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Abstract: With more large-scale scientific computing tasks being delivered to cloud computing platforms, cloud workflow sys-
tems are designed for managing and arranging these complicated tasks. However, multi-tenant coexistence service mode of cloud 
computing brings serious security risks, which will threaten the normal execution of cloud workflows. To strengthen the security 
of cloud workflows, a mimic cloud computing task execution system for scientific workflows is proposed. The idea of mimic 
defense contains mainly three aspects: heterogeneity, redundancy, and dynamics. For heterogeneity, the diversities of physical 
servers, hypervisors, and operating systems are integrated to build a robust system framework. For redundancy, each sub-task of 
the workflow will be executed simultaneously by multiple executors. Considering efficiency and security, a delayed decision 
mechanism is proposed to check the results of task execution. For dynamics, a dynamic task scheduling mechanism is devised for 
switching workflow execution environment and shortening the life cycle of executors, which can confuse the adversaries and 
purify task executors. Experimental results show that the proposed system can effectively strengthen the security of cloud work-
flow execution. 
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1  Introduction 
 

In many scientific research fields, such as 
quantum physics, astronomy, and bioinformatics, the 
process of scientific computing often consists of tens 
of thousands of steps, requiring large-scale data 
analysis and processing (Lv et al., 2015). To properly 
manage, arrange, execute, and track these steps, the 
concept of scientific workflows has been presented. 
As the complexity of the problems to be solved in-
creases, the present large-scale scientific workflows 

often need to be implemented on complex distributed 
computing environments, such as supercomputers, 
distributed cluster systems, and grid systems. How-
ever, constructing such a system is very expensive 
(Deldari et al., 2017). 

With the development of virtualization tech-
nologies, the emergence of cloud computing provides 
a new deployment and implementation solution for 
scientific workflow applications. The cloud compu-
ting, with the resource renting, application deploy-
ment, and service outsourcing as the core, builds the 
computing environments through the integration of 
distributed resources to meet a variety of service re-
quirements (Juve and Deelman, 2011). 

As cloud customers, they no longer need to 
purchase hardware, and they just need to pay a certain 
fee to easily access the required computing and stor-
age resources over the Internet. Due to the low cost 
and the convenient resource access, more and more 
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large-scale scientific workflows have been delivered 
to cloud systems for completion (Wang et al., 2014). 

However, the cloud systems employ multi-tenant 
coexistence service mode, which brings both benefits 
and risks; for example, an attacker can legally rent a 
virtual machine (VM) and use it as a springboard to 
steal or tamper with other tenants’ data or information 
(Ainapure et al., 2018). Compared with normal cloud 
computing tasks, cloud workflow tasks have three 
salient features: (1) The execution duration is long. A 
practical cloud workflow task often requires several 
weeks or even months to be finished (Yuan et al., 
2012), which provides sufficient preparation time for 
attackers. (2) Cloud workflows are computationally 
intensive tasks (Gupta et al., 2016), which require a 
high computing accuracy. Any intermediate error will 
directly lead to the failure of the entire cloud work-
flow execution. (3) Cloud workflows are often ap-
plied in important scientific research fields. Once it 
happens that the execution results are tampered with 
without being noticed, it will bring incalculable 
losses. 

Inspired by mimic defense (Hu et al., 2017), the 
ideas of heterogeneity, redundancy, and dynamics are 
integrated to construct a mimic cloud workflow ex-
ecution system, which can significantly reduce the 
influence of system uncertainty disturbance on the 
accuracy of calculation results and effectively prevent 
network attacks that maliciously disrupt workflow 
execution. The contributions of this study are sum-
marized as follows: 

1. We devise the framework of a mimic cloud 
workflow execution system based on the diversities 
of operating systems (OSs), hypervisors, and physical 
servers, which can reduce the common attack surface 
among the components of the system, preventing fault 
propagation. 

2. We use a heterogeneous task executor cluster 
to process workflows in parallel and design a decision 
module to verify the execution results of the executor 
cluster, achieving intrusion tolerant workflow  
execution. 

3. We present the elastic executor generation and 
recycling mechanism, shortening the life cycle to 
keep the pure state of executors. 

4. We devise a dynamic workflow execution 
environment switching strategy, which enables dif-
ferent sub-tasks to be executed in different environ-
ments to confuse adversaries. 

2  Related work 
 

Workflow technology originated from the early 
1980s. With the development of distributed compu-
ting, business workflows, grid workflows, and cloud 
workflows have emerged. Cloud computing systems 
employ the virtualization technology to achieve 
flexible resource management. Compared with other 
workflow systems, cloud workflows are more effi-
cient and flexible. Therefore, cloud workflow tech-
nologies have become a research hotspot in recent 
years. Pandey et al. (2010) quantified the overall task 
scheduling cost by employing task execution costs 
and access costs between different nodes, and then 
introduced the particle swarm optimization algorithm 
to acquire the optimal scheduling strategy, minimiz-
ing the overall task execution cost. Lee et al. (2015) 
proposed an intelligent task scheduling algorithm to 
improve resource utilization. Casas et al. (2017) pre-
sented the balanced and file reuse-replication sched-
uling (BaRRS) algorithm, which adopts the data rep-
lication method to reduce the amount of data trans-
mission at the stage of task scheduling, achieving the 
improvement of task scheduling efficiency. To rea-
sonably manage the data transmission during task 
scheduling, Aktas et al. (2014) used software-defined 
networking (SDN) technologies to manage work-
flows and resource allocation. 

