
Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260 1251

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Perspective:

Extreme-scale parallel computing:

bottlenecks and strategies∗

Ze-yao MO1,2

1CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, China
2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

E-mail: zeyao_mo@iapcm.ac.cn

Received July 7, 2018; Revision accepted Sept. 14, 2018; Crosschecked Oct. 15, 2018

Abstract: Extreme-scale numerical simulations seriously demand extreme parallel computing capabilities. To
address the challenges of these capabilities toward exascale, we systematically analyze the major bottlenecks of
parallel computing research from three perspectives: computational scale, computing efficiency, and programming
productivity. For these bottlenecks, we propose a series of urgent key issues and coping strategies. This study
will be useful in synchronizing development between the numerical computing capability and supercomputer peak
performance.

Key words: Extreme scale; Numerical simulation; Parallel computing; Supercomputers
https://doi.org/10.1631/FITEE.1800421 CLC number: TP311

1 Introduction

Extreme-scale numerical simulation is the pro-
cess of developing numerical software using the soft-
ware on supercomputers to reproduce and advance
the governing laws of the objective world under in-
vestigation, acquiring knowledge from the simula-
tion results, making scientific discoveries, and devel-
oping engineering designs based on this knowledge
(Reed et al., 2005). Parallel computing research
bridges numerical simulation and computer architec-
tures, and supports the high accuracy of numerical
simulations by continuously improving the comput-
ing capabilities of numerical software. Computing
capability is the numerical computation capability
obtained by numerical simulations on supercomput-
ers. It includes mainly three ingredients: computa-
tional scale, computing efficiency, and programming

* Project supported by the National Natural Science Foundation
of China (No. 91430218) and the National Key Technology R&D
Program of China (Nos. 2016YFB0201300 and 2017YFB0202103)

ORCID: Ze-yao MO, http://orcid.org/0000-0003-3280-5682
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2018

productivity (Dongarra et al., 2003; Amarasinghe
et al., 2011). Computation scale reflects the de-
grees of freedom required by the numerical simula-
tions that are used to reproduce the governing laws
of the objective world under investigation. Comput-
ing efficiency is the floating-point efficiency of these
simulations on supercomputers. Programming pro-
ductivity is the amount of investment required to
develop numerical applications with this high com-
puting capability. Computing capability includes in-
telligence, time, and costs, and covers the full life-
cycle of numerical software, including development,
maintenance, and technical support.

With the advancement of numerical simulation
into the era of coupled multiple physics, the govern-
ing laws of the objective world require serious quan-
titative simulations that can predict experimental
observations and deliver high-impact policy and de-
cision support. New frontiers of multi-physics simu-
lations need to not only combine multiple application
models developed by different teams, but also incor-
porate data analytics, design and optimization, and
uncertainty quantification on the top of traditional

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1800421&domain=pdf


1252 Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260

forward models (Ashby et al., 2011; Keyes et al.,
2013; Johansen et al., 2014). All these require-
ments ask the peak performance of supercomputers
to increase from peta-flops to exa-flops (Lucas et al.,
2014) in many significant applications.

With the development of numerical simulation
for coupled multiple physics and the increases of su-
percomputer peak performance, parallel computing
research has gradually exhibited three major bottle-
necks: limited computational scale, inadequate com-
puting efficiency, and low programming productivity.
The computational scale bottleneck stems from the
extreme complexity of numerical algorithms, which
increases super-linearly with increase in the number
of processor cores. The computing efficiency bot-
tleneck results from the rapid evolution of parallel
computer architectures, which breaks the mapping
strategies of parallel algorithms to computer archi-
tectures all the time. The programming productivity
bottleneck originates from the increasing complexity
of parallel programming, which increases the intel-
ligence, time, and resource requirements of parallel
algorithm implementations, and continuously weak-
ens the extensibility, portability, and inheritability
of numerical software. These three bottlenecks col-
lectively inhibit the acquisition of computing capa-
bility of extreme-scale numerical applications, and
keep widening the gap between software development
productivity and supercomputer advancements (Jo-
hansen et al., 2014).

In this study, we address the above problems
in exascale numerical simulation based on our paral-
lel computing research experience in a series of ma-
jor fundamental research domains, including weapon
physics, fusion energy, fission energy, and equip-
ment manufacturing. We systematically analyze the
above bottlenecks and propose a series of research-
demanding key technology issues and effective coping
strategies. This study will be useful in synchronizing
improvements in extreme-scale numerical computing
capabilities and supercomputer peak performance.

2 Bottlenecks and strategies for com-
putational scale

The governing law of the objective world is often
described by mathematical physics equations. After
the equation is discretized, the discrete system needs
to be solved numerically on supercomputers. The

algorithm used is a so-called numerical algorithm.
Computational complexity is one key indicator of
numerical algorithms. Generally, an algorithm with
linear complexity is optimal and can be represented
by tN,P = O(N log(NP )), where tN,P is the numer-
ical simulation time, N is the number of degrees of
freedom on each processor, P is the number of pro-
cessor cores, and N × P is the scale of calculation.
As the number of processor cores P increases, tN,P

increases only logarithmically, and the computation
is scalable with the growth of P .

