
Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1522

Scientific workflow execution system based on

mimic defense in the cloud environment*

Ya-wen WANG, Jiang-xing WU†‡, Yun-fei GUO, Hong-chao HU, Wen-yan LIU, Guo-zhen CHENG
National Digital Switching System Engineering Technology Research Center, Zhengzhou 450002, China

†E-mail: JiangXing_WU_NDSC@163.com

Received Oct. 7, 2018; Revision accepted Nov. 17, 2018; Crosschecked Dec. 17, 2018

Abstract: With more large-scale scientific computing tasks being delivered to cloud computing platforms, cloud workflow sys-
tems are designed for managing and arranging these complicated tasks. However, multi-tenant coexistence service mode of cloud
computing brings serious security risks, which will threaten the normal execution of cloud workflows. To strengthen the security
of cloud workflows, a mimic cloud computing task execution system for scientific workflows is proposed. The idea of mimic
defense contains mainly three aspects: heterogeneity, redundancy, and dynamics. For heterogeneity, the diversities of physical
servers, hypervisors, and operating systems are integrated to build a robust system framework. For redundancy, each sub-task of
the workflow will be executed simultaneously by multiple executors. Considering efficiency and security, a delayed decision
mechanism is proposed to check the results of task execution. For dynamics, a dynamic task scheduling mechanism is devised for
switching workflow execution environment and shortening the life cycle of executors, which can confuse the adversaries and
purify task executors. Experimental results show that the proposed system can effectively strengthen the security of cloud work-
flow execution.

Key words: Scientific workflow; Mimic defense; Cloud security; Intrusion tolerance
https://doi.org/10.1631/FITEE.1800621 CLC number: TN915.08

1 Introduction

In many scientific research fields, such as
quantum physics, astronomy, and bioinformatics, the
process of scientific computing often consists of tens
of thousands of steps, requiring large-scale data
analysis and processing (Lv et al., 2015). To properly
manage, arrange, execute, and track these steps, the
concept of scientific workflows has been presented.
As the complexity of the problems to be solved in-
creases, the present large-scale scientific workflows

often need to be implemented on complex distributed
computing environments, such as supercomputers,
distributed cluster systems, and grid systems. How-
ever, constructing such a system is very expensive
(Deldari et al., 2017).

With the development of virtualization tech-
nologies, the emergence of cloud computing provides
a new deployment and implementation solution for
scientific workflow applications. The cloud compu-
ting, with the resource renting, application deploy-
ment, and service outsourcing as the core, builds the
computing environments through the integration of
distributed resources to meet a variety of service re-
quirements (Juve and Deelman, 2011).

As cloud customers, they no longer need to
purchase hardware, and they just need to pay a certain
fee to easily access the required computing and stor-
age resources over the Internet. Due to the low cost
and the convenient resource access, more and more

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61521003 and 61602509), the National Key Tech-
nologies R&D Program of China (Nos. 2016YFB0800100 and
2016YFB0800101), and the Key Technologies R&D Program of
Henan Province, China (No. 172102210615)

 ORCID: Ya-wen WANG, http://orcid.org/0000-0003-4783-0450
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2018

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1800621&domain=pdf

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1523

large-scale scientific workflows have been delivered
to cloud systems for completion (Wang et al., 2014).

However, the cloud systems employ multi-tenant
coexistence service mode, which brings both benefits
and risks; for example, an attacker can legally rent a
virtual machine (VM) and use it as a springboard to
steal or tamper with other tenants’ data or information
(Ainapure et al., 2018). Compared with normal cloud
computing tasks, cloud workflow tasks have three
salient features: (1) The execution duration is long. A
practical cloud workflow task often requires several
weeks or even months to be finished (Yuan et al.,
2012), which provides sufficient preparation time for
attackers. (2) Cloud workflows are computationally
intensive tasks (Gupta et al., 2016), which require a
high computing accuracy. Any intermediate error will
directly lead to the failure of the entire cloud work-
flow execution. (3) Cloud workflows are often ap-
plied in important scientific research fields. Once it
happens that the execution results are tampered with
without being noticed, it will bring incalculable
losses.

Inspired by mimic defense (Hu et al., 2017), the
ideas of heterogeneity, redundancy, and dynamics are
integrated to construct a mimic cloud workflow ex-
ecution system, which can significantly reduce the
influence of system uncertainty disturbance on the
accuracy of calculation results and effectively prevent
network attacks that maliciously disrupt workflow
execution. The contributions of this study are sum-
marized as follows:

1. We devise the framework of a mimic cloud
workflow execution system based on the diversities
of operating systems (OSs), hypervisors, and physical
servers, which can reduce the common attack surface
among the components of the system, preventing fault
propagation.

2. We use a heterogeneous task executor cluster
to process workflows in parallel and design a decision
module to verify the execution results of the executor
cluster, achieving intrusion tolerant workflow
execution.

3. We present the elastic executor generation and
recycling mechanism, shortening the life cycle to
keep the pure state of executors.

4. We devise a dynamic workflow execution
environment switching strategy, which enables dif-
ferent sub-tasks to be executed in different environ-
ments to confuse adversaries.

2 Related work

Workflow technology originated from the early
1980s. With the development of distributed compu-
ting, business workflows, grid workflows, and cloud
workflows have emerged. Cloud computing systems
employ the virtualization technology to achieve
flexible resource management. Compared with other
workflow systems, cloud workflows are more effi-
cient and flexible. Therefore, cloud workflow tech-
nologies have become a research hotspot in recent
years. Pandey et al. (2010) quantified the overall task
scheduling cost by employing task execution costs
and access costs between different nodes, and then
introduced the particle swarm optimization algorithm
to acquire the optimal scheduling strategy, minimiz-
ing the overall task execution cost. Lee et al. (2015)
proposed an intelligent task scheduling algorithm to
improve resource utilization. Casas et al. (2017) pre-
sented the balanced and file reuse-replication sched-
uling (BaRRS) algorithm, which adopts the data rep-
lication method to reduce the amount of data trans-
mission at the stage of task scheduling, achieving the
improvement of task scheduling efficiency. To rea-
sonably manage the data transmission during task
scheduling, Aktas et al. (2014) used software-defined
networking (SDN) technologies to manage work-
flows and resource allocation.