However, most research on cloud workflow has 
focused on improving the task execution efficiency 
and optimizing the resource allocation. In recent years, 
cloud security issues have gradually attracted wide-
spread attention. Some scholars have begun to study 
cloud workflow security issues. Yao et al. (2016) 
considered that the process of rescheduling in cloud 
systems had great similarities to the immune system 
which kept the body stable by removing the intrusive 
antigens, so an immune system inspired failure-aware 
rescheduling algorithm for the workflow task in cloud 
systems was designed to achieve fault-tolerant work-
flow execution. Ding et al. (2017) proposed a  
primary-backup workflow scheduling strategy to 
realize fault-tolerant elastic task scheduling. Resub-
mission and replication are two fundamental tech-
niques in distributed computing systems for fault 
tolerance. Yao et al. (2017) took these two techniques 
together for fault-tolerant workflow scheduling in 
cloud systems. However, all the above research used 
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passive defense methods, which can prevent system 
failures but cannot effectively resist malicious  
attacks. 

As a kind of active network defense technology, 
mimic defense provides a new idea for solving cloud 
workflow security problems. The idea of mimic de-
fense contains mainly three aspects: heterogeneity, 
redundancy, and dynamics. Many researchers have 
employed one of them to solve the network security 
problems. 

For heterogeneity, Evans and Thompson et al. 
(2016) devised a defense mechanism based on OS 
diversity to strengthen the system security; however, 
the heterogeneity difference between different OSs 
was not considered. For this problem, Garcia et al. 
(2011) used common vulnerabilities to quantify the 
heterogeneity between different OSs, but they did not 
mention how to select OSs. Afterwards, Garcia et al. 
(2014) presented a strategy for OS selection, in which 
the OS set with the least common vulnerabilities 
would be selected. 

For redundancy, the Byzantine fault tolerance 
(BFT) method is one of representative methods. On 
the basis of the BFT method, Platania et al. (2014, 
2016) devised a practical intrusion-tolerant replica-
tion system. Though the BFT method can improve the 
system security, multiple consultation steps contained 
in the BFT method will produce a huge time overhead. 
To limit the costs of redundant methods, Zheng et al. 
(2012) proposed a component ranking algorithm, in 
which redundant methods were used for only the 
protection of the selected important components. In 
large-scale SDN, multiple controllers can be deployed 
in the control plane to strengthen the system reliability. 
However, it usually involves big data in SDN. At the 
same time, the legality of the data sources should be 
ensured. To address these challenges, Wu et al. (2018) 
proposed a big data analysis based secure cluster 
management architecture for the optimized control 
plane. 

For dynamics, Peng et al. (2014) formulated the 
relationship between executor attack surfaces and 
time. The conclusion was that executor attack sur-
faces would rise quickly with the time going on. So, 
shortening the life cycle of executors is an effective 
way to reduce attack surface sizes. Based on this idea, 
Guo and Bhattacharya (2014) presented the dynamic 
switching of the task execution environment, which 

can bring a considerable security gain, especially 
when there is a huge difference in the task execution 
environment before and after environment switching. 
However, how to choose the moment of environment 
switching is a difficult question. 

 
 

3  Security risks of cloud workflows 
 

Normally, a workflow is modeled by the directed 
acyclic graph (DAG), which can be represented by 
G=(V, E), where V={v1, v2, …, vn} denotes sub-tasks 
in the workflow and E denotes dependent data be-
tween sub-tasks. For example, ei,jE denotes de-
pendent data generated by vi and consumed by vj.  

In cloud workflow systems, each sub-task in the 
workflow needs to be allocated to VMs to be executed. 
Cloud computing platforms adopt virtualization 
technology to provide flexible resource allocation for 
workflow execution, but multi-tenant coexistence 
service mode brings many security threats. For ex-
ample, adversaries can bypass logical isolation be-
tween VMs via side channels to attack VMs per-
forming the workflow (Verma et al., 2017). Attackers 
can choose to interrupt the execution of the workflow 
or tamper with the execution results of the workflow. 
Except for the attacks against VMs, the hypervisor 
deployed in computing nodes is also insecure. A kind 
of vulnerabilities called “VM escape” can be em-
ployed to help attackers access the privilege domain 
of the hypervisor, and then all the VMs supported by 
this hypervisor can be compromised easily (Grobauer 
et al., 2011). Furthermore, some experienced attack-
ers are able to launch a basic input/output system 
(BIOS) attack and directly threaten the security of 
physical servers in the cloud environment (Stewin and 
Bystrov, 2012; Kallenberg et al., 2013). 