For time-dependent mathematical physics equa-
tions, at each time step, the explicit time-stepping
schemes are often of linear complexity. However,
for implicit time-stepping schemes, the resultant dis-
crete systems are often expressed as sparse linear or
non-linear systems, and need to be solved by either
direct methods or iterative methods (Dongarra et al.,
2003). Limited by the solver’s algorithmic complex-
ity, tN,P may evolve to O(NαPα−1 log(NP )), where
α > 1. The power index α restricts the linear growth
of the computational scale with P . For example, if
α = 2, then tN,P grows linearly with P . That is,
when P doubles, tN,P also doubles, and the compu-
tation does not scale with P . From another point of
view, given fixed tN,P , the computational scale would
not increase with P . When the peak performance
of supercomputers increases from peta-flops to exa-
flops, P will increase by about 100 times. Only when
the numerical algorithms maintain linear complexity,
can computation scale linearly with P .

In the past two decades, many studies have fo-
cused on linear complexity algorithms for implicit
discretization schemes. These types of algorithms
are also commonly referred to as fast algorithms and
include the domain decomposition method (DDM)
(Dolean et al., 2015), parallel algebra multigrid
method (AMG) (Saad and Darwish, 2009), parallel
fast multipole method (FMM) (Engheta et al., 1992),
fast eigensolvers (Campos and Roman, 2012), fast
Fourier transform, and other discrete transform algo-
rithms (Cooley and Tukey, 1965). These algorithms
have been implemented in many open source li-
braries, including PETSc (Balay et al., 1997), Hypre
(Falgout and Yang, 2002), Trillinos (Heroux et al.,
2005), and SLEPc (Hernandez et al., 2005). How-
ever, with the increasing complexity of physical phe-
nomena, the application characteristics need to be
fully considered by these algorithms to maintain



Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260 1253

linear complexity.

On one hand, when the computational scale in-
creases, the resolution of numerical simulation may
increase, and the physical characteristics such as
strong discontinuity and strong nonlinearity can have
an increasing impact on the numerical properties of
the matrices of the discrete systems. Numerical algo-
rithms need to be designed with these characteristics
in mind. For example, for numerical simulation of
radiation hydrodynamics, when the computational
scale increases, the grid resolution increases, and
the strong non-linearity of electron, ion, and photon
temperatures will increase the emissivity by more
than 10 orders of magnitude over a number of grid
cells. The stiffness of the discrete system is greatly
enhanced, and the parallel algebraic multigrid al-
gorithm needs to perform local coarsening prepro-
cessing to maintain linear complexity (Xu and Mo,
2017). When solving frequency-domain electromag-
netic equations, the parallel fast multipole algorithm
needs to be customized for the electromagnetic prop-
erties of the specific material by local multipole ap-
proximations (Cao et al., 2011).

On the other hand, when the numerical simu-
lation paces towards the coupled multi-physics era,
computational complexity is increasingly driven by
features of the specific application, especially for
overall implicit discretization schemes (Keyes et al.,
2013). A fundamental scientific problem is as fol-
lows: given that the algorithm for the discrete sys-
tems of a single physical field has linear complex-
ity, does that of a multi-physics coupled simulation
also bear linear complexity? There are currently
few theoretical results for this question. However, in
case of operator-splitting-based implicit discretiza-
tions, the answer is usually no. If globally coupled
implicit discretization schemes are used, the ma-
trices of the discrete system are usually asymmet-
ric, and sometimes not diagonally dominant, and
require specific algorithms and pre-conditioners to
achieve linear complexity. For example, when solv-
ing the coupled radiation transport equations in ra-
diation hydrodynamics, the multi-group diffusion
equations and multi-group transport equations are
usually solved by operator-splitting schemes (Keyes
et al., 2013). When solving the ‘force-heat-contact’
coupled structural mechanics problem, the globally
coupled implicit discretization produces a sparse lin-
ear system that needs a specific shear-force-aware

pre-conditioner to converge (Tian et al., 2018). In
the ‘magnetic-thermal-force’ coupled integrated cir-
cuit packaging simulation, the magnetic field, heat
transfer, and mechanical response are usually solved
using the operator-splitting scheme (Zhao et al.,
2014). Similar situations are common in multi-
physics coupling applications such as fluid-solid cou-
pling, fusion energy, fission reactor physics, mate-
rial fracture and damage, surface chemistry, climate
change, geodynamics, and accelerator physics (Keyes
et al., 2013).

