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Abstract: Elliptic curve cryptography has been used in many security systems due to its small key size and high security compared 
with other cryptosystems. In many well-known security systems, a substitution box (S-box) is the only non-linear component. 
Recently, it has been shown that the security of a cryptosystem can be improved using dynamic S-boxes instead of a static S-box. 
This necessitates the construction of new secure S-boxes. We propose an efficient method to generate S-boxes that are based on a 
class of Mordell elliptic curves over prime fields and achieved by defining different total orders. The proposed scheme is devel-
oped in such a way that for each input it outputs an S-box in linear time and constant space. Due to this property, our method takes 
less time and space than the existing S-box construction methods over elliptic curves. Computational results show that the pro-
posed method is capable of generating cryptographically strong S-boxes with security comparable to some of the existing S-boxes 
constructed via different mathematical structures. 
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1  Introduction 
 

Cryptography deals with techniques that secure 
private data. In these techniques, data is transformed 
into an unreadable form using keys that prevent ad-
versaries from extracting useful information. Substi-
tution boxes (S-boxes) are the only non-linear com-
ponent of many well-known cryptosystems including 
the advanced encryption system (AES). Therefore, 
the security of such cryptosystems depends only on 
the cryptographic properties of their S-boxes. Shan-
non (1949) proved that a cryptosystem is secure if it 
can create confusion and diffusion in data up to a 
certain level. An S-box is cryptographically strong 

enough to create the desired confusion and diffusion 
if it passes certain tests, including tests of non- 
linearity, approximation, strict avalanche, bit inde-
pendence, and algebraic complexity. 

Nowadays, AES is considered to be the most 
secure and widely used cryptosystem. Many cryp-
tographers have studied its S-box. Jakobsen and 
Knudsen (1997), Courtois and Pieprzyk (2002), 
Murphy and Robshaw (2002), and Rosenthal (2003) 
have revealed that the AES S-box is vulnerable to 
algebraic attacks because of its sparse polynomial 
representation. It has been noted that a cryptosystem 
based on a single S-box is unable to generate a de-
sirable level of security if the data is highly correlated 
(Hussain et al., 2014; Azam, 2017). Furthermore, it 
has been shown that the security of a cryptosystem 
can be improved using dynamic S-boxes instead of a 
static S-box (Kazlauskas and Kazlauskas, 2009; 
Manjula and Mohan, 2013; Rahnama et al., 2013; 
Katiyar and Jeyanthi, 2016; Maram and Gnanasekar, 
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2016; Agarwal et al., 2018). The two principal rea-
sons behind this are: (1) Static S-boxes are vulnerable 
to data analysis attacks and subkey attacks in which 
subkeys are obtained using an inverse subbyte, if the 
inverse of an S-box is known (Rahnama et al., 2013); 
(2) The algorithms using a dynamic S-box are more 
complex and can provide more overhead to cryptan-
alysts when compared with a static S-box (Kazlaus-
kas and Kazlauskas, 2009; Manjula and Mohan, 2013; 
Katiyar and Jeyanthi, 2016; Maram and Gnanasekar, 
2016; Agarwal et al., 2018). Different image encryp-
tion algorithms using dynamic S-boxes were pre-
sented in Zaibi et al. (2009), Wang and Wang (2014), 
Devaraj and Kavitha (2016), and Liu et al. (2016). In 
these studies, it turned out that image cryptosystems 
based on a dynamic S-box provide better security 
when compared with the cryptosystems using a static 
S-box. Due to these reasons, many researchers have 
proposed new S-box generation techniques based on 
different mathematical structures, including algebraic 
and differential equations. 

For an S-box design technique, the resultant 
S-box must have the following characteristics: (1) It 
must inherit the properties of the underlying mathe-
matical structure. This is an important requirement 
which leads to efficient generation and good under-
standing of the cryptographic properties of resultant 
S-box. (2) It must be generated in low time and space 
complexity. (3) It must satisfy the security tests. Of 
course, an S-box generation technique with high time 
complexity is not suitable for cryptosystems using 
multiple and dynamic S-boxes. Liu et al. (2005) pre-
sented an improved AES S-box based on an algebraic 
method. Cui and Cao (2007) used an affine function 
to generate an S-box with 253 non-zero terms in its 
polynomial representation. Tran et al. (2008) used 
composition of a Gray code instead of an affine 
mapping with the AES S-box to generate an S-box 
with high algebraic complexity. Khan and Azam 
(2015a, 2015b) proposed different methods for the 
generation of cryptographically strong S-boxes based 
on a generalization of the Gray S-box and affine 
functions. Azam (2017) used the S-boxes introduced 
by Khan and Azam (2015a) for the encryption of 
confidential images. Chaotic maps including Baker, 
logistic, and Chebyshev maps were used to generate 
new S-boxes in Tang et al. (2005), Chen (2008), and 
Wang et al. (2010). Similarly, elliptic curves (ECs) 

were used in the field of cryptography for the  
development of highly secure cryptosystems. Miller 
(1986) presented an EC-based security system, which 
has a smaller key size and higher security than RSA. 
Cheon et al. (1999) developed a link between the 
points on hyper-elliptic curves and the non-linearity 
of an S-box. Hayat et al. (2018) and Hayat and Azam 
(2019) first used an EC over a prime field for the 
generation of dynamic S-boxes. In these works, an 
S-box is generated using the x-coordinate of the 
points on an ordered EC over a prime p, where the 
ordering  on the points is performed with respect to 
their values (i.e., for any two points (x1, y1) and (x2, y2) 
on the EC, 1 1 2 2( , ) ( , )x y x y  if 2 2

1 2y y≤  (mod p)). 
Actually, the scheme in Hayat and Azam (2019) is a 
generalization of the method in Hayat et al. (2018). 
Although these methods are capable of generating 
cryptographically strong S-boxes, they have the fol-
lowing two weaknesses: (1) They need to compute 
and store the EC during their generation process. Due 
to this, the time and space complexities of these 
schemes are O(p2) and O(p) respectively, where 
p≥257 is the prime of the underlying EC. (2) The 
output of these methods is uncertain; i.e., for each set 
of input parameters, the algorithms do not necessarily 
output an S-box. 

