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Abstract: A new hierarchical software architecture is proposed to improve the safety and reliability of a safety-
critical drone system from the perspective of its source code. The proposed architecture uses formal verification
methods to ensure that the implementation of each module satisfies its expected design specification, so that it
prevents a drone from crashing due to unexpected software failures. This study builds on top of a formally verified
operating system kernel, certified kit operating system (CertiKOS). Since device drivers are considered the most
important parts affecting the safety of the drone system, we focus mainly on verifying bus drivers such as the serial
peripheral interface and the inter-integrated circuit drivers in a drone system using a rigorous formal verification
method. Experiments have been carried out to demonstrate the improvement in reliability in case of device anomalies.
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1 Introduction

In recent years, small unmanned aerial vehicles
(UAVs) or drones have drawn more and more atten-
tion because of their low cost and compact size. As
small UAVs come into our daily life, safety concerns
are also rising. Failures of a drone may result in se-
vere damage to the environment and serious injury
to the public (Simpson and Stoker, 2006).

Aside from maneuver mistakes, software errors
in the controller are one of the main reasons for UAV
failures. The fault may come from the algorithm
itself or its actual implementation (Malecha et al.,
2016). A lot of work has been done to improve the
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reliability of UAV systems. Most efforts have focused
on algorithms, such as improving modeling accuracy
(Leishman, 2002), enhancing the robustness of con-
trol algorithms (Lee et al., 2010), and reducing sensor
errors (de Marina et al., 2012). Réti et al. (2013) pro-
posed a hardware solution to improve the safety by
developing a smart mini actuator, which integrated
measurements of position and angular rate with con-
trolling microprocessors. Few people so far have ad-
dressed bugs in the implementation of algorithms at
the source code level. For a safety-critical real-time
system like a UAV, this negligence could result in
problems such as loss of synchronization (caused by
irregular response from external sensors) and high
approximation errors (caused by floating-point com-
putation) (Malecha et al., 2016). These problems are
subtle but might degrade the performance or even
cause the drone to crash.

Formal verification is a technique to conduct
correctness proof of a program (or the contradiction
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if the program contains errors) in accurate and well-
formed mathematical and logical constructs. It is
used to prevent subtle errors in the source code of
control systems (Ricketts et al., 2015; Malecha et al.,
2016; Bohrer et al., 2018). Preventing such errors
would increase the reliability and safety of drone sys-
tems. In 2015, foundational verification techniques
in the theorem prover Coq were applied to a quadro-
tor system to verify the correctness of two shims (sat-
uration blocks), which were used to limit the velocity
and height of the quadrotor (Ricketts et al., 2015).
In 2016, the same research group verified a runtime
monitor to provide strong guarantees about maxi-
mum velocities and accelerations of a drone (Malecha
et al., 2016). Bohrer et al. (2018) designed a verified
pipeline for generating concrete controller code from
high-level models. However, these efforts for for-
mally verifying control systems are not enough for a
hybrid real-time drone system.

Real-time operating system (RTOS) plays an
important role in scheduling real-time processes and
interacting with devices. Traditional RTOSs, includ-
ing Nuttx (Nutt, 2007) and FreeRTOS (Barry, 2003),
perform well in real-time scheduling. Some of them
also support memory protection to improve security
(Wang, 2017). However, none of them has provided
a formal correctness proof of its source code.

A potential source of software failures lies in the
implementation of device drivers. The driver has to
rely on the behavior of that device, for instance, to
tell when it is ready to read or write data, or whether
a previous write is complete or not. However, due
to the complexity of modern hardware, it is difficult
to consider all possible abnormal situations when im-
plementing the device driver. For example, it is com-
mon for a driver to loop until some status bit on the
device is set. If the device does not update this bit
in time, then this delays the execution of the driver,
and potentially blocks the whole system if the driver
runs in the kernel mode and is not interruptible.

The main contribution of this paper includes a
new software architecture for improving the reliabil-
ity and safety of drone systems at the source code
level by introducing formal verification techniques.
In particular, the proposed architecture is based on
certified kit operating system (CertiKOS) (Gu et al.,
2015), which enjoys a formal functional correctness
guarantee. We adopt this methodology and formally
verify the device driver for a drone control system

layer by layer, and demonstrate that this indeed
improves its safety and reliability. The same archi-
tecture could be extended to autonomous cars, home
service robots, and other safety-critical systems.