It can be concluded that when the compu-
tational scale grows, the application characteris-
tics such as strong discontinuity, strong nonlinear-
ity, and multi-physics coupling will increase the
computational complexity of numerical algorithms.
Thus, it is urgent to carry out systematic and
focused research (Keyes et al., 2013). Two re-
search branches should be considered. One is the
common algorithm frameworks, and the other is
the application-feature-driven pre-conditioners. At
present, algorithm frameworks are fruitful, and need
only to be partially improved for exascale com-
puting. Mature frameworks include parallel adap-
tive mesh refinement frameworks (Dubey et al.,
2014), multigrid-preconditioned Krylov subspace it-
eration method frameworks for sparse linear sys-
tems (Saad, 2003), iterative Newton-Krylov pre-
conditioner method frameworks for coupled multi-
physics systems (Knoll and Keyes, 2004), and multi-
layer fast multipole method frameworks for solv-
ing frequency-domain Maxwell equations (Darve,
2000). Different from the algorithm frameworks, the
application-feature-driven pre-conditioner approach
lacks both a theoretical basis and common algorithm
modules, and requires further enhancements. The
pre-conditioner module can be incorporated into al-
gorithm frameworks for verification and validation,
and can be developed in parallel with the algorithm
framework, which is helpful in the improvement of
programming productivity.

3 Bottlenecks and strategies for com-
puting efficiency

Numerical algorithms need to be redesigned as
parallel algorithms to fit the supercomputer archi-
tecture before the implementation starts. For par-
allel algorithm design, computing efficiency is the



1254 Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260

core indicator, which can be calculated as the ra-
tio of the floating-point performance obtained to the
theoretical peak of involved machine resources. For
instance, if a parallel algorithm achieves 200 Tflops
on a supercomputer whose peak performance is 1000
Tflops, then the computing efficiency of the algo-
rithm is 20%. Generally, the computing efficiency
of one algorithm is considered high when it is above
20% and low when below 5%.

It is well known that there are three major fac-
tors that affect the computing efficiency of parallel
algorithms: data communication overhead, load bal-
ancing efficiency, and single-core floating-point per-
formance. When entering the peta-flops era, the su-
percomputer architecture converges to a coupled ar-
chitecture composed of multi-level deep nesting par-
allelism of general-purpose processors and specific
heterogeneous many-core accelerators (Yang, 2012).
With the advent of exascale computing, the general-
purpose processor part gains more and more nesting
levels. It is at six levels at the moment: distributed
memory (DM), distributed shared memory (DSM),
symmetric multiprocessing (SMP), multi-level cache,
instruction level parallelism (ILP), and instruction
vectorization parallelism (IVP).

On the other hand, state-of-the-art many-core
processors have already integrated more than 1000
cores. Only if the parallel algorithms match this hier-
archy of architecture characteristics, can they enjoy

high computing efficiency. Fig. 1 shows the men-
tioned six-level nesting supercomputer architecture,
and how a parallel algorithm can adapt to each level
of features, which was discussed by Mo et al. (2016)
and will not be repeated here.

The data communication overhead comes from
three major sources: data transfer between computer
nodes, data transfer and cache-coherence protocol
overhead among processors and processor cores, and
data transfer between general-purpose processors
and heterogeneous many-core accelerators (Chung
et al., 2011). The load balancing efficiency depends
on two major factors: the effectiveness of load bal-
ancing between computing nodes, among processors
in a single node, and among processor cores, and
the extra cost of transferring workload among dis-
tributed memory space when migrating imbalanced
loads (Liu et al., 2018). The floating-point perfor-
mance reflects the execution speed of the program
within the processor, and is affected mainly by fac-
tors such as the multi-level cache hit rate, instruc-
tion level parallelism, register reuse, and vectoriza-
tion (Hennessy and Patterson, 2003). The differ-
ence in both parallel algorithms and the load char-
acteristics of numerical simulations can impact the
relative contributions of these three factors to com-
puting efficiency. For example, for hydrodynamics
simulation on a single-level grid with the Euler equa-
tion, the computing efficiency is dominated by data

Distributed 
Memory

Distributed 
Shared Memory

Symmetric Multi -
Processing

Cache

Instruction 
Vectorization 
Parallelism

Instruction Level 
Parallelism

LevelsDomains

Regions

Patches

Logical Tiles

Six-level nesting
computer architecture

Hierarchical Parallel algorithm
design strategies

Domain 
Decomposition

NUMA-aware Domain 
Decomposition 

Multicore -aware
Domain Decomposition

Cache-aware
Domain Decomposition and Tiling

Dependency Elimination

Loop Unrolling

Hierarchy

PatchDatas

Distributed 
memory

Distributed 
shared memory

Symmetric multi-
processing

Cache

Instruction 
vectorization 
parallelism

Instruction level 
parallelism

LevelsDomains

Regions

Patches

Logical tiles

mesh data structure

Domain 
decomposition

NUMA-aware domain 
decomposition 

Multicore-aware
domain decomposition

Cache-aware
domain decomposition and tiling

Dependency elimination

Loop unrolling

Hierarchy

PatchDatas

Cells

Fig. 1 Six-level nesting hierarchical supercomputer architecture and corresponding parallel algorithm design
strategies



Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260 1255

communication overhead and single-core floating-
point performance. However, for the same algorithm
on adaptively refined multi-level grids, the comput-
ing efficiency is dominated by the load balancing effi-
ciency (Wissink et al., 2001). Table 1 lists the ways in
which computer architecture features can affect the
data communication overhead, load balancing effi-
ciency, and single-core floating-point performance.