However, most research on cloud workflow has
focused on improving the task execution efficiency
and optimizing the resource allocation. In recent years,
cloud security issues have gradually attracted wide-
spread attention. Some scholars have begun to study
cloud workflow security issues. Yao et al. (2016)
considered that the process of rescheduling in cloud
systems had great similarities to the immune system
which kept the body stable by removing the intrusive
antigens, so an immune system inspired failure-aware
rescheduling algorithm for the workflow task in cloud
systems was designed to achieve fault-tolerant work-
flow execution. Ding et al. (2017) proposed a
primary-backup workflow scheduling strategy to
realize fault-tolerant elastic task scheduling. Resub-
mission and replication are two fundamental tech-
niques in distributed computing systems for fault
tolerance. Yao et al. (2017) took these two techniques
together for fault-tolerant workflow scheduling in
cloud systems. However, all the above research used

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1524

passive defense methods, which can prevent system
failures but cannot effectively resist malicious
attacks.

As a kind of active network defense technology,
mimic defense provides a new idea for solving cloud
workflow security problems. The idea of mimic de-
fense contains mainly three aspects: heterogeneity,
redundancy, and dynamics. Many researchers have
employed one of them to solve the network security
problems.

For heterogeneity, Evans and Thompson et al.
(2016) devised a defense mechanism based on OS
diversity to strengthen the system security; however,
the heterogeneity difference between different OSs
was not considered. For this problem, Garcia et al.
(2011) used common vulnerabilities to quantify the
heterogeneity between different OSs, but they did not
mention how to select OSs. Afterwards, Garcia et al.
(2014) presented a strategy for OS selection, in which
the OS set with the least common vulnerabilities
would be selected.

For redundancy, the Byzantine fault tolerance
(BFT) method is one of representative methods. On
the basis of the BFT method, Platania et al. (2014,
2016) devised a practical intrusion-tolerant replica-
tion system. Though the BFT method can improve the
system security, multiple consultation steps contained
in the BFT method will produce a huge time overhead.
To limit the costs of redundant methods, Zheng et al.
(2012) proposed a component ranking algorithm, in
which redundant methods were used for only the
protection of the selected important components. In
large-scale SDN, multiple controllers can be deployed
in the control plane to strengthen the system reliability.
However, it usually involves big data in SDN. At the
same time, the legality of the data sources should be
ensured. To address these challenges, Wu et al. (2018)
proposed a big data analysis based secure cluster
management architecture for the optimized control
plane.

For dynamics, Peng et al. (2014) formulated the
relationship between executor attack surfaces and
time. The conclusion was that executor attack sur-
faces would rise quickly with the time going on. So,
shortening the life cycle of executors is an effective
way to reduce attack surface sizes. Based on this idea,
Guo and Bhattacharya (2014) presented the dynamic
switching of the task execution environment, which

can bring a considerable security gain, especially
when there is a huge difference in the task execution
environment before and after environment switching.
However, how to choose the moment of environment
switching is a difficult question.

3 Security risks of cloud workflows

Normally, a workflow is modeled by the directed
acyclic graph (DAG), which can be represented by
G=(V, E), where V={v1, v2, …, vn} denotes sub-tasks
in the workflow and E denotes dependent data be-
tween sub-tasks. For example, ei,jE denotes de-
pendent data generated by vi and consumed by vj.

In cloud workflow systems, each sub-task in the
workflow needs to be allocated to VMs to be executed.
Cloud computing platforms adopt virtualization
technology to provide flexible resource allocation for
workflow execution, but multi-tenant coexistence
service mode brings many security threats. For ex-
ample, adversaries can bypass logical isolation be-
tween VMs via side channels to attack VMs per-
forming the workflow (Verma et al., 2017). Attackers
can choose to interrupt the execution of the workflow
or tamper with the execution results of the workflow.
Except for the attacks against VMs, the hypervisor
deployed in computing nodes is also insecure. A kind
of vulnerabilities called “VM escape” can be em-
ployed to help attackers access the privilege domain
of the hypervisor, and then all the VMs supported by
this hypervisor can be compromised easily (Grobauer
et al., 2011). Furthermore, some experienced attack-
ers are able to launch a basic input/output system
(BIOS) attack and directly threaten the security of
physical servers in the cloud environment (Stewin and
Bystrov, 2012; Kallenberg et al., 2013).

Security risks of cloud workflow exist mainly in
two aspects. First, sub-tasks in the same workflow are
dependent, so any sub-task interruption will terminate
the workflow execution. A feasible method is that
each sub-task is submitted to multiple task executors
to perform. However, from the perspective of the
attack surface, the size of a common attack surface of
multiple executors will not always reduce with the
increase of the number of redundant executors. It is
supposed that there are M task executors, e1, e2, …, eM,
whose attack surfaces are represented by f(e1),

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1525

f(e2), …, f(eM) respectively, and the common attack
surface f(e1, e2, …, eM) is defined as

1 2 1 2(, , ,) () () ().M Mf e e e f e f e f e   (1)

Therefore, multiple homogeneous task executors

cannot improve the security of workflow execution
significantly. Second, cloud workflows always take a
long time to be executed, providing sufficient prepa-
ration and attack time for adversaries.

4 Mimic cloud workflow execution system

4.1 Framework of the mimic cloud workflow
execution system

Important symbols used in Section 4 are listed in
Table 1.

The mimic cloud workflow system consists of a
controller and multiple computing nodes (Fig. 1). The
controller is responsible mainly for four aspects of
works: workflow analysis, resource management,
task scheduling, and workflow monitoring. When the
controller receives a cloud workflow execution re-
quest, the workflow analyzer will analyze the struc-
ture of the submitted workflow and determine

the task execution sequence. The resource manager is
responsible for providing virtual computing resources
for workflow execution. The task scheduler is in
charge of selecting suitable virtual resources for the
task that needs to be performed currently. The work-
flow monitor collects the status information of work-
flow execution in real time. When the monitor finds
that the current sub-task has been finished, the mon-
itor will send a message to the workflow analyzer to
select the next sub-task to be executed.