2 Hierarchical software architecture

To improve the reliability and safety of the soft-
ware stack of a drone system, a new hierarchical
software architecture is proposed (Fig. 1). In this
architecture, an operating system kernel, CertiKOS
(Chen et al., 2016), plays the central role of managing
devices such as motors and sensors, and scheduling
user tasks such as the control loop and the sensor
fusion program.

A Raspberry Pi3 board is equipped on the drone
as its main controller, which connects with multi-
ple sensors and actuators through general purpose
input/output (GPIO) pins. CertiKOS-ARM, the
ARM port of CertiKOS, is installed on the board
to manage these devices, either directly or through
bus drivers, and to expose them to user space pro-
grams. During each control period, the sensor fusion
algorithm reads from sensors to generate a reliable
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attitude estimation. Then the controller decides its
next movement and writes control signals to the cor-
responding motors. There is also a remote control
(RC) task, which reads the receiver to obtain control
signals from the remote controller. In this way, the
reliability of a drone system depends heavily on the
correctness of its device drivers.

In the proposed architecture, all software mod-
ules including the kernel and device drivers should be
formally verified to ensure the functional correctness
of their source code. CertiKOS has been formally
verified on x86 in Gu et al. (2015), and its implemen-
tation has been ported to the ARM architecture suc-
cessfully. We focus mainly on verification of device
drivers for the drone system. The drone system re-
lies on the partially verified CertiKOS-ARM, which
includes modules for memory management (verified)
and thread management (not verified).

3 Driver verification

In a typical drone control system, it is neces-
sary and important to estimate the drone attitude
accurately. Raw data for the drone attitude esti-
mation are usually provided by three sensors: ac-
celerometer, gyroscope, and magnetometer. In our
system, the accelerometer and gyroscope depend on
the serial peripheral interface (SPI) bus to trans-
mit sensing signals, and the magnetometer uses the
inter-integrated circuit (I2C) bus.

Following the same methodology as presented in
Chen et al. (2016), driver verification can be divided
into three phases. First, we build a bus model which
abstracts machine registers and the physical memory
into a state transition system. Afterwards, we define
an abstract interface for reading and writing the bus
(Fig. 2).

During the second phase, we divide the C code
of the device driver into multiple layers according
to their functionalities and dependencies (Fig. 2).
We further convert these individual C functions
into their corresponding Clight abstract syntax tree
(Leroy, 2009), so that we can reason about their be-
haviors by using the Clight semantics, which is ac-
tually an extended semantics (Gu et al., 2015). The
set of abstract syntax trees implementing a layer is
called a module, i.e., Mn in Fig. 2.

Next, we abstract each C function into a
Coq function (which is called a specification or a
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primitive), while still capturing everything we want
to know about the behavior of its source code. This
is achieved by following the approach of deep specifi-
cations (Gu et al., 2015). Then we define invariants
for each layer, and prove that all primitives preserve
these invariants, so that the higher layer will operate
only on valid states of its underlay.

It is not straightforward to prove the refinement
between the module and its specification (highspec)
in one step. Hence, we follow and introduce the
lowspec to bridge the gap (Gu et al., 2015). While
highspec focuses on the abstract states and high-
level invariants, the lowspec deals with the memory
state and low-level invariants. The set of highspecs
constitutes the abstract layer of the corresponding
module, which is relied upon by other modules. On
the other hand, lowspec is used for only simplifying
the refinement proof and hidden from higher layers.

The final phase is the verification of each driver,
based on the bus model and abstract bus driver layers
obtained from the first two steps. Two refinements
have to be proved in each abstract layer (Gu et al.,
2015), the refinement from lowspec to highspec and
each module correctly implementing its lowspec. If
any condition is not satisfied, we adjust either the
lowspec or the original C code until all modules are
verified. Then the deep specification framework links
the verification of all layers together to achieve a
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verified program. This guarantees the functional
correctness of our adjusted C code of device drivers,
which in turn contributes to the reliability and safety
of the drone system.

3.1 Bus model

The characteristics of the bus in an actual phys-
ical system depend on the I/O operations of the
CPU and its interactions with the external sensor.
Hence, the SPI/I2C bus could be modeled as finite
state transition systems interacting with the CPU
and external sensors. Different I/O operations or ex-
ternal sensor events lead to different corresponding
changes to the state. Bus transitions (i.e., “Trans” in
Fig. 2) therefore include these two types of interac-
tions (Chen et al., 2016).