The purpose of this work is to develop a novel 
and efficient S-box generation technique based on a 
finite Mordell elliptic curve (MEC), which generates 
a secure S-box inheriting the properties of the un-
derlying MEC for each set of input parameters. To 
achieve this, we define some typical types of total 
orders on the points of the MEC and use the 
y-coordinate instead of the x-coordinate to obtain an 
S-box. 

 
 

2  Preliminaries 
 

For a prime p and two non-negative integers a 
and b≤p−1, the EC Ep,a,b over a prime field Fp is de-
fined to be the collection of the infinity point O and all 
ordered pairs (x, y)∈Fp×Fp, satisfying 

 
2 3  (mod ),y x ax b p≡ + +  

 
where p, a, and b are parameters of Ep,a,b. An  
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approximation for the number |Ep,a,b| of points on 
Ep,a,b can be obtained using the Hasse formula 
(Washington, 2008), expressed as 
 

( ), ,| | 1abs 2 ,p a bE p p− − ≤  

 
where abs( ) represents the absolute value. 

The MEC is a special kind of ECs with a=0. The 
significance of some MECs Ep,0,b is that they have 
exactly (p+1) points. The following theorem (Wash-
ington, 2008) gives the information on such MECs: 
Theorem 1    Let p>3 be a prime such that 
p≡2 (mod 3). For each b∈Fp, the MEC Ep,0,b has ex-
actly (p+1) distinct points, and has each integer in [0, 
p–1] exactly once as the y-coordinate. 

Hence, an MEC Ep,0,b where p≡2 (mod 3) is 
simply denoted as Ep≡2,b. 

 
 

3  Description of the proposed S-box design 
technique 
 

In this section, we give an informal idea of our 
proposed method. Our aim is to develop an S-box 
generation technique based on an MEC which outputs 
an S-box: (a) in linear time and constant space for 
each set of input parameters; (b) inheriting the prop-
erties of the underlying MEC; (c) having high security 
against cryptanalysis. Note that the S-box design 
techniques proposed by Hayat et al. (2018) and Hayat 
and Azam (2019) do not satisfy conditions (a) and (b). 
One of the possible ways of designing such a tech-
nique is to input an EC which contains all integers 
from [0, 255] without repetition. Therefore, the pro-
posed algorithm takes an MEC Ep≡2,b as an input and 
uses the y-coordinate instead of the x-coordinate to 
generate an S-box. The next task is to use the 
y-coordinate in such a way that the resultant S-box 
inherits the properties of the underlying MEC. Of 
course, the use of some arithmetic operations such as 
the modulo operation will destroy the structure of the 
underlying MEC. Thus, we use the concept of the 
total order on the MEC to obtain an S-box. Order 
theory is intensively used in formal methods, pro-
gramming languages, logic, and statistical analysis. 
Now a natural question is how to define different 
orderings on the MEC. Note that for each x value of 
the MEC, there are two y values. Thus, we can divide 

the orderings on the MEC into two categories: (1) one 
in which the two y values of each x appear consecu-
tively; (2) the other one containing those orderings in 
which the two y values of each x do not appear con-
secutively. Based on this, we define three different 
types of orderings on the given MEC Ep≡2,b to gener-
ate three different S-boxes. 

3.1  Orderings on an MEC Ep≡2,b 

The orderings used in the proposed method are 
discussed below: 

1. A natural ordering on an MEC 
We define a natural ordering N on Ep≡2,b based 

on the x-coordinate as follows: 
 

(x1, y1) N (x2, y2)⇔ 
either “x1<x2” or “x1=x2 and y1<y2,” 

(1) 
where (x1, y1) and (x2, y2)∈Ep≡2,b. 

The aim of this ordering is to sort the points on 
the MEC in such a way that the x-coordinate is in 
non-decreasing order and the two y values corre-
sponding to each x value appear consecutively. 

The next two orderings are introduced based on 
the following observation deduced from Theorem 1 to 
diffuse the y-coordinate on an MEC: 
Observation 1    For any two distinct points (x1, y1) 
and (x2, y2) on the MEC Ep≡2,b such that either 
x1+y1=x2+y2 or x1+y1≡x2+y2 (mod p), x1≠x2 holds. 

2. A diffusion ordering on an MEC 
An ordering is defined on Ep≡2,b to diffuse the two 

y values of each x value. Let (x1, y1) and (x2, y2) be any 
two points on Ep≡2,b. The diffusion ordering D is 
defined to be 

 
(x1, y1) D (x2, y2)⇔ 

either “x1+y1<x2+y2” or “x1+y1=x2+y2 and x1<x2.” 
(2) 

Lemma 1    For any MEC Ep≡2,b, the relation D is a 
total order. 
Proof    For each (x1, y1)∈Ep≡2,b, we have x1+y1=x1+y1, 
and therefore (x1, y1) D (x1, y1). This implies that D 

is reflexive. Next, we need to prove that D has the 
antisymmetric property. For (x1, y1) and (x2, 
y2) Ep≡2,b, suppose that (x1, y1) D (x2, y2) and (x2, y2) 
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D (x1, y1) hold. This implies that x1+y1=x2+y2. This is 
because x1+y1<x2+y2 and x2+y2<x1+y1 are the only 
cases for which the assumption and x1+y1≠x2+y2 hold, 
implying that x1+y1=x2+y2. Now if x1≠x2, by the as-
sumption and the fact that x1+y1=x2+y2, we have x1<x2 
and x2<x1, leading to x1=x2, which is a contradiction. 
Thus, x1+y1=x2+y2 and x1=x2 hold, ultimately  
implying that y1=y2. Therefore, (x1, y1)=(x2, y2). Now 
to prove the transitive property, suppose that (x1, y1) 
D (x2, y2) and (x2, y2) D (x3, y3) hold, where (x1, y1), 