Table 1 Symbol description

Symbol Description

o Type of operating system

v(ox) Number of vulnerabilities of ox

v(o1, o2, …, on) Number of common vulnerabilities
among o1, o2, …, on

f(o1, o2, …, on) Common attack surface among
v(o1, o2, …, on)

a Attack strategy

P(oj|ai) Probability of successful attacks
when the attack strategy is ai and
the OS of the attacked target is oj

h Hypervisor type

s Physical server type

r Region

· Operator that rounds up to an integer

Fig. 1 Framework of the mimic cloud workflow execution system

Computing node

Host OS

KVM

VM 1

VM 2

VM n

Computing node

Host OS

Xen

VM 1

VM 2

VM n

Computing node

Host OS

Hyper-V

VM 1

VM 2

VM n

ControllerWorkflow

Workflow
analyzer

Resource
manager

Task scheduler

Management

VM

VM

VM

VM

VM

Task allocation

Intel/ARM CPUARM CPUIntel CPU

Windows
Linux
Solaris
BSD

Heterogeneous
physical server

Heterogeneous
hypervisor

Heterogeneous
VM OS

Status
information

Region 1 Region 2 Region 3Different region





Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1526

In Section 3, we have discussed that there are a
variety of threats that can threaten the security of
VMs, hypervisors, and hardware in cloud systems.
For these problems, many scholars have proposed to
employ the redundancy method to protect the com-
ponents in the cloud system. However, homogeneous
redundant components cannot achieve good defense
effects due to the same vulnerabilities and structures.
Inspired by the idea of heterogeneity in mimic de-
fense, we build heterogeneous computing nodes to
undertake workflow execution, which includes het-
erogeneous VM OSs, hypervisors, and physical
servers. Heterogeneous VM OSs contain Windows
Server 2003, Windows Server 2008, Windows Server
2012, Ubuntu, Debian, Redhat, Solaris, OpenSolaris,
OpenBSD, NetBSD, and FreeBSD. Heterogeneous
hypervisors contain KVM, Xen, and Hyper-V. Het-
erogeneous physical servers contain Intel servers and
ARM servers.

4.2 Heterogeneous task executor cluster

In cloud workflow systems, each sub-task in the
workflow should be scheduled in the corresponding
virtual resource to be executed, and the virtual re-
source which is responsible for sub-task execution is
called the task executor. In many cloud workflow
systems, each sub-task in the workflow is executed by
a single task executor. It is very dangerous because
the attackers can interrupt the workflow execution or
tamper with the workflow data to cause erroneous
execution results. Ding et al. (2017) built a replica for

each sub-task in the workflow, and then the two
copies of the same sub-task would be scheduled in
different VMs to execute; that is, each sub-task in the
workflow would be executed by two task executors.
However, the security of workflow execution does not
depend on the number of executors, but on the size of
the attack surface of executors. If the redundant ex-
ecutors are homogeneous, the size of the attack sur-
face will not decrease with the increase of the number
of task executors. Therefore, we use heterogeneous
task executors to reduce the size of a common attack
surface of task executors and employ the number of
vulnerabilities to quantize the size of the common
attack surface of heterogeneous task executors. The
heterogeneity of task executors is reflected in the
heterogeneity of physical servers, hypervisors, and
VMs. However, due to the lack of information about
the vulnerabilities of physical servers and hypervisors,
we can quantize only the size of the common attack
surface of heterogeneous VMs.

Taking 11 OSs as examples, i.e., OpenBSD (OB),
NetBSD (NB), FreeBSD (FB), Windows Server 2003
(W03), Windows Server 2008 (W08), Windows
Server 2012 (W12), Ubuntu (U), Debian (D), Redhat
(R), Solaris (Sol), and OpenSolaris (OSol), we record
the vulnerabilities of these OSs and the common
vulnerabilities between them according to the data
published by common vulnerabilities and exposures
(CVE) (Table 2), which can be used to measure the
heterogeneity between OSs.

The number of common vulnerabilities between

Table 2 Statistics on the number of vulnerabilities in each operating system and that between different operating
systems

Operating
system

Number of vulnerabilities

OB NB FB W03 W08 W12 U D R OSol Sol

OB 149 45 58 2 1 0 3 2 10 13 1

NB 45 139 56 1 1 0 0 4 8 16 0

FB 58 56 284 3 2 0 6 9 22 22 0

W03 2 1 3 412 344 85 0 0 1 7 0

W08 1 1 2 344 846 385 0 0 0 0 0

W12 0 0 0 85 385 467 0 0 0 0 0

U 3 0 6 0 0 0 840 303 179 86 1

D 2 4 9 0 0 0 303 995 220 73 1

R 10 8 22 1 0 0 179 220 1518 69 1

OSol 13 16 22 7 0 0 86 73 69 365 27

Sol 1 0 0 0 0 0 1 1 1 27 100

OB: OpenBSD; NB: NetBSD; FB: FreeBSD; W03: Windows Server 2003; W08: Windows Server 2008; W12: Windows Server 2012;
U: Ubuntu; D: Debian; R: Redhat; Sol: Solaris; OSol: OpenSolaris. The number of vulnerabilities in each operating system is in boldface

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1527

ok and ol is denoted by v(ok, ol), and f(ok, ol) repre-
senting the size of the common attack surface be-
tween ok and ol is defined as

1(,) (,),k l k lf o o k v o o (2)

where k1>0 is a constant. We can continue to use this
approach to represent the common attack surface
among more than two different OSs. For example,
f(o1, o2, …, on) representing the common attack sur-
face among o1, o2, …, on can be calculated by

   1 2 2 1 2, , , , , , ,n nf o o o k v o o o  (3)

where k2>0 is a constant. However, the data of v(o1,
o2, …, on) is difficult to obtain. We adopt another way
to represent f(o1, o2, …, on), which is

1 2 1
1 1

(, , ,) (,) (,).n i j i j
i j n i j n

f o o o f o o k v o o
     

  

(4)
To reduce f(o1, o2, …, on), the number of com-

mon vulnerabilities between any two OSs should
be minimized. Therefore, we propose the maximum
heterogeneity OS selection algorithm to build the VM
cluster with the smallest common attack surface, and
the steps of the algorithm are described as follows:

1. It is assumed that there are m kinds of candi-
date OSs in the image library, which is denoted by
O=(o1, o2, …, om). In the OS selection algorithm, the
first OS os (1≤s≤m) is selected randomly, and V rep-
resenting the number of common vulnerabilities be-
tween OSs is initialized by

(0,0, ,0).
m

V


 (5)

2. Use Vs=(v1
s, v2

s, …, vm
s) to represent the

number of common vulnerabilities between os and
other OSs. If os is Ubuntu, Vs=(3, 0, 6, 0, 0, 0, 840,
303, 179, 86, 1) according to Table 2. Then V is up-
dated as

1 2(, , ,).s mv v v  V V V  (6)

3. The next OS os will be selected based on the
following condition:

1 2{ | min(, , ,)}.g ms g v v v v   (7)

4. If the number of VMs does not meet the re-
quirements, return to step 2; otherwise, the algorithm
is over.

In addition to considering the diversity of OSs,
when constructing heterogeneous task executors, the
differences between the hypervisors, physical servers,
and regions should be ensured as much as possible.

4.3 Delayed decision mechanism

Due to the low common attack surface among
heterogeneous task executors, it is very difficult for
adversaries to compromise all the executors, but it is
possible to compromise some of them. In this situa-
tion, multiple different results will be generated in the
executor cluster. To ensure that the executor cluster
can produce consistent results, we deploy the result
decision module to perform the vote mechanism.

It is assumed that there are K executors in the
executor cluster. If the decision module has received
at least K/2 consistent results, the current sub-task
execution is valid; otherwise, it is invalid. However,
the time for each executor to complete the same
sub-task is not the same. Let tf and tl denote the time
when the first and the last results are generated, re-
spectively. If the decision module outputs only the
consistent result after receiving all of the results
generated by executors, the execution time of each
sub-task will increase by tl−tf, which will waste much
time. Therefore, the delayed decision mechanism is
proposed. As shown in Fig. 2, it is supposed that
executor 1 is the first to finish the execution of
sub-task X with the generated result A. Then result A
is used directly for the execution of sub-task Y. After
receiving the output of executor 1, the decision mod-
ule will wait for some time to collect outputs of the
other executors. It is assumed that the executor not
producing a result within the specified time is also a
form of output. The decision module will encounter
four cases during the collection of outputs. Case 1:
The results of all executors are the same. In this case,
the system will not take any action. Case 2: More than
half of the results are the same, and then the decision
module will regard this result as the final result.
However, the final result is different from the result of
executor 1. In this case, the system will take two ac-
tions. First, sub-task X will be re-executed when there
are some leisure resources. Second, sub-task Y will be
re-executed using the final result as the input. Case 3:

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1528

More than half of the results are the same, and then
the decision module will regard this result as the final
result. The final result is the same as the result of
executor 1. In this case, sub-task X will be re-executed
when there are some leisure resources. Case 4: The
number of identical results is smaller than half of the
number of executors. In this case, the system will take
two actions. First, sub-task X will be re-executed
immediately. Second, sub-task Y will be terminated.
Based on this method, the workflow execution will go
wrong only if all executors are infiltrated by the at-
tacker and output the same error result. The delayed
decision mechanism can effectively improve the re-
liability and credibility of workflow execution with-
out reducing the efficiency significantly.

4.4 Elastic executor generation and recycling
mechanism

In Section 4.2, it has been proposed to execute
each sub-task of the workflow by multiple heteroge-
neous executors; in this way, multiple sub-task copies
replace the original single sub-task (Fig. 3). The
workflow whose sub-tasks are replaced by multiple
sub-task copies can be divided into multiple inde-
pendent workflows. In cloud computing platforms,
the bandwidth of intra-domain transmission is much
higher than that of inter-domain transmission. So,

considering the fault tolerance and efficiency,
sub-tasks of the same workflow should be placed into
the executors located in the same region, and different
workflows should be placed into different regions.

It is supposed that the number of divided work-

flows is K, and each divided workflow will be com-
promised by adversaries with the probabilities of p1,
p2, …, pK respectively. The total execution of the
workflow will fail with the probability of P, and Ppi
(1≤i≤K). A feasible method to reduce P is reducing
the value of pi. Therefore, we present the elastic ex-
ecutor generation and recycling mechanism, which
can improve the security of each divided workflow by
shortening the life cycle of executors (Peng et al.,
2014).

Compared with a traditional distributed compu-
ting system, such as grid computing and cluster
computing, cloud computing has the advantage of
flexible resource management. Computing resources
in the cloud computing platform exist in the form of
virtualization, which can realize elastic resource de-
ployment and recycling. In the elastic executor gen-
eration and recycling strategy, task executors having
finished the sub-task execution will be destroyed, and
the reclaimed resource is used for deploying new task
executors to perform the next sub-task. According to
the theory of cyber kill chain (Yadav and Rao, 2015),
a full attack consists of seven steps: reconnaissance,

Fig. 2 Delayed decision mechanism

R
e-

ex
ec

ut
in

g
su

b-
ta

sk
 X

im
m

e
di

at
el

y

R
e-

e
xe

cu
tin

g
 s

ub
-t

as
k

X
w

h
en

 th
er

e
 a

re
 le

is
ur

e
re

so
ur

ce
s

R
e-

e
xe

cu
tin

g
su

b-
ta

sk
 X

w
h

en
 th

er
e

 a
re

 le
is

ur
e

re
so

ur
ce

s

U
si

n
g

B
to

 r
e-

ex
e

cu
te

su

b-
ta

sk
 Y

Fig. 3 Workflow whose sub-tasks are replaced by multi-
ple sub-task copies being divided into multiple inde-
pendent workflows

















Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1529

weaponization, delivery, exploitation, installation,
command, and control objectives. It is assumed that it
will take time ta for adversaries to launch a full attack.
If the attacked executors have finished task execution
before ta and the next task is scheduled to a newly
generated executor, adversaries cannot launch a full
attack. Furthermore, since each newly generated ex-
ecutor is in a clean state, the elastic executor genera-
tion and recycling mechanism can act as the cleaning
mechanism, reducing the risks of executors being
implanted in the back door or virus.