The CPU carries out read/write operations on
bus registers through the I/O command. We model
these operations on both the SPI and I2C buses as
in Definition 1.
Definition 1 (CPU operation on bus)

O::= input n
| output n v,

where O::= input n denotes reading a value from
the register whose address is n, and O::= output n v
means that the CPU writes a value v to the register
at address n.

The following subsections describe definitions of
the state machine for I2C and SPI, and how they are
updated by CPU operations and external actions.

3.1.1 I2C bus model

To formally define the I2C bus model, we first
construct its abstract state.
Definition 2 (I2C bus abstract state)

Record I2CState :=
mkI2CState {

I2C_OA: Z

I2C_SA: Z

I2C_RX_DATA: Z

I2C_TX_DATA: Z

...
}.

Although the physical bus hardware is sophisti-
cated and contains many more states and operating
modes, most of them are irrelevant regarding the at-
tached sensor, such as the 10-bit addressing mode

and high-speed mode. Therefore, we fix its opera-
tion to the 7-bit addressing mode, and abstract only
10 registers (Definition 2) to formalize the state of
a physical I2C bus. These include the base address
of the device interface state I2C_OA and slave ad-
dress state I2C_SA, which serve as identities when
connecting to specific devices. We also model the
data receiving buffer state I2C_RX_DATA and the
data sending buffer state I2C_TX_DATA to describe
the read/write buffer in a real I2C bus.

Based on Definitions 1 and 2, we define the
CPU’s read/write operations for I2C bus as Defi-
nition 3.
Definition 3 (I2C state transition function based on
CPU operation)

δCPUI2C(op: O) (s: I2CState) : I2CState :=
|op = input n -> s
|op = output n v -> s{I2C_OA: v}, if n = I2C_OA

s{I2C_SA: v}, if n = I2C_SA
. . . ,

where δCPUI2C describes the interaction between the
CPU and I2C bus, which takes the CPU operation
op: O and the current state as arguments, and re-
turns the resulting state after this operation. A read
operation (op= input n) does not change the I2C
state. A write operation (op= output n v) updates
the corresponding field in the abstract state to v.

As mentioned previously, besides I/O opera-
tions issued by the CPU, external sensor events may
affect the state of the I2C bus. There are three kinds
of events for the I2C bus as listed in Definition 4,
non-event, acknowledgment responding event, and
data receiving event.
Definition 4 (I2C external sensor event)

EenvI2C::= NullEvent
| ACKEvent
| RecvEvent(val: Z),

where NullEvent represents a non-event in which
the I2C bus is waiting for other functional events,
ACKEvent represents the acknowledgment respond-
ing event in which the I2C bus receives an acknowl-
edgment, and RecvEvent denotes the data receiving
event in which the I2C bus receives an integer data
val.

Based on Definitions 2 and 4, we model state
transitions of the I2C bus triggered by external
events as Definition 5.



Zhu et al. / Front Inform Technol Electron Eng 2019 20(3):353-362 357

Definition 5 (I2C state transition function based on
external sensor events)

δenvI2C(e: EenvI2C)(s: I2CState) : I2CState :=
| s, if e = NullEvent
| s, if e = ACKEvent
| s′, if e = RecvEvent(val).

The acknowledgment responding event and the
non-event will not change the I2C state. For receiv-
ing event, the I2C bus receives an integer data val,
and copies this value to the register I2C_RX_DATA as

δenvI2C(e: EenvI2C)(s: I2CState) : I2CState :=
| s, if e = NullEvent
| s, if e = ACKEvent
| s{I2C_RX_DATA: val}, if e = RecvEvent(val).

In the I2C bus model, an external sensor event
list lenvI2C is also constructed to decide the order of
all events being processed by the CPU. At the same
time, a local event log (Fig. 2) is set up to record
events which are already processed in the event list.