(x2, y2), and (x2, y3)∈Ep≡2,b. Now if x1+y1<x2+y2 and 
x2+y2≤x3+y3, or x1+y1=x2+y2 and x2+y2<x3+y3, then 
x1+y1<x3+y3. Therefore, (x1, y1) D (x3, y3). Similarly, 
if x1+y1=x2+y2=x3+y3, then x1<x2 and x2<x3. Hence, 
x1+y1=x3+y3 and x1<x3. This completes the proof. 

3. A modulo diffusion ordering on an MEC 
The order M defined below produces diffusion 

in both x- and y-coordinate of the points on Ep≡2,b. Let 
(x1, y1) and (x2, y2)∈Ep≡2,b. Then we have 

 

(x1, y1) M (x2, y2)⇔ 
either “x1+y1<x2+y2 (mod p)”             (3) 

or “x1+y1=x2+y2 (mod p) and x1<x2.” 
 

Lemma 2    For any MEC Ep≡2,b, the relation M is a 
total order. 

Lemma 2 can be proved using arguments similar 
to those used in the proof of Lemma 1. 

The effect of these orderings N, D, and M on 
the y-coordinate of the MEC E101≡2,1 is shown in 
Fig. 1, by plotting them in non-decreasing order of 
their points on the MEC with respect to N, D, and 

M, respectively. 
Similarly, a relationship among the sets of the 

y-coordinate of the MEC Ep≡2,b obtained by different 
proposed orderings (H andK, where H and K∈{N, 
D, M}) is quantified by computing their correlation 
coefficient ρHK. The correlation results of different 
MECs are shown in Table 1. Table 1 shows that each 
ordering has different effects on the y-coordinate of 
the underlying MEC. 

3.2  The proposed S-box construction method 

Let Ep≡2,b be an MEC, where p≥257. The lower 

bound on the prime p is 257 for the proposed method, 
so MEC has at least 256 points. An S-box , ,H

p bS  where 

H∈{N, D, M}, is generated by selecting the 
y-coordinate on Ep≡2,b which are in the interval [0, 255] 
using the function of , :H

p bS  {0, 1, …, 255}→{0,1,…, 

255} defined as , ( )H
p b iS i y=  such that (xi, yi)∈Ep≡2,b 

and (xi–1, yi–1) H (xi, yi). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
It is clear from Theorem 1 that ,

H
p bS  is a bijection, 

which further implies that the proposed method gen-
erates an S-box for each set of input parameters. 
Lemma 3    For any prime p≥257 such that 
p≡2 (mod 3) with an integer b∈[0, p–1] and H∈{N, D, 
M}, the S-box ,

H
p bS  can be generated in time O(p) and 

constant space. 
Proof    The generation of ,

H
p bS  requires calculating 

and sorting 256 points on the MEC with the 
y-coordinate in [0, 255]. The calculation of 256 points 
on the MEC can be done in O(p), since for each y∈[0, 
255], a for-loop of size p suffices to find an integer x 
such that (x, y) is a point on the MEC. However, the 
sorting of these 256 points can be done in constant 
time with respect to the ordering H. Thus, ,

H
p bS  can be 

Table 1  Results of the correlation tests 
p b ρND ρDM ρMN 

101 1 −0.0588 0.0550 −0.0497 
827 87 −0.0044 0.0008 0.0027 

1013 118 0.0028 −0.0059 0.0003 
2027 8 0.0007 −0.0068 −0.0002 

 
 
 

Fig. 1  Arrangements of the y-coordinate of E101≡2, 1 with 
respective to the proposed orderings 
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generated in O(p). Furthermore, the generation pro-
cess stores only 256 points on the MEC for the sorting 
purpose. Therefore, it takes constant space. 

It is evident from Lemma 3 that the time and 
space complexities of the proposed S-box generation 
method over MEC Ep,b are independent of parameter 
b and the ordering on the underlying MEC. An algo-
rithmic description of the proposed generation 
method is given in Algorithm 1. 

 
Algorithm 1    The proposed S-box generation 
method 
Input:  An MEC Ep,b, where p≡2 (mod 3), with a total order 

H∈{N, D, M} 

Output: S-box ,
H
p bS  

1: A:=∅ /* The set of 256 points of the MEC with the 
y-coordinate in [0, 255] */ 

2: for each y=0, 1, … , 255 do 
3:       for each x=0, 1, … , p–1 do 
4: if x3+b=y2 (mod p) then 
5:    A:=A∪{(x, y)} 
6: end if 
7:       end for 
8: end for 
9: Sort A with respect to the ordering H 

10: Output all y-coordinate of the points in A preserving their 

order as the S-box ,
H
p bS  

 
The S-boxes N D

1667, 351 3299, 1451,  ,S S  and M
4229, 2422S  

generated by the proposed technique are presented in 
Tables A1–A3 (see Appendix). 

 
 

4  Security analysis 
 

Several standard tests are applied on the S-boxes 
obtained by the proposed method to test their cryp-
tographic strength. A brief introduction to these se-
curity tests and their results for some of the newly 
generated S-boxes N

1667, 351,S  N
1949, 544 ,S  N

3023, 626 ,S  
D
3299, 1451,S  D

3041, 1298 ,S  D
3347, 2937 ,S  M

4229, 2422 ,S  M
4217, 1156 ,S  

and M
3299, 1400S  are discussed in this section. 