4.5 Dynamic workflow execution environment
switching strategy

The structure of heterogeneous task executors
realizes execution environment diversity on the spa-
tial axis, while the workflow execution environment
switching strategy achieves execution environment
diversity on the timeline. Normally, computing nodes
of the cloud platform in the same region are homo-
geneous. Therefore, in the workflow execution envi-
ronment switching strategy, we consider only the OS
divergence and ignore the divergence of hypervisor
types and physical server types.

It is assumed that there is a submitted workflow
consisting of a sub-task set V(v1, v2, …, vm), where vi
(1≤i≤m) represents that it is the ith sub-task in the
execution order. According to Section 4.2, each
sub-task vi will be copied as multiple replicas and
executed in different regions. Suppose that there are k
regions R(r1, r2, …, rk), where workflows are exe-

cuted in parallel, j
iv (1≤i≤m, 1≤j≤k) denotes the rep-

lica of viV executed in region rjR, and j
io denotes

the OS of the executor in region rj which performs
sub-task vi.

The workflow execution environment switching

strategy is shown in Fig. 4. 1
jo can be selected by the

OS selection algorithm with the maximum hetero-

geneity. 1
2o should have the smallest common attack

surface with 1
1 ,o and 2

2o should have the smallest

common attack surface with both 1
2o and 2

1 .o There-

fore, for b
ao (1≤a≤m, 1<b≤k), it should have the

smallest common attack surface with { e
ao |1≤e≤b−1}

and 1.
b
ao Based on this idea, the workflow execution

environment switching strategy is shown in

Algorithm 1, which can achieve the purpose of con-
fusing attackers.

Algorithm 1 Workflow execution environment
switching strategy
Input: number of task executors N, diverse OS types O[mo]=

{o1, o2, …, omo}, and sub-tasks in the workflow

V[m][k]={ j
iv |1≤i≤m, 1≤j≤k} where V[1][2]= 2

1v

Output: OSs of executors performing each sub-task E[m][k]=

{ j
io |1≤i≤m, 1≤j≤k} where E[1][2]= 2

1o

1 for i=0; i<m; i++
2 for j=0; j<k; j++
3 if i==0 && j==0
4 E[i][j]=selecting an OS from O[] randomly
5 else if i==0 && j!=0
6 E[i][j]=selecting the OS having the smallest attack
 surface with E′={E[i][d]|0≤d≤j−1} by the OS
 selection algorithm with the maximum
 heterogeneity
7 else if i!=0 && j==0
8 E[i][j]=selecting the OS having the smallest attack
 surface with E[i−1][j] by the OS selection
 algorithm with the maximum heterogeneity
9 else
10 E[i][j]=selecting the OS having the smallest attack
 surface with E′={E[i][d]|0≤d≤j−1} and E[i−1][j]
 by the OS selection algorithm with the maximum
 heterogeneity
11 end if
12 end for
13 end for
14 return E[m][k]

5 Experiment and discussion

5.1 Security evaluation of the heterogeneous task
executor cluster

First, we will evaluate the impact of the number
of task executors on system security. It is assumed
that there are m types of candidate OSs in the image
library, denoted by o1, o2, …, om. Adversaries know

Fig. 4 Illustration of the workflow execution environ-
ment switching strategy

r1 r2 rk

o2
1

ko1

o1
2 o2

2
ko2

mo1
mo2 k

mo


o1
1

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1530

that the OS of each VM must belong to one of o1,
o2, …, om, but cannot accurately determine which one
it is. Adversaries will randomly select an OS as the
attack strategy each time. Let ai represent the attack
strategy against oi. It is supposed that attackers adopt
strategy ai to attack the task executor cluster, and the
executor whose OS is oi will be compromised with
probability 1 and the executor whose OS is oj (ji)
will be compromised with probability p:

(,) (,)

(|) .
(,) ()

j i j i
j i

i i i

f o o v o o
p P o a

f o o v o
   (8)

Note that the defined attack model is an extreme

case, which is convenient for analyzing the general
law between system parameters and system security.
In a practical situation, successful attacks depend on a
lot of factors. Even if adversaries know the system
type of target, it is difficult to compromise the target
by one attack. Therefore, in the actual environment,
the security of a mimic cloud workflow system is
much higher than the simulation results.

Based on the attack model, we use the number of
attacks and the number of task executors as variables
to simulate the attack and defense against cloud
workflows. To analyze the impact of executor heter-
ogeneity on system security, the 11 OSs listed in
Table 1 are used for tests, and the maximum hetero-
geneity OS selection algorithm is used for selecting
OS types. If at least K/2 executors are compromised,
the attack is declared successful. Test results are
shown in Fig. 5.

From Fig. 5, we can find that with the increase of
the number of attacks, the attack success rate shows a
significant upward trend. The number of executors
will also affect the system security, since if more
executors are contained in the cluster, attackers need
to compromise more executors to succeed, which will
increase the difficulty of successful attacks. We may
find that the larger the number of heterogeneous ex-
ecutors, the better, but this is not the case. Fig. 6
shows the relationship between the probability of
sub-task re-execution and the number of executors.
From Fig. 6, we can find that the increase of the
number of executors will notably increase the proba-
bility of sub-task re-execution. In the proposed sys-
tem, if inconsistent results appear in the executor
cluster, the sub-task will be re-executed. The larger
the number of executors, the larger the probability
that attackers will compromise one of the executors.
When the number of attacks exceeds a certain value,
the sub-task re-execution probability will show a
downward trend, because of the increase of the
probability of the erroneous consistent result pro-
duced in the executor cluster. Therefore, the increase
in the number of executors will effectively reduce the
probability that the system produces erroneous results,
but at the same time, the probability of sub-task
re-execution will be increased, which will cost extra
resources.

Then we evaluate the security gain brought by

the maximum heterogeneity OS selection algorithm.
Except for the maximum heterogeneity OS selection
algorithm, the random OS selection algorithm and
homogeneous OS selection algorithm are used for

Fig. 6 Relationship between the number of executors
and the probability of sub-task re-execution

Fig. 5 Relationship between the number of executors
and the attack success rate

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1531

comparison. In the random OS selection algorithm,
the OS of each executor is chosen randomly from the
image library, and in the homogeneous OS selection
algorithm, the OSs of all executors are the same. In
this evaluation, the number of executors is three, and
we use the number of attacks as the variable to sim-
ulate the attack and defense against cloud workflows.
If all the executors are compromised, adversaries will
win; otherwise, defenders will win. Results are shown
in Fig. 7.