Computer architecture is a structured abstrac-
tion of computer hardware to guide the design and
analysis of parallel algorithms. However, there is a
gap between abstracted computer architecture and
real hardware, and its runtime characteristics. As
the peak performance of computers increases, this
gap broadens and seriously downgrades the comput-
ing efficiency. Thus, how to combine the application
code with the hardware features and runtime char-
acteristics of the computer to further minimize data
communication overhead, minimize processor idling,
and increase single-core floating-point performance,
will be a major research topic of performance opti-
mization of parallel algorithms (Sarkar et al., 2016).
Practice shows that with the rapid evolution of com-
puter architecture, the impact of performance opti-
mization on the computing efficiency gradually in-
creases. Table 2 shows the contribution of perfor-
mance optimization to the computing efficiency in
the last five-year Gordon Bell Prizes (Rossinelli et al.,
2013; Shaw et al., 2014; Rudi et al., 2015; Yang et al.,
2016; Fu et al., 2017).

Based on the above analysis, it can be seen that
different combinations of numerical algorithms and
computer architectures require different parallel al-
gorithms. Accordingly, the resulting complexity of
parallel algorithm research is then O(MN), where
M denotes the total number of numerical algorithms

andN denotes the number of architecture categories.
In fact, parallel algorithms are common technologies
that can be reused in the parallelization of numeri-
cal algorithms and the performance optimization on
architectures after proper abstraction and formaliza-
tion. Concretely, one can abstract the parallelisms
of numerical algorithms, and express them as par-
allel computing patterns on top of common data
models. For each combination of parallel comput-
ing pattern and computer architecture, efficient par-
allel algorithms can be designed. Although parallel
algorithms need to be changed along with the evo-
lution of computer architectures, the parallel com-
putational patterns and numerical algorithms can
stay unchanged, as can the numerical discretization
of the mathematical physics equations. Mo et al.
(2016) abstracted and refined the data model to-
gether with parallel computing patterns for more
that 20 types of commonly used parallelisms in par-
allel numerical algorithms, and discussed methods
in the design of efficient parallel implementations
on supercomputers. In this way, the design of nu-
merical algorithms and parallel algorithms can be
separated and completed by different teams. In ad-
dition, the complexity of parallel algorithm research
can be reduced from O(MN) to O(αN), where α

represents the total number of parallel computing
patterns. Similarly, floating-point performance op-
timization research can be separated from parallel
algorithm design and accomplished by different re-
search teams, reducing the complexity from O(JK)

to O(βK). Here J is the total number of paral-
lel algorithms, K is the total number of computer
runtime states, and β is the total number of com-
puter architecture features. In terms of floating-
point performance optimization, a large amount of

Table 1 Relationships among the supercomputer architecture and factors that impact computing efficiency

Architecture
Data communication Load balancing efficiency Single-core FP

Inter- Inter- Inter- Inter- Inter- Inter-
CPU core Vectorization

node socket core node socket core

DM
√

– –
√

– – – –
DSM –

√
– –

√
– – –

SMP – –
√

– –
√ √

–
Multi-level cache –

√ √
–

√ √ √ √
ILP – – – - –

√ √ √
IVP – – – - –

√ √ √
Accelerator

√
– –

√
– – –

√

DM: distributed memory; DSM: distributed shared memory; SMP: symmetric multiprocessing; ILP: instruction level paral-
lelism; IVP: instruction vectorization parallelism



1256 Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260

Table 2 Contributions of performance optimization
to computing efficiency of last five-year Gordon Bell
Prizes

Year
Contribution of

performance optimization

2013 2.2× to 3.7× of different components
2014 No baseline
2015 Nearly 6.6×
2016 Nearly 3.5×
2017 3.8× to 8.9× of different components

research work has been conducted on common al-
gebraic operations, including general dense matrix
multiplication (GEMM), sparse matrix multiplica-
tion (SpMM), sparse matrix-vector multiplication
(SpMV), and vector dot product. Libraries like
OSKI (Vuduc et al., 2005) and SMAT (Li et al.,
2013) have been developed. Due to the ability of
adaptive optimization on target computer architec-
ture and high performance, these libraries have been
widely used in real-world applications.