4.1  Non-linearity (NL) 

It is important for an S-box to create confusion in 
the data up to a certain level to keep the data secure 
from an adversary. The confusion creation capability 

of an S-box S over the Galois field GF(28) is meas-
ured by its non-linearity N(S), which is defined as 

 
{ }8

, ,
( ) min ,GF(2 ) : ( )

α β γ
N S x α S x β x γ= ∈ ⋅ ≠ ⋅ ⊕  

 
where α∈GF(28), β∈GF(28)\{0}, γ∈GF(2), and “·” 
represents the dot product over GF(2). 

An S-box with high non-linearity (NL) is capable 
of generating high confusion in the data. However, it 
was shown in Meier and Staffelbach (1990) that an 
S-box with high NL may not have other cryptographic 
properties. The NL of some of the newly constructed 
S-boxes is listed in Table 2. Note that each listed 
S-box has an NL of 106, which is large enough to 
create high confusion. 
 
 
 
 
 
 
 
 
 
 

 
 

4.2  Approximation attacks 

A cryptographically strong S-box must have high 
resistance against approximation attacks. Approxi-
mation attacks can be divided into two categories, 
namely, linear approximation attacks and differential 
approximation attacks, which are explained below. 

4.2.1  Linear approximation probability (LAP) 

The resistance of an S-box S against linear ap-
proximation attacks is measured by calculating its 
maximum number L(S) of coincident input bits with 
the output bits. The mathematical expression of L(S) 
is as follows: 

 

{({{
} )}}

8
8

7

1 max abs( ) GF(2 ) |
2

.2( )

α,β
L S x α x

β S x

= ∈ ⋅

−= ⋅
 

 
An S-box S is highly resistive against linear ap-

proximation attacks if it has a low value of L(S). The 

Table 2  Non-linearity (NL) of the newly generated S-boxes 

S-box NL S-box NL 
N

1667,351S  106 D
3347,2937S  106 

N
1949,544S  106 M

4229,2422S  106 
N
3023,626S  106 M

4217,1156S  106 
D
3299,1451S  106 M

3299,1400S  106 
D
3041,1298S  106   
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LAP of the newly generated S-boxes is listed in Ta-
ble 3. The average LAP of all of the listed S-boxes is 
0.1371, which is very low. Hence, the proposed 
scheme is capable of generating S-boxes with high 
resistance against linear approximation attacks. 

4.2.2  Differential approximation probability (DAP) 

The strength of an S-box against differential ap-
proximation attacks is measured by calculating its 
DAP. For an S-box S, the DAP D(S) is the maximum 
probability of a specific change Δy in the output bits 
S(x) when the input bits x are changed to x ⊕ Δx, i.e., 
 

{{{
}}}

8
8

8

Δ ,Δ

1 max( ) GF(2 ) | ( Δ )

2

2
,( ) Δ

x y
D S x S x x

S x y

= ∈ ⊕

= ⊕
 

 
where Δx and Δy∈GF(28), and ⊕ denotes the bit-wise 
addition over GF(2). 

The smaller the value of DAP, the higher the 
security of the S-box against differential approxima-
tion attacks. The experimental results of DAP on the 
newly generated S-boxes are presented in Table 4. 
Table 4 shows that the newly generated S-boxes have 
high resistance against differential attacks. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 

4.3  Strict avalanche criterion (SAC) 

The diffusion creation capability of an S-box is 
calculated by the SAC. The SAC of an S-box S is the 
measure of change in output bits when a single input 
bit is changed. The SAC of an S-box S with Boolean 
functions Si (1≤i≤8) is computed by calculating an 
eight-dimensional square matrix M(S)=[mij] using 
each of the eight elements αj∈GF(28) with only one 
non-zero bit. The elements mij of M(S) are computed 
as follows: 

 

( )
8

8
GF(2 )

1 ( ) ( ) ,
2ij i j i

x

m ω S x α S x
∈

 
= ⊕ ⊕  

 
∑  

 
where ω(ν) denotes the number of non-zero bits in 
vector ν. 

The SAC test is fulfilled if all entries of M(S) are 
close to 0.5. The entries of the SAC matrix corre-
sponding to each newly generated S-boxes ( N

1667,351,S  
D
3299,1451,S  and M

4229,2422S ) are plotted in a linear order in 
Fig. 2. The averages of the minimum and maximum 
of M(S) corresponding to each of the newly generated 
S-boxes are 0.4115 and 0.6094, respectively. Table 5 
shows that the S-boxes generated by the proposed 
method based on MECs are capable of generating 
high diffusion in the data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Bit independence criterion (BIC) 

The BIC is an important test to measure the dif-
fusion creation strength of an S-box. The main idea is 

Table 3  Linear approximation probability (LAP) of the 
newly generated S-boxes 

S-box LAP S-box LAP 
N

1667,351S  0.1328 D
3347,2937S  0.1406 

N
1949,544S  0.1328 M

4229,2422S  0.1328 
N
3023,626S  0.1406 M

4217,1156S  0.1328 
D
3299,1451S  0.1484 M

3299,1400S  0.1406 
D
3041,1298S  0.1328   

 

Table 4  Differential approximation probability (DAP) of 
the newly generated S-boxes 

S-box DAP S-box DAP 
N

1667,351S  0.0391 D
3347,2937S  0.0391 

N
1949,544S  0.0391 M

4229,2422S  0.0391 
N
3023,626S  0.0391 M

4217,1156S  0.0391 
D
3299,1451S  0.0391 M

3299,1400S  0.0391 
D
3041,1298S  0.0391   

 

Fig. 2  Strict avalanche criterion (SAC) matrix plot for 
N
1667, 351 ,S D

3299,1451 ,S  and M
4229,2422S  
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to investigate the dependence of a pair of output bits 
when an input bit is inverted. 