From Fig. 7, we can find that the maximum

heterogeneity OS selection algorithm can strengthen
the security of the executor cluster. When building an
executor cluster with the maximum OS heterogeneity,
the small common attack surface makes it difficult for
adversaries to compromise multiple executors with
one attack. However, with the increase of the number
of attacks, the effect of the maximum heterogeneity
OS selection algorithm is decreasing.

In this study, 11 OSs have been used to illustrate
the impact of executor heterogeneity on system se-
curity. When building a practical mimic cloud work-
flow execution system, two to four common OSs with
high heterogeneity are enough.

5.2 Security evaluation of elastic executor gener-
ation and recycling mechanism

Based on the results of Section 5.1, we conduct
the security evaluation of elastic executor generation
and recycling mechanism. Define three kinds of at-
tacks, random attack mode without memory (attack
R), random attack mode with memory (attack M), and
sniffing attack mode (attack S). Attack R: Adversaries
will choose the attack strategy from the strategy set

with an equal probability when attacking the executor
cluster. Attack M: This mode will record the strategy
that has been used by adversaries, and when launch-
ing the next attack to the executor cluster, adversaries
will select the attack strategy from the unused strategy
set with an equal probability. Attack S: Adversaries
will choose one of the executors from the executor
cluster to attack, no matter whether the launched
attack is successful or not, and adversaries can obtain
the OS type of this target. The probability of suc-
cessful attacks is calculated using Eq. (8).

It is assumed that the workflow used for test
consists of 10 sub-tasks, and each sub-task is exe-
cuted in parallel by three executors with the maxi-
mum heterogeneity. The time required for each
sub-task execution is randomly assigned, but the total
time must be 100 h. Two kinds of workflow systems
are used for test, one system adopting the elastic ex-
ecutor generation and recycling strategy, but sched-
uling candidate executors being homogeneous (sys-
tem E), and the other system not adopting the dy-
namic executor generation and recycling strategy
(system N). Attacks R, M, and S are employed to test
the security of these systems. If all executors per-
forming a sub-task are compromised by adversaries,
the sub-task is compromised. As long as one sub-task
is compromised, it means that the attack against the
workflow is successful. Fig. 8 shows the test results.

We can find that the shorter the time required for

adversaries to launch a full attack, the higher the
probability that the system will be compromised. The

Fig. 7 Security evaluation results of three executor
cluster deployment methods

Fig. 8 Test results of security gains brought by the elastic
executor generation and recycling strategy

0 5 10 15
Time of adversaries to launch a full attack (h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Attack R-system N

Attack M-system N

Attack S-system N

Attack R-system E
Attack M-system E
Attack S-system E

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1532

distribution of solid and dashed lines in Fig. 8 illus-
trates that compared with system N, system E is more
secure, which proves that the elastic executor gener-
ation and recycling mechanism can strengthen the
system security. To analyze the reason, we record the
number of launched full attacks against the two sys-
tems. Fig. 9 illustrates that the dynamic executor
generation and recycling strategy can reduce the
number of received attacks. If the executor completes
task execution before the attacker invades, executor
recycling mechanism can effectively interrupt at-
tackers’ invasion.

5.3 Security evaluation of the dynamic workflow
execution environment switching strategy

Based on the heterogeneous executor cluster and
elastic executor generation and recycling mechanism,
we further evaluate the security of the dynamic
workflow execution environment switching strategy.
In this experiment, the network attack is also simu-
lated by Eq. (8). Each sub-task is processed in parallel
by three executors with the maximum heterogeneity.

To compare security gains brought by the dy-
namic workflow execution environment switching
strategy, we construct three kinds of systems. All of
these systems adopt the dynamic executor generation
and recycling strategy. However, in the first system
(system H), executors are homogeneous before and
after task scheduling. In the second system (system R),
executors are selected randomly before and after task
scheduling. In the last system (system S), executors

have the smallest common attack surface before and
after task scheduling. Attack S is used to simulate
attacks against workflows, and test results are shown
in Fig. 10. We can find that under attack S, system S is
more secure than systems R and H. Because attack S
can detect the OS of a target, attackers can compro-
mise an executor by just two attacks. In system H,
OSs of executors before and after scheduling are the
same, so attack S can easily compromise system H.
Systems R and S can achieve workflow execution
environment change, but only system S can ensure
that executors before and after scheduling have the
smallest common surface, which can effectively re-
duce the effects of attack S.

5.4 White box test of mimic cloud workflow exe-
cution system

A white box test environment is built for the
mimic cloud workflow execution system based on
open-source software OpenStack and OpenDaylight.
The system contains a control node (48-core proces-
sor, 32-GB memory, 2-TB storage space), four com-
puting nodes (48-core processor, 32-GB memory,
2-TB storage space), and a storage node (48-core
processor, 32-GB memory, 4-TB storage space). This
system includes three kinds of networks: management
network, internal data network, and external data
network. The management network is responsible
mainly for the transmission of system management
commands. The internal data network is primarily
responsible for the transfer of dependent data between
workflow sub-tasks. The external data network

Fig. 9 Comparison of the number of launched full attacks
against the two systems

Fig. 10 Test results of security gains brought by the
workflow execution environment switching strategy

1 2 3 4 5 6 7 8 9 10

Time of adversaries to launch a full attack (h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Attack S-system H
Attack S-system R
Attack S-system S

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1533

(192.168.108.0/24) is mainly for communication
between VMs and the Internet. In this test, we will
simulate the attack scenario that an attacker infiltrates
into the VMs through the external data network to
interfere with the workflow execution.

This test is verified by an actual workflow (target
detection classifier training). The structure of the
workflow is shown in Fig. 11. A 20-GB image set is
selected as the input from the target detection stand-
ard test set ILSVRC2012.