4 Bottlenecks and strategies for pro-
gramming productivity

The supercomputer architecture and parallel al-
gorithm design methods (Fig. 1) complicate paral-
lel programming. Specifically, Table 3 lists paral-
lel programming languages and environments cor-
responding to computer architecture features. As
shown in Table 3, numerical simulation experts need
to master a ‘four plus one’ parallel programming
stack, namely ‘Process-Thread-Cache-Vector’, which
is coupled with heterogeneous many-core accelera-
tors. The ‘Process’ level refers to the parallel pro-
gramming of message passing between computing
nodes. The ‘Thread’ level refers to two-layer nested
shared memory programming between multiple

central processing units (CPUs) on the same node
and multiple cores within a CPU. The ‘Cache’ level
refers to access optimization of multi-level caches in
the CPUs. The ‘Vector’ level refers to vectoriza-
tion of loops in the code. Such a complicated paral-
lel programming stack, coupled with heterogeneous
many-core accelerated programming techniques, will
certainly increase the costs of intelligence, time, and
resources, and bring challenges to code extensibility,
portability, and inheritability. Under extreme cir-
cumstances, when the numerical simulation software
is upgraded from peta-flop computers to ten-peta-
flop computers and then to hundred-peta-flop com-
puters, codes need to be refactored thoroughly, which
makes the inheritance and development of software
assets difficult. In fact, such cases have occurred fre-
quently. For example, the codes on general-purpose
graphics processing units (GPGPUs) cannot run on
the Intel MIC architecture, the codes on Intel MICs
cannot fit in domestic processors, and the codes on
different domestic processors cannot run on each
other seamlessly. At present, it is still a challenge
for both parallel computing and exascale computing
programming to greatly reduce the risk of code refac-
toring and to effectively improve the productivity of
parallel programming (Amarasinghe et al., 2011).

Reuse of parallel algorithms and programming
is an effective way to improve productivity. This in-
novative technological route was described system-
atically by Mo (2016) and Mo et al. (2016). The key
technologies comprise two aspects: reuse of parallel
computing patterns and reuse of numerical algorithm
frameworks. The former is based on data models
and parallel computing patterns that characterize
parallel behaviors. Specifically, the parallel comput-
ing patterns are encapsulated as parallel computing
components, and computational science experts can

Table 3 Parallel programming languages or environments corresponding to computer architecture features

Architecture
Parallel programming language and environment Single-core FP programming

Inter-node Inter-socket Inter-core CPU core Vectorization

DM Process Process Process – –
DSM – Process/Threads – – –
SMP – – Process/Threads – –

Multi-level cache – – Cache Cache –
ILP – – – Cache SIMD
IVP – – – Cache SIMD

Accelerator – – Offload Cache SIMD/SIMT

DM: distributed memory; DSM: distributed shared memory; SMP: symmetric multiprocessing; ILP: instruction level parallelism;
IVP: instruction vectorization parallelism; SIMD/T: single instruction multiple data/thread



Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260 1257

develop numerical algorithms by directly configur-
ing and assembling parallel computing components.
The latter is based on the separation of the numerical
algorithm framework and pre-conditioners. Specifi-
cally, the numerical algorithm framework is encap-
sulated as numerical algorithm components, and the
interface of components can be used for the develop-
ment of pre-conditioner modules by computational
experts. Serial programming is sufficient for the as-
sembly of parallel computing components and the
implementation of pre-conditioner kernels. All these
components are encapsulated into a component li-
brary, which is called a ‘parallel programming frame-
work’. Based on this programming framework, nu-
merical software can be developed by instantiation,
configuration, and assembly of these components,
a process that does not involve parallel program-
ming. As a result, based on the parallel program-
ming framework, development of numerical simula-
tion software can obtain massively parallel comput-
ing capabilities automatically, and achieve an ‘auto-
matic parallelization and high scalability’ goal. Mo
et al. (2010) took the JASMIN framework as an ex-
ample to systematically elaborate on the feasibility,
effectiveness, and advancement of this technological
approach (Mo, 2014, 2015; Mo et al., 2015). This
will not be repeated here.

5 Supply-side supporting technology

In previous sections, we systematically analyze
key technology issues that need to be solved con-
tinuously together with corresponding coping strate-
gies, from the perspectives of computational scale,
computing efficiency, and programming productiv-
ity. Table 4 summarizes these key technology issues

with corresponding coping strategies. As we move
towards exascale computing, we need to focus our
efforts on the most important topics. Thus, we need
to find an effective and quantitative approach for as-
sessing weaknesses in computing capability. Specif-
ically, this evaluation method is called ‘supply-side’
technology in parallel computing research.