The BIC of an S-box S over GF(28) with Si 
Boolean functions is calculated by computing an 
eight-dimensional square matrix N(S)=[nij], ex-
pressed as 

 

(

)

88 GF(2 )
1 8

( ) ( )1
2

( ) ( ) .

i j i
ij x

k

k j k

S x α S xω
n

S x α S x

∈
≤ ≤

⊕ ⊕
= 


⊕ + ⊕ 


∑
 

 
Of course nii=0. An S-box is good if all off- 

diagonal values of its BIC matrix are close to 0.5. The 
experimental results of this test on the newly gener-
ated S-boxes N

1667,351,S  D
3299,1451,S  and M

4229,2422S  ex-
cluding the value of 0 are shown in a linear order in 
Fig. 3. The minimum and maximum of the BIC ma-
trix N(S) of each of the newly generated S-boxes are 
listed in Table 6. Fig. 3 and Table 6 show that the 
S-boxes generated by the proposed methods are 
strong enough to generate high diffusion in the data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5  Algebraic complexity (AC) 

The resistance of an S-box against algebraic at-
tacks is measured by computing its linear polynomial. 
The AC of an S-box is the number of non-zero terms 
in its linear polynomial. The greater the AC, the more 
secure the S-box against algebraic attacks. The AC of 
the newly generated S-boxes is computed (Table 7). 

The minimum and maximum of the AC of the newly 
generated S-boxes are 253 and 255, respectively, 
which are very close to the optimal value of 255. Thus, 
the proposed method can generate S-boxes with a 
good AC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 6  Bit independence criterion (BIC) of the newly 
generated S-boxes 

S-box BIC 
Maximum Minimum 

N
1667,351S  0.5273 0.4648 
N

1949,544S  0.5293 0.4629 
N
3023,626S  0.5313 0.4707 
D
3299,1451S  0.5371 0.4707 
D
3041,1298S  0.5273 0.4844 
D
3347,2937S  0.5254 0.4746 
M
4229,2422S  0.5254 0.4688 
M
4217,1156S  0.5313 0.4766 
M
3299,1400S  0.5449 0.4727 

 

Table 5  Strict avalanche criterion (SAC) of the newly 
generated S-boxes 

S-box SAC 
Maximum Minimum 

N
1667,351S  0.5938 0.4531 
N

1949,544S  0.6250 0.4219 
N
3023,626S  0.6563 0.4219 
D
3299,1451S  0.6406 0.4063 
D
3041,1298S  0.6094 0.4219 
D
3347,2937S  0.6094 0.4063 
M
4229,2422S  0.5938 0.3750 
M
4217,1156S  0.6094 0.3906 
M
3299,1400S  0.6250 0.3594 

 
Table 7  Algebraic complexity (AC) of the newly gener-
ated S-boxes 

S-box AC S-box AC 
N

1667,351S  254 D
3347,2937S  255 

N
1949,544S  254 M

4229,2422S  253 
N
3023,626S  255 M

4217,1156S  253 
D
3299,1451S  255 M

3299,1400S  255 
D
3041,1298S  254   

 

Fig. 3  Bit independence criterion (BIC) matrix plot for 
N
1667,351 ,S  D

3299,1451 ,S  and M
4229,2422S  
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5  Comparison and discussion 
 

A detailed comparison of the proposed S-box 
construction method is described in this section. 

5.1  Time and space complexities 

It is always desirable to have algorithms with 
low time and space complexities from an implemen-
tation point of view. The time and space complexities 
of the proposed method and other S-box generation 
methods (Hayat et al., 2018; Hayat and Azam, 2019) 
based on ECs are compared (Table 8). Note that each 
method in Hayat et al. (2018) and Hayat and Azam 
(2019) has quadratic time complexity, while the 
proposed method takes linear time in the underlying 
prime p for the generation of an S-box. However, the 
space complexity of the methods in Hayat et al. (2018) 
and Hayat and Azam (2019) is O(p), where p is the 
underlying prime, while it is constant for the proposed 
method. Hence, the newly developed method is more 
suitable for implementation when compared with all 
existing S-box generation methods over ECs. 

 
 
 
 
 
 
 

 
 
 

 
 

5.2  Generation efficiency 

For a good dynamic S-box construction scheme, 
it is necessary to ensure the generation of S-boxes for 
each valid input parameter, and construct a sufficient 
number of distinct S-boxes. It is evident from Theo-
rem 1 that the proposed method always generates an 
S-box for each input, while the outputs of the methods 
in Hayat et al. (2018) and Hayat and Azam (2019) are 
uncertain; i.e., they do not guarantee the construction 
of S-boxes for each input. This implies that the pro-
posed method is better than existing methods over 
ECs. 

The proposed method can generate at most (p–1) 
distinct S-boxes for a given prime p and an ordering, 

since for each b∈[1, p–1] it can generate exactly one 
S-box. We generate all S-boxes by the proposed 
method for different primes (p=257, 263, 269, 281, 
293, 1013, 1019, 1031, 1049, 1061, and 1997) and 
each ordering developed in this study. The number of 
distinct S-boxes for each ordering is the same for all 
the primes (Table 9). Table 9 shows that the number 
of distinct S-boxes generated by the proposed S-box 
design scheme attains the optimal value and increases 
with the increase of the size of the prime. Hence, one 
can generate the desired number of distinct S-boxes 
using the proposed method. 