Once state transition functions of the I2C bus
model are defined, we connect transitions caused
by CPU operations with transitions triggered by
external events to model the overall effect of
reading/writing the I2C bus. They constitute the
interface for the device driver to interact with the
I2C bus.
Definition 6 (I2C bus read semantics)

(e,l′i) = next(lenvI2C,li)
s′ = δenvI2C(s,e)
res = κ(n,s′)
s′′ = δCPUI2C(s

′,(input n)),

where we first find that the next event e is han-
dled by comparing the event list lenvI2C with local
event log li (next(lenvI2C,li)). Then we apply the
I2C state transition function δenvI2C on event e and
the current I2C state s to obtain the next I2C
state s′. The next step is to obtain the value
res from the abstract state s′ and register address
n. Finally, we update the I2C state again through
the state transition function δCPUI2C . Given all above
premises, semantics of reading the I2C bus is de-
fined as read(n,s,li,lenvI2C)=(res, s′′, l′i). Simi-
larly, Definition 7 is the write semantics on the I2C
bus.

Definition 7 (I2C bus write semantics)

(e, l′i) = next(lenvI2C,li)
s′ = δenvI2C(s,e)
s′′ = δCPUI2C(s

′,(output n v))
write(n,v,li,lenvI2C)=(s′′,l′i).

This concludes the definition of the I2C bus
model, which is relied upon by the verification of
device drivers explained in Section 3.1.2.

3.1.2 SPI bus model

The SPI bus is modeled by the same approach.
Definition 8 (SPI bus abstract state)

Record SPIState :=
mkSPIState {

SpiRx: Z

SpiTx: Z

SpiEn: bool
SpiMs: SPI_MS
...
}.

In the SPI bus model, integer elements, SpiRx
and SpiTx, represent the data receive buffer and data
transmit buffer of the actual physical SPI bus, which
are abstracted from the data receive register and the
transmit register, respectively. The boolean field
SpiEn is an abstraction for modeling SPI enabling
status. In summary, the SPI bus abstract state con-
tains a total of 25 fields, and they are used in our
drone control system.

3.2 Layer structure of the driver code

As mentioned at the beginning of this section,
we divide the bus driver code into layers based to
their functionalities and dependencies to enable the
compositional verification (Chen et al., 2016). Three
principles are followed during this process: (1) Sim-
ilar functions, such as reading/writing a register,
should be put in the same layer; (2) One layer should
not contain too many functions, to make the proof
easier; (3) Such layering should not change the over-
all behavior of the source code. We show the layer
structure of the SPI bus driver, while the layering of
the I2C bus driver is similar.

In Fig. 3, each block represents one module in
the layer. For example, in layer DSpiInOut, module
RegRW contains two functions for reading and writing
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References to color refer to the online version of this figure

registers. The arrow between two modules indicates
the calling relation between them, and a module is
only allowed to call modules in the lower layer. For
example, module CH0EN points to (invokes) module
RegRW, and module RegRW points to the read and
write interface of the SPI bus. The blue block in-
dicates that functions in this module depend on at
least one function in another module. The white
block represents the module which is passed through
from a lower layer without any modification. For ex-
ample, module RegRW in DSpiEnChannel is passed
through directly from layer DSpiInOut. Module
RegRW, which consists of the read and write inter-
faces of the SPI bus, is located at the bottom of the
layer architecture.

3.3 Verification of the driver

In this subsection, we follow the methodology
proposed in Gu et al. (2015) to verify the SPI driver.

3.3.1 Functional correctness of the C code

We show the C code for enabling the channel
and its corresponding Clight representation in Fig. 4.
The main operation of the function is to write value

void mcspi_enable_channel (void) 
{
write_register(ENABLE_CHANNEL, CH0CTRL);
}
Definition mcspi_enable_channel :=
(Scall None
(Evar MCSPI_write_register (Tfunction
(Tcons tuint (Tcons tuint Tnil)) tvoid cc_default))
((Econst_int (ENABLE_CHANNEL) tint) ::
(Econst_int (CH0CTRL) tint) :: nil))).

Fig. 4 C source code and its Clight representation (in
Coq) of function mcspi_enable_channel

ENABLE_CHANNEL to address CH0CTRL to enable the
SPI bus.

The workflow of proving the functional correct-
ness of a module is elaborated in Fig. 5. Clight-
gen, provided by Compcert (Leroy, 2009), is used
to translate the C code of SPI driver into a Clight
abstract syntax tree. Then we write the highspec
and lowspec of the corresponding module in Coq to
establish the refinement relation.