Security risks of cloud workflow exist mainly in 
two aspects. First, sub-tasks in the same workflow are 
dependent, so any sub-task interruption will terminate 
the workflow execution. A feasible method is that 
each sub-task is submitted to multiple task executors 
to perform. However, from the perspective of the 
attack surface, the size of a common attack surface of 
multiple executors will not always reduce with the 
increase of the number of redundant executors. It is 
supposed that there are M task executors, e1, e2, …, eM, 
whose attack surfaces are represented by f(e1), 
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f(e2), …, f(eM) respectively, and the common attack 
surface f(e1, e2, …, eM) is defined as 

 

1 2 1 2( , , , ) ( ) ( ) ( ).M Mf e e e f e f e f e      (1) 

 
Therefore, multiple homogeneous task executors 

cannot improve the security of workflow execution 
significantly. Second, cloud workflows always take a 
long time to be executed, providing sufficient prepa-
ration and attack time for adversaries. 

 
 

4  Mimic cloud workflow execution system 

4.1 Framework of the mimic cloud workflow  
execution system 

Important symbols used in Section 4 are listed in 
Table 1. 

The mimic cloud workflow system consists of a 
controller and multiple computing nodes (Fig. 1). The 
controller is responsible mainly for four aspects of 
works: workflow analysis, resource management, 
task scheduling, and workflow monitoring. When the 
controller receives a cloud workflow execution re-
quest, the workflow analyzer will analyze the struc-
ture of the submitted workflow and determine 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the task execution sequence. The resource manager is 
responsible for providing virtual computing resources 
for workflow execution. The task scheduler is in 
charge of selecting suitable virtual resources for the 
task that needs to be performed currently. The work-
flow monitor collects the status information of work-
flow execution in real time. When the monitor finds 
that the current sub-task has been finished, the mon-
itor will send a message to the workflow analyzer to 
select the next sub-task to be executed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Symbol description 

Symbol Description 

o Type of operating system 

v(ox) Number of vulnerabilities of ox 

v(o1, o2, …, on) Number of common vulnerabilities 
among o1, o2, …, on 

f(o1, o2, …, on) Common attack surface among  
v(o1, o2, …, on) 

a Attack strategy 

P(oj|ai) Probability of successful attacks 
when the attack strategy is ai and 
the OS of the attacked target is oj 

h Hypervisor type 

s Physical server type 

r Region 

· Operator that rounds up to an integer

Fig. 1  Framework of the mimic cloud workflow execution system 
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In Section 3, we have discussed that there are a 
variety of threats that can threaten the security of 
VMs, hypervisors, and hardware in cloud systems. 
For these problems, many scholars have proposed to 
employ the redundancy method to protect the com-
ponents in the cloud system. However, homogeneous 
redundant components cannot achieve good defense 
effects due to the same vulnerabilities and structures. 
Inspired by the idea of heterogeneity in mimic de-
fense, we build heterogeneous computing nodes to 
undertake workflow execution, which includes het-
erogeneous VM OSs, hypervisors, and physical 
servers. Heterogeneous VM OSs contain Windows 
Server 2003, Windows Server 2008, Windows Server 
2012, Ubuntu, Debian, Redhat, Solaris, OpenSolaris, 
OpenBSD, NetBSD, and FreeBSD. Heterogeneous 
hypervisors contain KVM, Xen, and Hyper-V. Het-
erogeneous physical servers contain Intel servers and 
ARM servers. 

4.2  Heterogeneous task executor cluster 

In cloud workflow systems, each sub-task in the 
workflow should be scheduled in the corresponding 
virtual resource to be executed, and the virtual re-
source which is responsible for sub-task execution is 
called the task executor. In many cloud workflow 
systems, each sub-task in the workflow is executed by 
a single task executor. It is very dangerous because 
the attackers can interrupt the workflow execution or 
tamper with the workflow data to cause erroneous 
execution results. Ding et al. (2017) built a replica for  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

each sub-task in the workflow, and then the two 
copies of the same sub-task would be scheduled in 
different VMs to execute; that is, each sub-task in the 
workflow would be executed by two task executors. 
However, the security of workflow execution does not 
depend on the number of executors, but on the size of 
the attack surface of executors. If the redundant ex-
ecutors are homogeneous, the size of the attack sur-
face will not decrease with the increase of the number 
of task executors. Therefore, we use heterogeneous 
task executors to reduce the size of a common attack 
surface of task executors and employ the number of 
vulnerabilities to quantize the size of the common 
attack surface of heterogeneous task executors. The 
heterogeneity of task executors is reflected in the 
heterogeneity of physical servers, hypervisors, and 
VMs. However, due to the lack of information about 
the vulnerabilities of physical servers and hypervisors, 
we can quantize only the size of the common attack 
surface of heterogeneous VMs. 

Taking 11 OSs as examples, i.e., OpenBSD (OB), 
NetBSD (NB), FreeBSD (FB), Windows Server 2003 
(W03), Windows Server 2008 (W08), Windows 
Server 2012 (W12), Ubuntu (U), Debian (D), Redhat 
(R), Solaris (Sol), and OpenSolaris (OSol), we record 
the vulnerabilities of these OSs and the common 
vulnerabilities between them according to the data 
published by common vulnerabilities and exposures 
(CVE) (Table 2), which can be used to measure the 
heterogeneity between OSs. 

