
are given in Fig. 3. From Fig. 3, we can see that the
encryption cost increases linearly with the number
of attributes in the three schemes, and our scheme
has less cost than the others. In our scheme, the en-
cryption is to calculate (G1, G2, . . . , GN , C0), which
is based on the number of the groups, while in Yu
et al. (2010), Dong et al. (2014), and Xu et al. (2018),
the calculation of ciphertext C is based on attributes
of the ciphertext. In addition, the ciphertexts in
Xu et al. (2018) were designed by time regarding the
proxy re-encryption of ciphertext by the cloud, which
involves more cost in computing the ciphertext.

6.2.3 Overload of the decryption algorithm

In our scheme, the decryption is to compute
N∏

k=1

(
tk−1∏

j=1

(
Cj|k

)Lj|k

)

. The cost of decryption de-

pends on mainly the numbers of groups and users
in each group. When all users are in one group in
our scheme, the overheads of decryption with the
attributes of access structure up to 50 are given in
Fig. 4, where the number of users in our scheme is

Table 2 Comparison of computation complexity

Scheme
Encryption Decryption Key

(data owner) (user) generation

Yu et al. (2010) O (|Iu| · tP + 2 |Iu| · tS) O (max (|Im| , |Iu|) · tP) O (|Im| · tS)
Dong et al. (2014) O (2 |Im| · tP + 3 |Im| · tS) O (2 |Im| · tP + |Im| · tS) O (|Iu| · tS)
Xu et al. (2018) O (1 · tP + (|V |+ |Iu|+ 3) · tS) O ((2 |Iu|+ 3) tP + |Iu| · tS) O (2 |U | · tS)

Our scheme O (N · tS) O (|U | · tS) O (|U | · tS)
Iu: attributes of the user; Im: attributes of the access structure; V : size of the user identities in binary form; U : set of
universal users; N : number of the partitioned groups in our scheme; tP: pairing time; tS: scalar multiplication time
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the same as the number of attributes in Dong et al.
(2014). As only the scheme in Dong et al. (2014) is
based on CP-ABE, the cost of computation to de-
crypt is related to the overload of attributes in the
access matrix, so the overload is very large. From
Fig. 4, it can be seen that the overhead in our scheme
is almost the same as that in Xu et al. (2018) and
less than that in Yu et al. (2010).

6.3 Communication cost

In these schemes, the communication cost is
caused mainly by the encrypted data and key dissem-
ination. The encrypted data sent by the data owner
to the cloud are {G1 = gr1 , G2 = gr2 , . . . , GN = grN ,

C0 = M · g
N∑

k=1

rk·sk}, which require (N + 1) log |G1|
bits. The value yj|k = fk

(
xj|k

)
for every j ∈ U

requires (N + 1) log |G1|. Thus, the communication
cost is given by (N + 1) log |G1|+3 |U |·log |G1|+data.

The comparison of communication overhead
between the proposed scheme and the other three
schemes is given in Table 3.

Table 3 Comparison of communication cost

Scheme Communication cost

Yu et al. (2010)
|I|+ 2 log |I|+ (|I|+ 1) log |G1|

+ log |G2|+ data

Dong et al. (2014)
|I|2 + log |I|+ (2 |I|+ 1) log |G1|

+(|I|+ 1) log |G2|+ data

Xu et al. (2018)
(2d+ 3 + |I|+ |U |) log |G1|

+ log |G2|+ data

Our scheme
(N + 1) log |G1|+ 3 |U | · log |G1|

+data

7 Applications to complex medical sce-
narios on Internet

Health care data cover the life of human beings,
and they contain the convergence and aggregation
of various data. These data include medical record
information, medical insurance information, health
log, genetic, medical experiments, and scientific re-
search data. These data thus cover an extensive
range. Personal medical data should meet the re-
quirement of personal privacy protection. Medical
experimental data, scientific research data, and in-
surance information not only have aspects of the pri-
vacy of data subjects and medicine industry trends,
but also affect national security. Therefore, in the
development process and application of medical care
data, it is necessary to provide a targeted compliance
guarantee for data origin authentication and the type
of medical data.

In the Internet-based personal health environ-
ment, how to safely manage personal health care
data is a great challenge. When a person stores
his/her medical insurance data in the cloud for future
occasional needs (sudden death or insurance claims),
it is crucial that who is allowed to access the data
should be carefully considered. In this process, due
to the diversity and complexity of medical data, not
only the confidentiality of data, but also the actual
scenario needs to be considered in the data storage
process. As shown in Fig. 1, we give a protection
scheme for personal health care data. For the sake of
personal data security, the data owner can appoint
the authorized users by himself/herself. In addition,
according to the type of users, group management
is carried out to efficiently and conveniently man-
age the data, so that data access can be carried out
in a supervision mode, thus achieving a decentral-
ized authority management mechanism. In addition,
because of the need for the validity and fairness of
data, any behavior that interferes with normal data
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access will be completely and effectively identified
to ensure the stability and normal operation of the
system. Therefore, to achieve the above goals, we
combine symmetric encryption and the secret shar-
ing technique, and propose a verifiable and cheater-
identifiable method on the Chaum-Pedersen protocol
data sharing scheme based on threshold secret shar-
ing. This scheme can have a fundamental impact to
fulfill the above subject’s medical data management
in the personal health environment of Internet.

In summary, our scheme helps the patient
achieve flexible and supervised control on his/her
case file stored on the cloud server.

8 Conclusions and future work

In this paper, we have proposed a data shar-
ing scheme over the cloud that is suitable for group
co-supervision. In our scheme, the security and reli-
ability for the data file can be adequately protected.
Also, the proposed scheme achieves cheater identifi-
cation without violating the honest person’s rights.
Compared with the existing cheating identification
methods, our scheme can detect every dishonest user.
The efficiency analysis indicated that the proposed
scheme has a low computational cost and bandwidth
usage. In future work, we will investigate how to ex-
ecute efficient cloud searching, when a large number
of files are stored on the cloud.
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