 
 
 
 
 
 
 
 
 

 
 

 

5.3  Cryptographic properties 

The cryptographic properties of some of the 
S-boxes constructed by the proposed method are 
compared with those of some of the well-known ex-
isting S-boxes in Daemen and Rijmen (2002), Tang et 
al. (2005), Chen et al. (2007), Chen (2008), Kim and 
Phan (2009), Wang et al. (2010), Gautam et al. (2015), 
and Hayat et al. (2018) generated by different 
mathematical structures. Properties of the S-boxes 
used in this comparison are listed in Table 10. Note 
that the NL of the S-boxes ( N

1667,351,S  D
3299,1451,S  and 

M
4229,2422S ) is greater than that of the S-boxes in Tang 

et al. (2005), Chen et al. (2007), Chen (2008), Kim 
and Phan (2009), Gautam et al. (2015), and Hayat 
et al. (2018). Hence, the newly generated S-boxes 
create better confusion in the data compared with the 
S-boxes in those works. This implies that the pro-
posed technique is capable of generating S-boxes 
with better NL compared with some of the existing 
techniques. Moreover, the LAP of the newly gener-
ated S-boxes is smaller than or equal to that of the 
S-boxes in Tang et al. (2005), Chen et al. (2007), 
Chen (2008), Wang et al. (2010), and Gautam et al. 

Table 8  Comparison of the time and space complexities 
between the proposed method and other methods over 
ECs 

S-box Time complexity Space complexity 
Hayat et al. 

(2018)’s O(p2) O(p) 

Hayat and 
Azam (2019)’s O(p2) O(p) 

Ours O(p) O(1) 
 

Table 9  Number of distinct S-boxes constructed by the 
proposed scheme for some primes 

p Number of distinct 
S-boxes p Number of distinct 

S-boxes 
257 256 1019 1018 
263 262 1031 1030 
269 268 1049 1048 
281 280 1061 1060 
293 292 1997 1996 
1013 1012   
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(2015), while the DAP of the newly generated 
S-boxes is smaller than or equal to that of the S-boxes 
in Tang et al. (2005), Chen et al. (2007), Chen (2008), 
Kim and Phan (2009), Wang et al. (2010), Gautam et 
al. (2015), and Hayat et al. (2018). Thus, the S-boxes 
generated by the proposed technique have the same or 
better security against approximation attacks com-
pared with other S-boxes. Similarly, the SAC, BIC, 
and AC test results of the newly generated S-boxes 
are comparable to their counterparts of the S-boxes 
listed in Table 10. Hence, the proposed S-box gener-
ation technique based on an MEC is capable of gen-
erating S-boxes with cryptographic properties com-
parable to those of some of the existing S-box con-
struction techniques based on different mathematical  
structures.  

 
 

6  Conclusions 
 

In this study, we have presented an S-box design 
method based on the y-coordinate of a finite Mordell 
elliptic curve (MEC), where the underlying prime is 
congruent to 2 (mod 3). The technique uses some 
special types of total orders on the points on the MEC, 
and generates an S-box. The main advantage of the 
proposed method is that it has linear time complexity 
and constant space complexity and generates an 
S-box for each set of input parameters, which is im-
possible in any existing S-box generation scheme 
over elliptic curves. Several standard security tests 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

were performed on the S-boxes generated by the 
proposed method to analyze its cryptographic effi-
ciency. Experimental results showed that the pro-
posed method can generate cryptographically strong 
S-boxes. Furthermore, computational results showed 
that the cryptographic properties of the newly gener-
ated S-boxes are comparable to those of some of the 
well-known existing S-boxes generated by different 
mathematical structures. 
 
Compliance with ethics guidelines 

Naveed Ahmed AZAM, Umar HAYAT, and Ikram 
ULLAH declare that they have no conflict of interest. 
 
References 
Agarwal P, Singh A, Kilicman A, 2018. Development of key- 

dependent dynamic S-boxes with dynamic irreducible 
polynomial and affine constant. Adv Mech Eng, 10(7): 
1-18. https://doi.org/10.1177/1687814018781638 

Azam NA, 2017. A novel fuzzy encryption technique based on 
multiple right translated AES gray S-boxes and phase 
embedding. Secur Commun Netw, 2017:1-9. 

 https://doi.org/10.1155/2017/5790189 
Chen G, 2008. A novel heuristic method for obtaining S-boxes. 

Chaos Sol Fract, 36(4):1028-1036. 
https://doi.org/10.1016/j.chaos.2006.08.003 

Chen G, Chen Y, Liao XF, 2007. An extended method for 
obtaining S-boxes based on three-dimensional chaotic 
baker maps. Chaos Sol Fract, 31(3):571-579.  

 https://doi.org/10.1016/j.chaos.2005.10.022 
Cheon JH, Chee S, Park C, 1999. S-boxes with controllable 

nonlinearity. Proc 17th Int Conf on Theory and Applica-
tion of Cryptographic Techniques, p.286-294.  

 https://doi.org/10.1007/3-540-48910-X_20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 10  Comparison of the newly generated S-boxes with some of the existing S-boxes 

S-box NL LAP DAP 
SAC BIC 

AC 
Maximum Minimum Maximum Minimum 

Daemen and Rijmen (2002)’s 112 0.0620 0.0156 0.5620 0.4530 0.5040 0.4800 9 
Tang et al. (2005)’s 103 0.1328 0.0391 0.5703 0.3984 0.5352 0.4727 255 
Chen et al. (2007)’s 100 0.1328 0.0547 0.6094 0.4219 0.5313 0.4746 255 
Chen (2008)’s 102 0.1484 0.0391 0.6094 0.3750 0.5215 0.4707 254 
Kim and Phan (2009)’s 104 0.1090 0.0469 0.5930 0.3900 0.4990 0.4540 255 
Wang et al. (2010)’s 106 0.1406 0.0391 0.5938 0.4375 0.5313 0.4648 251 
Gautam et al. (2015)’s 74 0.2109 0.0547 0.6875 0.1094 0.5508 0.4023 253 
Hayat et al. (2018)’s 104 0.0391 0.0391 0.6250 0.3906 0.5313 0.4707 255 