The number of common vulnerabilities between 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Statistics on the number of vulnerabilities in each operating system and that between different operating 
systems 

Operating 
system 

Number of vulnerabilities 

OB NB FB W03 W08 W12 U D R OSol Sol 

OB 149 45 58 2 1 0 3 2 10 13 1 

NB 45 139 56 1 1 0 0 4 8 16 0 

FB 58 56 284 3 2 0 6 9 22 22 0 

W03 2 1 3 412 344 85 0 0 1 7 0 

W08 1 1 2 344 846 385 0 0 0 0 0 

W12 0 0 0 85 385 467 0 0 0 0 0 

U 3 0 6 0 0 0 840 303 179 86 1 

D 2 4 9 0 0 0 303 995 220 73 1 

R 10 8 22 1 0 0 179 220 1518 69 1 

OSol 13 16 22 7 0 0 86 73 69 365 27 

Sol 1 0 0 0 0 0 1 1 1 27 100 

OB: OpenBSD; NB: NetBSD; FB: FreeBSD; W03: Windows Server 2003; W08: Windows Server 2008; W12: Windows Server 2012;  
U: Ubuntu; D: Debian; R: Redhat; Sol: Solaris; OSol: OpenSolaris. The number of vulnerabilities in each operating system is in boldface 
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ok and ol is denoted by v(ok, ol), and f(ok, ol) repre-
senting the size of the common attack surface be-
tween ok and ol is defined as 

 

1( , ) ( , ),k l k lf o o k v o o                      (2) 
 

where k1>0 is a constant. We can continue to use this 
approach to represent the common attack surface 
among more than two different OSs. For example, 
f(o1, o2, …, on) representing the common attack sur-
face among o1, o2, …, on can be calculated by 
 

   1 2 2 1 2, , , , , , ,n nf o o o k v o o o            (3) 
 

where k2>0 is a constant. However, the data of v(o1, 
o2, …, on) is difficult to obtain. We adopt another way 
to represent f(o1, o2, …, on), which is 
 

1 2 1
1 1

( , , , ) ( , ) ( , ).n i j i j
i j n i j n

f o o o f o o k v o o
     

    

(4) 
To reduce f(o1, o2, …, on), the number of com-

mon vulnerabilities between any two OSs should 
be minimized. Therefore, we propose the maximum 
heterogeneity OS selection algorithm to build the VM 
cluster with the smallest common attack surface, and 
the steps of the algorithm are described as follows: 

1. It is assumed that there are m kinds of candi-
date OSs in the image library, which is denoted by 
O=(o1, o2, …, om). In the OS selection algorithm, the 
first OS os (1≤s≤m) is selected randomly, and V rep-
resenting the number of common vulnerabilities be-
tween OSs is initialized by 

 

(0,0, ,0).
m

V


                           (5) 
 

2. Use Vs=(v1
s, v2

s, …, vm
s) to represent the 

number of common vulnerabilities between os and 
other OSs. If os is Ubuntu, Vs=(3, 0, 6, 0, 0, 0, 840, 
303, 179, 86, 1) according to Table 2. Then V is up-
dated as 

 

1 2( , , , ).s mv v v  V V V                (6) 
 

3. The next OS os will be selected based on the 
following condition: 

 

1 2{ | min( , , , )}.g ms g v v v v                 (7) 

4. If the number of VMs does not meet the re-
quirements, return to step 2; otherwise, the algorithm 
is over. 

In addition to considering the diversity of OSs, 
when constructing heterogeneous task executors, the 
differences between the hypervisors, physical servers, 
and regions should be ensured as much as possible. 

4.3  Delayed decision mechanism 

Due to the low common attack surface among 
heterogeneous task executors, it is very difficult for 
adversaries to compromise all the executors, but it is 
possible to compromise some of them. In this situa-
tion, multiple different results will be generated in the 
executor cluster. To ensure that the executor cluster 
can produce consistent results, we deploy the result 
decision module to perform the vote mechanism. 

It is assumed that there are K executors in the 
executor cluster. If the decision module has received 
at least K/2 consistent results, the current sub-task 
execution is valid; otherwise, it is invalid. However, 
the time for each executor to complete the same 
sub-task is not the same. Let tf and tl denote the time 
when the first and the last results are generated, re-
spectively. If the decision module outputs only the 
consistent result after receiving all of the results 
generated by executors, the execution time of each 
sub-task will increase by tl−tf, which will waste much 
time. Therefore, the delayed decision mechanism is 
proposed. As shown in Fig. 2, it is supposed that  
executor 1 is the first to finish the execution of 
sub-task X with the generated result A. Then result A 
is used directly for the execution of sub-task Y. After 
receiving the output of executor 1, the decision mod-
ule will wait for some time to collect outputs of the 
other executors. It is assumed that the executor not 
producing a result within the specified time is also a 
form of output. The decision module will encounter 
four cases during the collection of outputs. Case 1: 
The results of all executors are the same. In this case, 
the system will not take any action. Case 2: More than 
half of the results are the same, and then the decision 
module will regard this result as the final result. 
However, the final result is different from the result of 
executor 1. In this case, the system will take two ac-
tions. First, sub-task X will be re-executed when there 
are some leisure resources. Second, sub-task Y will be 
re-executed using the final result as the input. Case 3: 
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More than half of the results are the same, and then 
the decision module will regard this result as the final 
result. The final result is the same as the result of 
executor 1. In this case, sub-task X will be re-executed 
when there are some leisure resources. Case 4: The 
number of identical results is smaller than half of the 
number of executors. In this case, the system will take 
two actions. First, sub-task X will be re-executed 
immediately. Second, sub-task Y will be terminated. 
Based on this method, the workflow execution will go 
wrong only if all executors are infiltrated by the at-
tacker and output the same error result. The delayed 
decision mechanism can effectively improve the re-
liability and credibility of workflow execution with-
out reducing the efficiency significantly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4 Elastic executor generation and recycling 
mechanism 