Supply-side technologies are different from the
usual performance analysis tools. Supply-side tech-
nologies are based on the componentization of nu-
merical algorithm frameworks, parallel computing
patterns, performance optimization techniques, and
component-based parallel programming, while the
usual tools are based on software codes and program
modules. With the help of quantitative computing
capability evaluation of different computing compo-
nents, the computing capabilities of the numerical
simulation process can be achieved by assessing the
computing capabilities of the involved numerical sim-
ulation software, which in turn can be assessed by
aggregating the capabilities of the involved compo-
nents. Fig. 2 shows the infrastructure of computing
capability evaluation. This infrastructure is divided
into five layers: software system, numerical applica-
tion, numerical algorithm, parallel component, and
parallel pattern. Here, the computing capabilities of
the software system are supported by many numeri-
cal applications. Each numerical application consists
of numerical algorithms. Each numerical algorithm
consists of parallel computing components. Finally,
each parallel computing component involves parallel
computing patterns. As a result, the computing ca-
pabilities of the software system can be assessed in
terms of these five levels. In each level, the assess-
ment first reveals the computing capability bottle-
necks of each element, which are then used to guide

Table 4 Key technology issues with corresponding coping strategies in the continuous improvement of com-
puting capabilities

Computational scale Computing efficiency Programming productivity

Key Application-feature-driven Mismatches among parallel algorithms, Parallel computing patterns and parallel
issue design of numerical performance optimization techniques, algorithm architecture, performance

algorithms and computer architecture features optimization patterns and technical
architecture

Target Linear complexity Above 20% Automatic parallelization, high scalability

Coping Algorithm frameworks, Data communication algorithms, load- Programming frameworks, programming
strategy pre-conditioners balancing methods, and performance by component assembly

optimization of floating-point operations
matching computer architecture



1258 Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260

App1

Alg1 Alg2 Alg3 Alg4 Alg5 Alg6

App2 App3

Ptn1 Ptn2 Ptn3 Ptn4

System

Comp1 Comp2 Comp3 Comp4

Ptn5

Software system

Application

Algorithm

Component

Pattern

Fig. 2 Architecture of computing-capability evalua-
tion models

the improvement of elements in the next level. In
particular, this evaluation model is aimed mainly at
the computational capabilities evaluation of software
systems, and is thereby applicable to complex numer-
ical simulation systems with multi-physics coupling
and multi-scale problems.

Specifically, take the numerical simulation of in-
ertial confinement fusion as an example. The soft-
ware system is a numerical simulation system of a
laser target coupling with radiation hydrodynamics
(Pei and Zhu, 2009), which is supported by numer-
ical applications of multi-material fluid mechanics,
radiation diffusion, radiation transport, laser prop-
agating, and radiative opacity. Each simulation
software comprises different kinds of numerical al-
gorithm components based on explicit or implicit
time discretization schemes. Each algorithm compo-
nent contains multiple different parallel computing
components. According to runtime characteristics,
each parallel computing component performs the
performance optimization of data communication
on network, multi-level cache access, and ILP. The
quantitative computational capabilities evaluation
method needs hierarchical analysis in terms of com-
putational scale, computing efficiency, and software
architecture.

6 Conclusions and future work

To address the exascale computing challenge, we
have systematically analyzed the parallel computing
bottlenecks from three perspectives: computational
scale, computing efficiency, and programming pro-
ductivity. Based on these analyses, we have pro-
posed a series of key technology issues that demand
research effort and corresponding coping strategies.
For the computational scale bottleneck, the keys
are numerical algorithm frameworks, application-

driven pre-conditioners, and their coupling bottle-
necks. For the computing efficiency bottleneck, the
keys would be data communication, load balancing,
and floating-point performance optimizations under
deeply nested hierarchical parallelism coupled with
heterogeneous many-core accelerators. For the pro-
gramming productivity bottlenecks, domain-specific
parallel programming frameworks would be a viable
and effective solution. To tackle these bottlenecks
with minimal investment, supply-side supporting
technology is essential. By and large, with the con-
tinuous deepening of multi-physics and multi-scale
research and the innovation of supercomputer archi-
tectures, extreme-scale parallel computing research
will continue to expand and remain full of challenges
and opportunities.

References
Amarasinghe S, Hall M, Lethin R, et al., 2011. Exascale pro-

gramming challenges. Technical Report of the Work-
shop on Exascale Programming Challenges.

Ashby S, Beckman P, Chen J, et al., 2011. The opportu-
nities and challenges of exascale computing. Summary
Report of the Advanced Scientific Computing Advisory
Committee Subcommittee.