N
1667,351S  106 0.1328 0.0391 0.5938 0.4531 0.5273 0.4648 254 

D
3299,1451S  106 0.1484 0.0391 0.6406 0.4063 0.5371 0.4707 255 

M
4229,2422S  106 0.1328 0.0391 0.5938 0.3750 0.5254 0.4688 253 

NL: non-linearity; LAP: linear approximation probability; DAP: differential approximation probability; SAC: strict avalanche criterion; BIC: 
bit independence criterion; AC: algebraic complexity 

 



Azam et al. / Front Inform Technol Electron Eng   2019 20(10):1378-1389 
 

1387 

Courtois NT, Pieprzyk J, 2002. Cryptanalysis of block ciphers 
with overdefined systems of equations. Proc 8th Int Conf 
on Theory and Application of Cryptology and Infor-
mation Security, p.267-287.  
https://doi.org/10.1007/3-540-36178-2_17 

Cui LG, Cao YD, 2007. A new S-box structure named affine- 
power-affine. Int J Innov Comput Inform Contr, 3(3): 
751-759. 

Daemen J, Rijmen V, 2002. The Design of Rijndael-AES: the 
Advanced Encryption Standard. Springer, Berlin,  
Germany. 

Devaraj P, Kavitha C, 2016. An image encryption scheme 
using dynamic S-boxes. Nonl Dynam, 86(2):927-940.  

 https://doi.org/10.1007/s11071-016-2934-7 
Gautam A, Gaba GS, Miglani R, et al., 2015. Application of 

chaotic functions for construction of strong substitution 
boxes. Ind J Sci Technol, 8(28):1-5. 

 https://doi.org/10.17485/ijst/2015/v8i28/71759 
Hayat U, Azam NA, 2019. A novel image encryption scheme 

based on an elliptic curve. Signal Process, 155:391-402.  
 https://doi.org/10.1016/j.sigpro.2018.10.011 
Hayat U, Azam NA, Asif M, 2018. A method of generating 

8×8 substitution boxes based on elliptic curves. Wirel 
Pers Commun, 101(1):439-451.  

 https://doi.org/10.1007/s11277-018-5698-1 
Hussain I, Azam NA, Shah T, 2014. Stego optical encryption 

based on chaotic S-box transformation. Opt Laser Tech-
nol, 61:50-56.  
https://doi.org/10.1016/j.optlastec.2014.01.018 

Jakobsen T, Knudsen LR, 1997. The interpolation attack on 
block ciphers. Proc 4th Int Workshop on Fast Software 
Encryption, p.28-40.  

 https://doi.org/10.1007/BFb0052332 
Katiyar S, Jeyanthi N, 2016. Pure dynamic S-box construction. 

Int J Comput, 1:42-46. 
Kazlauskas K, Kazlauskas J, 2009. Key-dependent S-box 

generation in AES block cipher system. Informatica, 
20(1):23-34.  

Khan M, Azam NA, 2015a. Right translated AES gray S-boxes. 
Secur Commun Netw, 8:1627-1635.  

 https://doi.org/10.1002/sec.1110 
Khan M, Azam NA, 2015b. S-boxes based on affine mapping 

and orbit of power function. 3D Res, 6(2), Article 43.  
 https://doi.org/10.1007/s13319-015-0043-x 
Kim J, Phan RCW, 2009. Advanced differential-style crypta-

nalysis of the NSA’s skipjack block cipher. Cryptologia, 
33(3):246-270. 
https://doi.org/10.1080/01611190802653228 

Liu JM, Wai BD, Cheng XG, et al., 2005. An AES S-box to 
increase complexity and cryptographic analysis. Proc 19th 
Int Conf on Advanced Information Networking and Ap-
plications, p.724-728.  

 https://doi.org/10.1109/AINA.2005.84 
Liu Y, Wang J, Fan JH, et al., 2016. Image encryption algo-

rithm based on chaotic system and dynamic S-boxes 
composed of DNA sequences. Multim Tools Appl, 

75(8):4363-4382. 
https://doi.org/10.1007/s11042-015-2479-7 

Manjula G, Mohan HS, 2013. Constructing key dependent 
dynamic S-box for AES block cipher system. Proc 2nd Int 
Conf on Applied and Theoretical Computing and  
Communication Technology, p.613-617.  

 https://doi.org/10.1109/ICATCCT.2016.7912073 
Maram B, Gnanasekar JM, 2016. Evaluation of key dependent 

S-box based data security algorithm using Hamming 
distance and balanced output. TEM J, 5(1):67-75.  

 https://doi.org/10.18421/TEM51-11 
Meier W, Staffelbach O, 1990. Nonlinearity criteria for cryp-

tographic functions. Proc Advances in Cryptology— 
EUROCRYPT, p.549-562.  

 https://doi.org/10.1007/3-540-46885-4_53 
Miller VS, 1986. Use of elliptic curves in cryptography. Proc 

Advances in Cryptology—CRYPTO, p.417-426.  
https://doi.org/10.1007/3-540-39799-X_31 

Murphy S, Robshaw MJB, 2002. Essential algebraic structure 
within the AES. Proc 22nd Annual Int Cryptology Conf, 
p.1-16. https://doi.org/10.1007/3-540-45708-9_1 

Rahnama B, Kıran Y, Dara R, 2013. Countering AES static 
S-box attack. Proc 6th Int Conf on Security of Information 
and Networks, p.256-260.  

 https://doi.org/10.1145/2523514.2523544 
Rosenthal J, 2003. A polynomial description of the Rijndael 

advanced encryption standard. J Algebr Appl, 2(2):223- 
236. https://doi.org/10.1142/S0219498803000532 

Shannon CE, 1949. Communication theory of secrecy systems. 
Bell Syst Tech J, 28(4):656-715.  