In Section 4.2, it has been proposed to execute 
each sub-task of the workflow by multiple heteroge-
neous executors; in this way, multiple sub-task copies 
replace the original single sub-task (Fig. 3). The 
workflow whose sub-tasks are replaced by multiple 
sub-task copies can be divided into multiple inde-
pendent workflows. In cloud computing platforms, 
the bandwidth of intra-domain transmission is much 
higher than that of inter-domain transmission. So, 

considering the fault tolerance and efficiency, 
sub-tasks of the same workflow should be placed into 
the executors located in the same region, and different 
workflows should be placed into different regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is supposed that the number of divided work-

flows is K, and each divided workflow will be com-
promised by adversaries with the probabilities of p1, 
p2, …, pK respectively. The total execution of the 
workflow will fail with the probability of P, and Ppi 
(1≤i≤K). A feasible method to reduce P is reducing 
the value of pi. Therefore, we present the elastic ex-
ecutor generation and recycling mechanism, which 
can improve the security of each divided workflow by 
shortening the life cycle of executors (Peng et al., 
2014). 

Compared with a traditional distributed compu-
ting system, such as grid computing and cluster 
computing, cloud computing has the advantage of 
flexible resource management. Computing resources 
in the cloud computing platform exist in the form of 
virtualization, which can realize elastic resource de-
ployment and recycling. In the elastic executor gen-
eration and recycling strategy, task executors having 
finished the sub-task execution will be destroyed, and 
the reclaimed resource is used for deploying new task 
executors to perform the next sub-task. According to 
the theory of cyber kill chain (Yadav and Rao, 2015), 
a full attack consists of seven steps: reconnaissance, 

Fig. 2  Delayed decision mechanism 
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Fig. 3  Workflow whose sub-tasks are replaced by multi-
ple sub-task copies being divided into multiple inde-
pendent workflows 
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weaponization, delivery, exploitation, installation, 
command, and control objectives. It is assumed that it 
will take time ta for adversaries to launch a full attack. 
If the attacked executors have finished task execution 
before ta and the next task is scheduled to a newly 
generated executor, adversaries cannot launch a full 
attack. Furthermore, since each newly generated ex-
ecutor is in a clean state, the elastic executor genera-
tion and recycling mechanism can act as the cleaning 
mechanism, reducing the risks of executors being 
implanted in the back door or virus. 

4.5 Dynamic workflow execution environment 
switching strategy 

The structure of heterogeneous task executors 
realizes execution environment diversity on the spa-
tial axis, while the workflow execution environment 
switching strategy achieves execution environment 
diversity on the timeline. Normally, computing nodes 
of the cloud platform in the same region are homo-
geneous. Therefore, in the workflow execution envi-
ronment switching strategy, we consider only the OS 
divergence and ignore the divergence of hypervisor 
types and physical server types. 

It is assumed that there is a submitted workflow 
consisting of a sub-task set V(v1, v2, …, vm), where vi 
(1≤i≤m) represents that it is the ith sub-task in the 
execution order. According to Section 4.2, each 
sub-task vi will be copied as multiple replicas and 
executed in different regions. Suppose that there are k 
regions R(r1, r2, …, rk), where workflows are exe-

cuted in parallel, j
iv  (1≤i≤m, 1≤j≤k) denotes the rep-

lica of viV executed in region rjR, and j
io  denotes 

the OS of the executor in region rj which performs 
sub-task vi. 

The workflow execution environment switching 

strategy is shown in Fig. 4. 1
jo  can be selected by the 

OS selection algorithm with the maximum hetero-

geneity. 1
2o  should have the smallest common attack 

surface with 1
1 ,o  and 2

2o  should have the smallest 

common attack surface with both 1
2o  and 2

1 .o  There-

fore, for b
ao  (1≤a≤m, 1<b≤k), it should have the 

smallest common attack surface with { e
ao |1≤e≤b−1} 

and 1.
b
ao  Based on this idea, the workflow execution 

environment switching strategy is shown in  

Algorithm 1, which can achieve the purpose of con-
fusing attackers. 
 