In the proposed system, users need to define

workflows in the XML format (Chen and Deelman,
2012), and then submit the XML file and input data to
the mimic cloud workflow execution system. In this
system, the task executor is generated and recycled
dynamically, so users need to pre-package the soft-
ware into the images and upload them to the system
image library. In this test, the executive programs are
deployed corresponding to each sub-task in Windows
Server 2012, Ubuntu 16.04, and CentOS 7.3, and

packaged into images. In addition to submitting
workflow definition files and input files, users need to
request a certain amount of vCPU, memory, and
storage space from the system, and specify the VM
configuration. In this test, we apply for 20 vCPU,
20-GB memory, and 1500-GB storage space. The
specified VM configuration is 4 vCPU, 4-GB memory,
and 300-GB storage space. During the workflow
execution process, VMs are generated and recycled
dynamically according to the task execution re-
quirements. However, the total configuration of VMs
which are running cannot exceed the sum of resources
applied by users.

Two sets of experiments are set up to compare
the effects.

1. Experiment where there is no attacker
invasion

A part of log information is shown in Fig. 12.
The system requires users specify the task execution
order in the workflow definition file. If each sub-task
execution time is known, the heterogeneous earliest
finish time (HEFT) algorithm (Topcuoglu et al., 2002)
can be used to determine the task execution order.
After receiving the workflow execution request, the
system will execute three independent workflows in
parallel to verify the execution result. Mimic-
ResourceManager builds three heterogeneous exec-
utors through Nova-Api, and the images used are

Fig. 11 Actual workflow used for the white box test

Fig. 12 A part of the log information about the experiment where there is no attacker invasion (References to color
refer to the online version of this figure)

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1534

windows_T1.qcow2, ubuntu_T1.qcow2, and centos_
T1.qcow2, respectively. To enhance the mutual iso-
lation of heterogeneous executors, we modify the
scheduling mechanism of Nova-Scheduler so that the
executors belonging to the same workflow are placed
as concentrated as possible, as indicated by the red
lines in Fig. 12. Furthermore, the executors belonging
to the same workflow are placed in the same network,
as indicated by the green lines in Fig. 12. In this test,
VM5494cb8fd7 takes the lead in completing T1 task
execution, and the md5 value of the execution result is
68D92759629781090F395093C33C158D. Since the
delayed decision mechanism is adopted, the next
sub-task execution can be performed directly without
waiting for the other two executors’ results. After
VM5494cb8fd7 completes the data transfer with the
newly generated VM, the executor recycling mecha-
nism is triggered to destroy the VM.

2. Experiment where a VM is penetrated by
attackers

A part of the log information is shown in Fig. 13.
It is assumed that attackers know the float IP and
password of the VM performing T1 first time. In this
way, attackers can penetrate into the VM through the
secure shell (SSH) and tamper with the data, so that
the execution result is different from those of the
other VMs, as indicated by the red lines in Fig. 13. In
this experiment, VM073140da28 which outputs the
wrong result is the first to complete T1. Due to
the delayed decision mechanism, VM073140da28

will directly execute the next sub-task. After
VM9f9854a312 and VMf8e9ff30c0 complete T1 ex-
ecution, the decision module determines that the ex-
ecution result of VM073140da28 is incorrect, so the
decision module will interrupt the data transmission
of VM073140da28 and recycle it. At this moment, the
VM on host server 2 does not have the correct T1
execution result, so the task execution cannot be
continued. Since the workflows cannot communicate
directly with each other, the control node needs to
perform data forwarding, as indicated by the blue line
in Fig. 13. Although T1 has already been executed,
since the results of three executors are not agreed,
sub-task T1 will be re-executed when there are idle
resources in the system, as indicated by the green line
in Fig. 13.

6 Conclusions

The multi-tenant coexistence service mode in the
cloud computing platform introduces serious security
risks. To achieve highly available, reliable, and
trusted workflow execution, we have presented the
mimic cloud computing task execution system. First,
the diversities of physical servers, hypervisors, and
operating systems were introduced to build the
intrusion-tolerant framework. Based on the frame-
work, common vulnerabilities among different oper-
ating systems were used for heterogeneity

 Fig. 13 A part of the log information about the experiment where a VM is penetrated by attackers (References to color

refer to the online version of this figure)

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1535

measurement and executor deployment. With the
flexible resource management of the cloud computing
platform, the elastic executor generation and recy-
cling mechanism was proposed, which can not only
shorten the life cycle of executors, but also act as the
clean mechanism to keep the pure state of executors.
Then inspired by the dynamic thought in mimic de-
fense, the dynamic workflow execution environment
switching strategy was presented to confuse the ad-
versaries. Experimental results showed that the pro-
posed system can effectively strengthen the reliability
and credibility of cloud workflow execution.

References
Ainapure B, Shah D, Rao AA, 2018. Adaptive multilevel

fuzzy-based authentication framework to mitigate cache
side channel attack in cloud computing. Int J Model Simul
Sci Comput, 9(5):1850045.

 https://doi.org/10.1142/S1793962318500459
Aktas MF, Haldeman G, Parashar M, 2014. Flexible schedul-

ing and control of bandwidth and in-transit services for
end-to-end application workflows. 4th IEEE Int Work-
shop on Network-Aware Data Management, p.28-31.

 https://doi.org/10.1109/NDM.2014.9
Casas I, Taheri J, Ranjan R, et al., 2017. A balanced scheduler

with data reuse and replication for scientific workflows in
cloud computing systems. Fut Gener Comput Syst, 74:
168-178. https://doi.org/10.1016/j.future.2015.12.005

Chen WW, Deelman E, 2012. Workflowsim: a toolkit for
simulating scientific workflows in distributed environ-
ments. 8th IEEE Int Conf on E-Science, p.1-8.

 https://doi.org/10.1109/eScience.2012.6404430
Deldari A, Naghibzadeh M, Abrishami S, 2017. CCA: a

deadline-constrained workflow scheduling algorithm for
multicore resources on the cloud. J Supercomput, 73(2):
756-781. https://doi.org/10.1007/s11227-016-1789-5

Ding YS, Yao GS, Hao KR, 2017. Fault-tolerant elastic
scheduling algorithm for workflow in cloud systems. In-
form Sci, 393:47-65.

 https://doi.org/10.1016/j.ins.2017.01.035
Evans N, Thompson M, 2016. Multiple operating system

rotation environment moving target defense. US Patent,
9 294 504.