Balay S, Gropp WD, McInnes LC, et al., 1997. Efficient
management of parallelism in object-oriented numerical
software libraries. In: Arge E, Bruaset AM, Langtangen
HP (Eds.), Modern Software Tools for Scientific Com-
puting. Birkhauser Boston Inc., Cambridge, USA.
https://doi.org/10.1007/978-1-4612-1986-6_8

Campos C, Roman JE, 2012. Strategies for spectrum slicing
based on restarted Lanczos methods. Numer Algor,
60(2):279-295.
https://doi.org/10.1007/s11075-012-9564-z

Cao X, Mo Z, Liu X, et al., 2011. Parallel implementation
of fast multipole method based on JASMIN. Sci China
Inform Sci, 54(4):757-766 (in Chinese).
https://doi.org/10.1007/s11432-011-4181-3

Chung IH, Lee CR, Zhou J, et al., 2011. Hierarchical mapping
for HPC applications. IEEE Int Symp on Parallel
and Distributed Processing Workshops and PhD Forum,
p.1815-1823. https://doi.org/10.1109/IPDPS.2011.340

Cooley JW, Tukey JW, 1965. An algorithm for the machine
calculation of complex Fourier series. Math Comput,
19(90):297-301.
https://doi.org/10.1090/S0025-5718-1965-0178586-1

Darve E, 2000. The fast multipole method: numerical imple-
mentation. J Comput Phys, 160(1):195-240.
https://doi.org/10.1006/jcph.2000.6451

Dolean V, Jolivet P, Nataf F, 2015. An Introduction to
Domain Decomposition Methods: Algorithms, Theory,
and Parallel Implementation. Society for Industrial and
Applied Mathematics, Philadelphia, USA.
https://doi.org/10.1137/1.9781611974065

Dongarra J, Foster I, Fox G, et al., 2003. The Sourcebook
of Parallel Computing. Morgan Kaufmann Publishers
Inc., San Francisco, USA.



Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260 1259

Dubey A, Almgren A, Bell J, et al., 2014. A survey of high
level frameworks in block-structured adaptive mesh re-
finement packages. J Parall Distr Comput, 74(12):3217-
3227.
https://doi.org/10.1016/j.jpdc.2014.07.001

Engheta N, Murphy WD, Rokhlin V, et al., 1992. The fast
multipole method (FMM) for electromagnetic scattering
problems. IEEE Trans Antenn Propag, 40(6):634-641.
https://doi.org/10.1109/8.144597

Falgout RD, Yang UM, 2002. Hypre: a library of high per-
formance pre-conditioners. Int Conf on Computational
Science, p.632-641.

Fu H, He C, Chen B, et al., 2017. 18.9-Pflops nonlinear
earthquake simulation on Sunway TaihuLight: enabling
depiction of 18-Hz and 8-meter scenarios. Int Conf
for High Performance Computing, Networking, Storage,
and Analysis, p.1-12.
https://doi.org/10.1145/3126908.3126910

Hennessy JL, Patterson DA, 2003. Computer Architecture: a
Quantitative Approach. Morgan Kaufmann Publishers
Inc., San Francisco, USA.

Hernandez V, Roman JE, Vidal V, 2005. SLEPc: a scalable
and flexible toolkit for the solution of eigenvalue prob-
lems. ACM Trans Math Softw, 31(3):351-362.
https://doi.org/10.1145/1089014.1089019

Heroux MA, Bartlett RA, Howle VE, et al., 2005. An
overview of the Trilinos project. ACM Trans Math
Softw, 31(3):397-423.
https://doi.org/10.1145/1089014.1089021

Johansen H, McInnes LC, Bernholdt DE, et al., 2014. Soft-
ware productivity for extreme-scale science. DOE
Workshop Report.

Keyes DE, Mcinnes LC, Woodward CS, et al., 2013. Multi-
physics simulations: challenges and opportunities. Int
J High Perform Comput Appl, 27(1):4-83.
https://doi.org/10.1177/1094342012468181

Knoll DA, Keyes DE, 2004. Jacobian-free Newton-Krylov
methods: a survey of approaches and applications. J
Comput Phys, 193(2):357-397.
https://doi.org/10.1016/j.jcp.2003.08.010

Li J, Zhang X, Tan G, et al., 2013. SMAT: an input adaptive
sparse matrix-vector multiplication auto-tuner. ACM
SIGPLAN Not, 48(6):117-126.
https://doi.org/10.1145/2499370.2462181

Liu X, Yang Z, Yang Y, 2018. A nested partitioning load
balancing algorithm for Tianhe-2. J Comput Res Devel,
55(2):418-425.
https://doi.org/10.7544/issn1000-1239.2018.20160877

Lucas R, Ang J, Bergman K, et al., 2014. DOE Advanced
Scientific Computing Advisory Subcommittee report:
top 10 exascale research challenges.
https://doi.org/10.2172/1222713

Mo Z, 2014. Domain-specific programming model for
high performance scientific and engineering computa-
tion. Commun CCF, 10(1):8-12 (in Chinese).