 
 
 
 
 
 
 
 
 
Algorithm 1  Workflow execution environment 
switching strategy 
Input: number of task executors N, diverse OS types O[mo]= 

{o1, o2, …, omo}, and sub-tasks in the workflow 

V[m][k]={ j
iv |1≤i≤m, 1≤j≤k} where V[1][2]= 2

1v  

Output: OSs of executors performing each sub-task E[m][k]= 

{ j
io |1≤i≤m, 1≤j≤k} where E[1][2]= 2

1o  

1    for i=0; i<m; i++ 
2      for j=0; j<k; j++ 
3        if i==0 && j==0 
4          E[i][j]=selecting an OS from O[] randomly 
5        else if i==0 && j!=0 
6          E[i][j]=selecting the OS having the smallest attack  
            surface with E′={E[i][d]|0≤d≤j−1} by the OS  
            selection algorithm with the maximum  
            heterogeneity 
7        else if i!=0 && j==0 
8          E[i][j]=selecting the OS having the smallest attack 
            surface with E[i−1][j] by the OS selection  
            algorithm with the maximum heterogeneity 
9        else 
10        E[i][j]=selecting the OS having the smallest attack  
            surface with E′={E[i][d]|0≤d≤j−1} and E[i−1][j] 
            by the OS selection algorithm with the maximum 
            heterogeneity 
11      end if  
12    end for 
13  end for 
14  return E[m][k] 

 
 
5  Experiment and discussion 

5.1  Security evaluation of the heterogeneous task 
executor cluster 

First, we will evaluate the impact of the number 
of task executors on system security. It is assumed 
that there are m types of candidate OSs in the image 
library, denoted by o1, o2, …, om. Adversaries know 

Fig. 4  Illustration of the workflow execution environ-
ment switching strategy 
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that the OS of each VM must belong to one of o1, 
o2, …, om, but cannot accurately determine which one 
it is. Adversaries will randomly select an OS as the 
attack strategy each time. Let ai represent the attack 
strategy against oi. It is supposed that attackers adopt 
strategy ai to attack the task executor cluster, and the 
executor whose OS is oi will be compromised with 
probability 1 and the executor whose OS is oj (ji) 
will be compromised with probability p: 

 
( , ) ( , )

( | ) .
( , ) ( )

j i j i
j i

i i i

f o o v o o
p P o a

f o o v o
               (8) 

 
Note that the defined attack model is an extreme 

case, which is convenient for analyzing the general 
law between system parameters and system security. 
In a practical situation, successful attacks depend on a 
lot of factors. Even if adversaries know the system 
type of target, it is difficult to compromise the target 
by one attack. Therefore, in the actual environment, 
the security of a mimic cloud workflow system is 
much higher than the simulation results. 

Based on the attack model, we use the number of 
attacks and the number of task executors as variables 
to simulate the attack and defense against cloud 
workflows. To analyze the impact of executor heter-
ogeneity on system security, the 11 OSs listed in  
Table 1 are used for tests, and the maximum hetero-
geneity OS selection algorithm is used for selecting 
OS types. If at least K/2 executors are compromised, 
the attack is declared successful. Test results are 
shown in Fig. 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Fig. 5, we can find that with the increase of 
the number of attacks, the attack success rate shows a 
significant upward trend. The number of executors 
will also affect the system security, since if more 
executors are contained in the cluster, attackers need 
to compromise more executors to succeed, which will 
increase the difficulty of successful attacks. We may 
find that the larger the number of heterogeneous ex-
ecutors, the better, but this is not the case. Fig. 6 
shows the relationship between the probability of 
sub-task re-execution and the number of executors. 
From Fig. 6, we can find that the increase of the 
number of executors will notably increase the proba-
bility of sub-task re-execution. In the proposed sys-
tem, if inconsistent results appear in the executor 
cluster, the sub-task will be re-executed. The larger 
the number of executors, the larger the probability 
that attackers will compromise one of the executors. 
When the number of attacks exceeds a certain value, 
the sub-task re-execution probability will show a 
downward trend, because of the increase of the 
probability of the erroneous consistent result pro-
duced in the executor cluster. Therefore, the increase 
in the number of executors will effectively reduce the 
probability that the system produces erroneous results, 
but at the same time, the probability of sub-task 
re-execution will be increased, which will cost extra 
resources. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Then we evaluate the security gain brought by 

the maximum heterogeneity OS selection algorithm. 
Except for the maximum heterogeneity OS selection 
algorithm, the random OS selection algorithm and 
homogeneous OS selection algorithm are used for 

Fig. 6  Relationship between the number of executors 
and the probability of sub-task re-execution 

Fig. 5  Relationship between the number of executors 
and the attack success rate 
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comparison. In the random OS selection algorithm, 
the OS of each executor is chosen randomly from the 
image library, and in the homogeneous OS selection 
algorithm, the OSs of all executors are the same. In 
this evaluation, the number of executors is three, and 
we use the number of attacks as the variable to sim-
ulate the attack and defense against cloud workflows. 
If all the executors are compromised, adversaries will 
win; otherwise, defenders will win. Results are shown 
in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
From Fig. 7, we can find that the maximum 

heterogeneity OS selection algorithm can strengthen 
the security of the executor cluster. When building an 
executor cluster with the maximum OS heterogeneity, 
the small common attack surface makes it difficult for 
adversaries to compromise multiple executors with 
one attack. However, with the increase of the number 
of attacks, the effect of the maximum heterogeneity 
OS selection algorithm is decreasing. 