 https://doi.org/10.1002/j.1538-7305.1949.tb00928.x 
Tang GP, Liao XF, Chen Y, 2005. A novel method for de-

signing S-boxes based on chaotic maps. Chaos Sol Fract, 
23(2):413-419.  

 https://doi.org/10.1016/j.chaos.2004.04.023 
Tran MT, Bui DK, Duong AD, 2008. Gray S-box for advanced 

encryption standard. Proc Int Conf on Computational 
Intelligence and Security, p.253-258. 
https://doi.org/10.1109/CIS.2008.205 

Wang XY, Wang Q, 2014. A novel image encryption algo-
rithm based on dynamic S-boxes constructed by chaos. 
Nonl Dynam, 75(3):567-576.  

 https://doi.org/10.1007/s11071-013-1086-2 
Wang Y, Yang L, Li M, et al., 2010. A method for designing 

S-box based on chaotic neural network. Proc 6th Int Conf 
on Natural Computation, p.1033-1037.  

 https://doi.org/10.1109/ICNC.2010.5582968 
Washington LC, 2008. Elliptic Curves: Number Theory and 

Cryptography (2nd Ed.). Chapman & Hall/CRC, London, 
UK. 

Zaibi G, Kachouri A, Peyrard F, et al., 2009. On dynamic 
chaotic S-Box. Proc Global Information Infrastructure 
Symp, p.1-5. https://doi.org/10.1109/GIIS.2009.5307035 

 



Azam et al. / Front Inform Technol Electron Eng   2019 20(10):1378-1389 
 

1388 

Appendix: S-boxes generated by the proposed method 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

 
 

Table A1  The S-box ( )N
1667,351S  generated by the proposed method based on natural ordering 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
154 217 227 110 85 29 199 37 68 21 91 78 208 3 148 40 

198 52 54 2 73 7 168 201 229 184 146 6 172 28 44 67 

195 53 106 10 204 131 157 185 187 156 206 161 81 103 211 33 

96 159 72 134 164 143 140 193 145 231 237 12 221 188 197 116 

47 19 129 104 51 236 56 133 55 220 87 1 203 117 210 24 

4 174 175 113 34 213 171 255 30 43 130 191 57 137 76 234 

247 244 173 223 63 60 230 166 8 190 139 99 49 200 23 245 

58 102 226 83 122 70 241 94 127 41 194 233 97 251 107 26 

109 61 248 90 192 167 147 82 158 225 36 50 84 92 88 38 

74 136 138 232 62 176 128 189 124 118 169 14 228 0 243 181 

123 254 20 202 75 149 219 120 160 9 253 39 180 207 114 142 

183 93 101 15 238 177 132 212 35 250 239 249 179 17 65 186 

11 125 178 45 170 141 121 126 119 64 144 182 112 22 165 222 

100 69 252 216 13 27 152 235 80 5 196 59 25 151 79 155 

240 77 115 71 31 105 95 86 209 150 98 89 163 246 66 18 

162 214 218 42 242 46 111 48 215 224 135 108 153 32 16 205 

 

Table A2  The S-box ( )D
3299,1451S  generated by the proposed method based on diffusion ordering 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
33 151 65 207 12 103 96 123 190 126 82 155 21 1 229 186 

61 224 42 179 63 178 73 153 138 168 146 41 46 9 109 184 

124 243 236 57 19 6 100 94 69 48 116 216 54 228 90 81 

47 13 88 197 247 129 206 198 221 5 78 80 150 200 145 55 

60 105 212 18 210 43 137 250 135 166 52 115 91 208 25 199 

77 170 121 122 11 254 27 157 175 34 104 201 95 222 133 176 

36 3 141 218 30 162 220 193 28 110 223 161 74 182 226 113 

0 112 234 144 241 20 156 62 49 23 26 35 148 101 233 56 

181 130 118 149 70 173 71 45 50 204 10 87 232 93 177 67 

4 120 8 40 72 125 92 114 68 83 225 246 158 143 53 196 

249 242 136 195 160 213 131 107 66 29 230 188 38 111 205 253 

171 251 102 235 31 127 217 17 183 117 37 211 164 97 119 219 

167 134 24 16 255 2 32 215 227 154 187 75 231 240 172 142 

244 89 14 98 76 85 147 79 64 180 214 139 152 238 51 185 

22 44 194 99 39 169 203 189 108 86 132 237 163 239 209 245 

59 202 15 58 248 128 174 140 192 191 106 165 159 84 7 252 
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Table A3  The S-box ( )M
4229,2422S  generated by the proposed method based on modulo diffusion ordering 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
15 13 247 249 167 183 179 173 101 204 105 210 214 205 199 19 

164 38 85 72 98 90 113 12 239 217 165 228 123 195 26 216 

207 30 182 219 14 215 232 135 241 145 17 244 223 114 29 70 

104 81 71 99 191 128 227 86 172 185 5 75 197 184 109 248 

162 250 25 110 125 230 129 35 102 234 54 171 194 16 33 73 

155 246 154 84 149 134 238 18 240 67 200 253 61 31 170 180 

55 20 224 187 10 147 92 133 196 242 146 27 34 140 28 192 

63 127 143 203 137 2 74 193 65 4 124 51 107 24 42 122 

103 22 41 226 235 252 116 212 77 49 48 201 148 221 251 80 

229 115 93 139 181 52 97 119 189 166 21 45 53 100 32 131 

112 94 59 142 117 36 153 254 66 158 79 121 8 130 132 60 

245 231 126 152 151 89 0 39 160 136 37 78 236 56 206 157 

222 174 82 69 6 83 220 3 57 111 208 47 141 87 168 176 

11 118 169 58 243 120 150 91 190 23 178 44 7 43 177 76 

161 144 163 68 88 138 218 108 159 186 40 237 175 46 198 96 

202 9 62 50 64 233 255 209 188 1 106 225 95 213 156 211 
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