Mo Z, 2015. Progress on high performance programming
framework for numerical simulation. E-Sci Technol
Appl, 6(4):11-19 (in Chinese).
https://doi.org/10.11871/j.issn.1674-9480.2015.04.002

Mo Z, 2016. High performance programming frameworks for
numerical simulation. Nat Sci Rev, 3(1):28-29.
https://doi.org/10.1093/nsr/nwv086

Mo Z, Zhang A, Cao X, et al., 2010. JASMIN: a parallel
software infrastructure for scientific computing. Front
Comput Sci China, 4(4):480-488.
https://doi.org/10.1007/s11704-010-0120-5

Mo Z, Zhang A, Liu Q, et al., 2015. Research on the
components and practices for domain-specific parallel
programming models for numerical simulation. Sci Sin
Inform, 45(3):385-397 (in Chinese).
https://doi.org/10.1360/N112013-00197

Mo Z, Zhang A, Liu Q, et al., 2016. Parallel algorithm and
parallel programming: from specialty to generality as
well as software reuse. Sci Sin Inform, 46(10):1392-1410
(in Chinese). https://doi.org/10.1360/N112016-00144

Pei W, Zhu S, 2009. Scientific computing for laser fusion.
Physics, 38(8):559-568 (in Chinese).
https://doi.org/10.3321/j.issn:0379-4148.2009.08.005

Reed DA, Bajcsy R, Fernandez MA, et al., 2005. Compu-
tational science: ensuring America’s competitiveness.
Research Report No. ADA462840. President’s Informa-
tion Technology Advisory Committee.
http://www.dtic.mil/dtic/tr/fulltext/u2/a462840.pdf

Rossinelli D, Hejazialhosseini B, Hadjidoukas P, et al., 2013.
11 Pflop/s simulations of cloud cavitation collapse. Int
Conf on High Performance Computing, Networking,
Storage, and Analysis, p.1-13.
https://doi.org/10.1145/2503210.2504565

Rudi J, Malossi ACI, Isaac T, et al., 2015. An extreme-scale
implicit solver for complex PDEs: highly heterogeneous
flow in Earth’s mantle. Int Conf for High Performance
Computing, Networking, Storage, and Analysis, p.1-12.
https://doi.org/10.1145/2807591.2807675

Saad T, Darwish M, 2009. A high scalability parallel alge-
braic multigrid solver. In: Deconinck H, Dick E (Eds.),
Computational Fluid Dynamics. Springer Berlin Hei-
delberg, p.231-236.
https://doi.org/10.1007/978-3-540-92779-2_34

Saad Y, 2003. Iterative Methods for Sparse Linear Sys-
tems (2nd Ed.). Society for Industrial and Applied
Mathematics, Philadelphia, USA.

Sarkar V, Budimlic Z, Kulkani M, 2016. 2014 runtime
systems Summit. Runtime Systems Report.
https://doi.org/10.2172/1341724

Shaw DE, Grossman JP, Bank JA, et al., 2014. Anton 2:
raising the bar for performance and programmability in
a special-purpose molecular dynamics supercomputer.
Int Conf for High Performance Computing, Networking,
Storage, and Analysis, p.41-53.
https://doi.org/10.1109/SC.2014.9

Tian R, Zhou M, Wang J, et al., 2018. A challenging
dam structural analysis: large-scale implicit thermo-
mechanical coupled contact simulation on Tianhe-2.
Comput Mech, p.1-21.
https://doi.org/10.1007/s00466-018-1586-5

Vuduc R, Demmel JW, Yelick KA, 2005. OSKI: a library
of automatically tuned sparse matrix kernels. J Phys
Conf Ser, 16:521-530.
https://doi.org/10.1088/1742-6596/16/1/071

Wissink AM, Hornung RD, Kohn SR, et al., 2001. Large scale
parallel structured AMR calculations using the SAM-
RAI framework. ACM/IEEE Conf on Supercomputing,
p.6. https://doi.org/10.1145/582034.582040



1260 Mo / Front Inform Technol Electron Eng 2018 19(10):1251-1260

Xu X, Mo Z, 2017. Algebraic interface-based coarsening
AMG pre-conditioner for multi-scale sparse matrices
with applications to radiation hydrodynamics computa-
tion. Numer Linear Algebra Appl, 24(2):e2078.
https://doi.org/10.1002/nla.2078

Yang C, Xue W, Fu H, et al., 2016. 10M-core scalable fully-
implicit solver for non-hydrostatic atmospheric dynam-
ics. Int Conf for High Performance Computing, Net-
working, Storage, and Analysis, p.1-12.
https://doi.org/10.1109/SC.2016.5

Yang X, 2012. Sixty years of parallel computing. Comput
Eng Sci, 34(8):1-10 (in Chinese).
https://doi.org/10.3969/j.issn.1007-130X.2012.08.001

Zhao Z, Zhou H, Ma H, et al., 2014. Numerical simula-
tion and verification of electromagnetic pulse effect of
PIN diode limiter. High Power Laser Particle Beams,
26(6):81-85 (in Chinese).
https://doi.org/10.11884/HPLPB201426.063018


	Introduction
	Bottlenecks and strategies for computational scale
	Bottlenecks and strategies for computing efficiency
	Bottlenecks and strategies for programming productivity
	Supply-side supporting technology
	Conclusions and future work