In this study, 11 OSs have been used to illustrate 
the impact of executor heterogeneity on system se-
curity. When building a practical mimic cloud work-
flow execution system, two to four common OSs with 
high heterogeneity are enough. 

5.2  Security evaluation of elastic executor gener-
ation and recycling mechanism 

Based on the results of Section 5.1, we conduct 
the security evaluation of elastic executor generation 
and recycling mechanism. Define three kinds of at-
tacks, random attack mode without memory (attack 
R), random attack mode with memory (attack M), and 
sniffing attack mode (attack S). Attack R: Adversaries 
will choose the attack strategy from the strategy set 

with an equal probability when attacking the executor 
cluster. Attack M: This mode will record the strategy 
that has been used by adversaries, and when launch-
ing the next attack to the executor cluster, adversaries 
will select the attack strategy from the unused strategy 
set with an equal probability. Attack S: Adversaries 
will choose one of the executors from the executor 
cluster to attack, no matter whether the launched 
attack is successful or not, and adversaries can obtain 
the OS type of this target. The probability of suc-
cessful attacks is calculated using Eq. (8). 

It is assumed that the workflow used for test 
consists of 10 sub-tasks, and each sub-task is exe-
cuted in parallel by three executors with the maxi-
mum heterogeneity. The time required for each 
sub-task execution is randomly assigned, but the total 
time must be 100 h. Two kinds of workflow systems 
are used for test, one system adopting the elastic ex-
ecutor generation and recycling strategy, but sched-
uling candidate executors being homogeneous (sys-
tem E), and the other system not adopting the dy-
namic executor generation and recycling strategy 
(system N). Attacks R, M, and S are employed to test 
the security of these systems. If all executors per-
forming a sub-task are compromised by adversaries, 
the sub-task is compromised. As long as one sub-task 
is compromised, it means that the attack against the 
workflow is successful. Fig. 8 shows the test results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can find that the shorter the time required for 

adversaries to launch a full attack, the higher the 
probability that the system will be compromised. The 

Fig. 7  Security evaluation results of three executor 
cluster deployment methods 

Fig. 8  Test results of security gains brought by the elastic 
executor generation and recycling strategy 
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distribution of solid and dashed lines in Fig. 8 illus-
trates that compared with system N, system E is more 
secure, which proves that the elastic executor gener-
ation and recycling mechanism can strengthen the 
system security. To analyze the reason, we record the 
number of launched full attacks against the two sys-
tems. Fig. 9 illustrates that the dynamic executor 
generation and recycling strategy can reduce the 
number of received attacks. If the executor completes 
task execution before the attacker invades, executor 
recycling mechanism can effectively interrupt at-
tackers’ invasion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.3  Security evaluation of the dynamic workflow 
execution environment switching strategy 

Based on the heterogeneous executor cluster and 
elastic executor generation and recycling mechanism, 
we further evaluate the security of the dynamic 
workflow execution environment switching strategy. 
In this experiment, the network attack is also simu-
lated by Eq. (8). Each sub-task is processed in parallel 
by three executors with the maximum heterogeneity. 

To compare security gains brought by the dy-
namic workflow execution environment switching 
strategy, we construct three kinds of systems. All of 
these systems adopt the dynamic executor generation 
and recycling strategy. However, in the first system 
(system H), executors are homogeneous before and 
after task scheduling. In the second system (system R), 
executors are selected randomly before and after task 
scheduling. In the last system (system S), executors 

have the smallest common attack surface before and 
after task scheduling. Attack S is used to simulate 
attacks against workflows, and test results are shown 
in Fig. 10. We can find that under attack S, system S is 
more secure than systems R and H. Because attack S 
can detect the OS of a target, attackers can compro-
mise an executor by just two attacks. In system H, 
OSs of executors before and after scheduling are the 
same, so attack S can easily compromise system H. 
Systems R and S can achieve workflow execution 
environment change, but only system S can ensure 
that executors before and after scheduling have the 
smallest common surface, which can effectively re-
duce the effects of attack S. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.4  White box test of mimic cloud workflow exe-
cution system 

A white box test environment is built for the 
mimic cloud workflow execution system based on 
open-source software OpenStack and OpenDaylight. 
The system contains a control node (48-core proces-
sor, 32-GB memory, 2-TB storage space), four com-
puting nodes (48-core processor, 32-GB memory, 
2-TB storage space), and a storage node (48-core 
processor, 32-GB memory, 4-TB storage space). This 
system includes three kinds of networks: management 
network, internal data network, and external data 
network. The management network is responsible 
mainly for the transmission of system management 
commands. The internal data network is primarily 
responsible for the transfer of dependent data between 
workflow sub-tasks. The external data network 

Fig. 9  Comparison of the number of launched full attacks 
against the two systems 

Fig. 10  Test results of security gains brought by the 
workflow execution environment switching strategy 
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(192.168.108.0/24) is mainly for communication 
between VMs and the Internet. In this test, we will 
simulate the attack scenario that an attacker infiltrates 
into the VMs through the external data network to 
interfere with the workflow execution. 