Garcia M, Bessani A, Gashi I, et al., 2011. OS diversity for
intrusion tolerance: myth or reality? 41st IEEE Int Conf on
Dependable Systems & Networks, p.383-394.

 https://doi.org/10.1109/DSN.2011.5958251
Garcia M, Bessani A, Gashi I, et al., 2014. Analysis of oper-

ating system diversity for intrusion tolerance. Softw Pract
Exp, 44(6):735-770. https://doi.org/10.1002/spe.2180

Grobauer B, Walloschek T, Stocker E, 2011. Understanding
cloud computing vulnerabilities. IEEE Secur Priv, 9(2):
50-57. https://doi.org/10.1109/MSP.2010.115

Guo MZ, Bhattacharya P, 2014. Diverse virtual replicas for

improving intrusion tolerance in cloud. 9th Annual Cyber
and Information Security Research Conf, p.41-44.

 https://doi.org/10.1145/2602087.2602116
Gupta I, Kumar MS, Jana PK, 2016. Compute-intensive

workflow scheduling in multi-cloud environment. Int
Conf on Advances in Computing, Communications and
Informatics, p.315-321.

 https://doi.org/10.1109/ICACCI.2016.7732066
Hu HC, Wang ZP, Cheng GZ, et al., 2017. MNOS: a mimic

network operating system for software defined networks.
IET Inform Secur, 11(6):345-355.

 https://doi.org/10.1049/iet-ifs.2017.0085
Juve G, Deelman E, 2011. Scientific workflows in the cloud. In:

Cafaro M, Aloisio G (Eds.), Grids, Clouds and Virtual-
ization. Springer, London, p.71-91.

 https://doi.org/10.1007/978-0-85729-049-6_4
Kallenberg C, Butterworth J, Kovah X, et al., 2013. Defeating

Signed BIOS Enforcement.
https://www.mitre.org/sites/default/files/publications/def
eating-signed-bios-enforcement.pdf

Lee YC, Han H, Zomaya AY, et al., 2015. Resource-efficient
workflow scheduling in clouds. Knowl-Based Syst, 80:
153-162. https://doi.org/10.1016/j.knosys.2015.02.012

Lv HW, Lin JY, Wang HQ, et al., 2015. Analyzing the service
availability of mobile cloud computing systems by fluid-
flow approximation. Front Inform Technol Electron Eng,
16(7):553-567. https://doi.org/10.1631/FITEE.1400410

Pandey S, Wu LL, Guru SM, et al., 2010. A particle swarm
optimization-based heuristic for scheduling workflow
applications in cloud computing environments. 24th IEEE
Int Conf on Advanced Information Networking and Ap-
plications, p.400-407.

 https://doi.org/10.1109/AINA.2010.31
Peng W, Li F, Huang CT, et al., 2014. A moving-target defense

strategy for Cloud-based services with heterogeneous and
dynamic attack surfaces. IEEE Int Conf on Communica-
tions, p.804-809.

 https://doi.org/10.1109/ICC.2014.6883418
Platania M, Obenshain D, Tantillo T, et al., 2014. Towards a

practical survivable intrusion tolerant replication system.
33rd IEEE Int Symp on Reliable Distributed Systems,
p.242-252. https://doi.org/10.1109/SRDS.2014.16

Platania M, Obenshain D, Tantillo T, et al., 2016. On choosing
server- or client-side solutions for BFT. ACM Comput
Surv, 48(4), Article 61. https://doi.org/10.1145/2886780

Stewin P, Bystrov I, 2012. Understanding DMA malware. 9th
Int Conf on Detection of Intrusions and Malware, and
Vulnerability Assessment, p.21-41.

 https://doi.org/10.1007/978-3-642-37300-8_2
Topcuoglu H, Hariri S, Wu MY, 2002. Performance-effective

and low-complexity task scheduling for heterogeneous
computing. IEEE Trans Parall Distrib Syst, 13(3):
260-274. https://doi.org/10.1109/71.993206

Verma A, Mittal M, Chhabra B, 2017. The mutual authentica-
tion scheme to detect virtual side channel attack in cloud
computing. Int J Comput Sci Inform Secur, 15(3):83-98.

Wang et al. / Front Inform Technol Electron Eng 2018 19(12):1522-1536 1536

Wang JW, Korambath P, Altintas I, et al., 2014. Workflow as a
service in the cloud: architecture and scheduling algo-
rithms. Proc Comput Sci, 29:546-556.

 https://doi.org/10.1016/j.procs.2014.05.049
Wu J, Dong MX, Ota K, et al., 2018. Big data analysis-based

secure cluster management for optimized control plane in
software-defined networks. IEEE Trans Netw Serv
Manag, 15(1):27-38.

 https://doi.org/10.1109/TNSM.2018.2799000
Yadav T, Rao AM, 2015. Technical aspects of cyber kill chain.

3rd Int Symp on Security in Computing and Communica-
tion, p.438-452.

 https://doi.org/10.1007/978-3-319-22915-7_40
Yao GS, Ding YS, Ren LH, et al., 2016. An immune system-

inspired rescheduling algorithm for workflow in cloud

systems. Knowl-Based Syst, 99:39-50.
 https://doi.org/10.1016/j.knosys.2016.01.037
Yao GS, Ding YS, Hao KR, 2017. Using imbalance charac-

teristic for fault-tolerant workflow scheduling in cloud
systems. IEEE Trans Parall Distrib Syst, 28(12):3671-
3683.
https://doi.org/10.1109/TPDS.2017.2687923

Yuan D, Yang Y, Liu X, et al., 2012. A data dependency based
strategy for intermediate data storage in scientific cloud
workflow systems. Concurr Comput Pract Exp, 24(9):
956-976. https://doi.org/10.1002/cpe.1636

Zheng ZB, Zhou TC, Lyu MR, et al., 2012. Component rank-
ing for fault-tolerant cloud applications. IEEE Trans Serv
Comput, 5(4):540-550.

 https://doi.org/10.1109/TSC.2011.42