This test is verified by an actual workflow (target 
detection classifier training). The structure of the 
workflow is shown in Fig. 11. A 20-GB image set is 
selected as the input from the target detection stand-
ard test set ILSVRC2012. 

 
 
 
 
 
 
 

 
In the proposed system, users need to define 

workflows in the XML format (Chen and Deelman, 
2012), and then submit the XML file and input data to 
the mimic cloud workflow execution system. In this 
system, the task executor is generated and recycled 
dynamically, so users need to pre-package the soft-
ware into the images and upload them to the system 
image library. In this test, the executive programs are 
deployed corresponding to each sub-task in Windows 
Server 2012, Ubuntu 16.04, and CentOS 7.3, and  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

packaged into images. In addition to submitting 
workflow definition files and input files, users need to 
request a certain amount of vCPU, memory, and 
storage space from the system, and specify the VM 
configuration. In this test, we apply for 20 vCPU, 
20-GB memory, and 1500-GB storage space. The 
specified VM configuration is 4 vCPU, 4-GB memory, 
and 300-GB storage space. During the workflow 
execution process, VMs are generated and recycled 
dynamically according to the task execution re-
quirements. However, the total configuration of VMs 
which are running cannot exceed the sum of resources 
applied by users. 

Two sets of experiments are set up to compare 
the effects. 

1. Experiment where there is no attacker  
invasion 

A part of log information is shown in Fig. 12. 
The system requires users specify the task execution 
order in the workflow definition file. If each sub-task 
execution time is known, the heterogeneous earliest 
finish time (HEFT) algorithm (Topcuoglu et al., 2002) 
can be used to determine the task execution order. 
After receiving the workflow execution request, the 
system will execute three independent workflows in 
parallel to verify the execution result. Mimic- 
ResourceManager builds three heterogeneous exec-
utors through Nova-Api, and the images used are  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11  Actual workflow used for the white box test 

Fig. 12  A part of the log information about the experiment where there is no attacker invasion (References to color 
refer to the online version of this figure) 
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windows_T1.qcow2, ubuntu_T1.qcow2, and centos_ 
T1.qcow2, respectively. To enhance the mutual iso-
lation of heterogeneous executors, we modify the 
scheduling mechanism of Nova-Scheduler so that the 
executors belonging to the same workflow are placed 
as concentrated as possible, as indicated by the red 
lines in Fig. 12. Furthermore, the executors belonging 
to the same workflow are placed in the same network, 
as indicated by the green lines in Fig. 12. In this test, 
VM5494cb8fd7 takes the lead in completing T1 task 
execution, and the md5 value of the execution result is 
68D92759629781090F395093C33C158D. Since the 
delayed decision mechanism is adopted, the next 
sub-task execution can be performed directly without 
waiting for the other two executors’ results. After 
VM5494cb8fd7 completes the data transfer with the 
newly generated VM, the executor recycling mecha-
nism is triggered to destroy the VM. 

2. Experiment where a VM is penetrated by  
attackers 

A part of the log information is shown in Fig. 13. 
It is assumed that attackers know the float IP and 
password of the VM performing T1 first time. In this 
way, attackers can penetrate into the VM through the 
secure shell (SSH) and tamper with the data, so that 
the execution result is different from those of the 
other VMs, as indicated by the red lines in Fig. 13. In 
this experiment, VM073140da28 which outputs the 
wrong result is the first to complete T1. Due to  
the delayed decision mechanism, VM073140da28  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

will directly execute the next sub-task. After 
VM9f9854a312 and VMf8e9ff30c0 complete T1 ex-
ecution, the decision module determines that the ex-
ecution result of VM073140da28 is incorrect, so the 
decision module will interrupt the data transmission 
of VM073140da28 and recycle it. At this moment, the 
VM on host server 2 does not have the correct T1 
execution result, so the task execution cannot be 
continued. Since the workflows cannot communicate 
directly with each other, the control node needs to 
perform data forwarding, as indicated by the blue line 
in Fig. 13. Although T1 has already been executed, 
since the results of three executors are not agreed, 
sub-task T1 will be re-executed when there are idle 
resources in the system, as indicated by the green line 
in Fig. 13. 

 
 

6  Conclusions 
 

The multi-tenant coexistence service mode in the 
cloud computing platform introduces serious security 
risks. To achieve highly available, reliable, and 
trusted workflow execution, we have presented the 
mimic cloud computing task execution system. First, 
the diversities of physical servers, hypervisors, and 
operating systems were introduced to build the  
intrusion-tolerant framework. Based on the frame-
work, common vulnerabilities among different oper-
ating systems were used for heterogeneity  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 13  A part of the log information about the experiment where a VM is penetrated by attackers (References to color 

refer to the online version of this figure) 
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measurement and executor deployment. With the 
flexible resource management of the cloud computing 
platform, the elastic executor generation and recy-
cling mechanism was proposed, which can not only 
shorten the life cycle of executors, but also act as the 
clean mechanism to keep the pure state of executors. 
Then inspired by the dynamic thought in mimic de-
fense, the dynamic workflow execution environment 
switching strategy was presented to confuse the ad-
versaries. Experimental results showed that the pro-
posed system can effectively strengthen the reliability 
and credibility of cloud workflow execution. 
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