The highspec describes the desired functionality
of this module. For example, the above function
mcspi_enable_channel is abstracted as

Function σ̂mcspi_enable_channel(abs: RData)
: option RData :=

match(spi abs)with
| SpiState _ SpiEN.en _ ->
Some(abs{spi:(SpiState _ SpiEn.Enable _)})
| _ -> None
end,

where RData contains all states of the system, such
as the page table and the process control block. This
function updates only spi, and SpiState is an in-
stance of spi. The enable bit (SpiEn) of the SPI
bus state (SpiState) will be changed from the pre-
vious value to Enable, which describes the behavior
of the SPI enable operation in the original C code.
The lowspec also abstracts the behavior of each func-
tion in this module, but is specified in a way that is
closer to the concrete hardware. In the case of en-
abling the SPI bus, it looks very similar to the corre-
sponding highspec because only function invocation
is involved. The following is the low specification of
function mcspi_enable_channel written in Coq:

Inductive σ̂LOWmcspi_enable_channel(abs abs′:RData)
(m0:mem) :=|σ̂mcspi_enable_channelabs = Some abs′->
σ̂LOWmcspi_enable_channel(m0,abs) -> (m0,abs′),

where RData represents the abstract state and mem
represents the memory state. Memory state m0 does
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not change since this function does not involve any
direct memory operation. Thus, the overall behavior
is a transition from (m0,abs) to (m0,abs′). Then
we prove the refinement between the highspec and
the lowspec defined as

highspec ⊆ lowspec :=

∀a, a′,m, (a
highspec−−−−−→ a′) ∧ (a ∼ m)

⇒ ∃m′, (m
lowspec−−−−−→ m′) ∧ (a′ ∼ m′).

The highspec and lowspec may operate on dif-
ferent types of states, so that we use a, a′, m, and m′

to distinguish between them. However, we establish
a relation a ∼ m between two states on these two
different levels, which holds only if a is a valid ab-
straction of m. This refinement relation states that
if the highspec takes one step from a to a′, and its
initial state a is a proper abstraction of m, then the
corresponding lowspec must be able to step from m

to m′, where the relation ∼ also holds between a′

and m′.
Similarly, we prove the refinement relation be-

tween the lowspec and the actual C code. Combining
the above two refinements, we obtain the refinement
from the highspec to the actual C code, which is

exactly its functional correctness proof.
As shown in Fig. 5, it is possible during the ver-

ification process that we find that certain refinement
relations do not hold. This either is due to a flaw
in the specification which we need to revise and try
again, or is indeed caused by a bug in the source
code. In the latter case, we have to fix the bug so
that the functional correctness of the source code
could be verified.

3.3.2 Linking all layers together

The functional correctness proof of each layer
assumes the functional correctness of the layer below
it. Part of the layer architecture of the SPI bus driver
is presented in Fig. 6, to illustrate how we build up
the verification layer by layer.
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Fig. 6 Verification of the SPI driver

Module CH0EN is first verified, meaning the be-
havior of its C code indeed follows its specification. It
then serves as the interface of layer DSpiEnChannel,
which is invoked by layer DSpiSelChannel. Sim-
ilarly, layer DSpiSelChannel exposes the highspec
CH0SELECT as part of its interface, which could be
used by upper layers.

The framework (Gu et al., 2015) enables us to
link layers together and prove the following con-
textual refinement between layers. Assume that P
is a program which uses function CH0SELECT. As
shown in Fig. 7, the behavior of linking P with
module CH0SELECT (written as P ⊕ CH0SELECT) and
running them on layer DSpiEnChannel is equiva-
lent to the behavior of running program P on layer
DSpiSelChannel (written as P@DSpiSelChannel).
We can write the refinement between these two exe-
cutions as

P@DSpiSelChannel⊆
P⊕ CH0SELECT@DSpiEnChannel.
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Once this refinement is proved, the actual im-
plementation of function CH0SELECT is hidden under
layer DSpiSelChannel, while we are still able to rea-
son about all behaviors of program P.

Finally, we use Compcert (Leroy, 2009) to gen-
erate assembly code for all verified modules. Com-
pcert carries the functional correctness property all
the way down to the assembly code level (Gu et al.,
2015).

4 Experiments

4.1 Methods and procedures

A drone (Fig. 8) was built for all experiments.
Three basic sensors, an accelerometer, a gyroscope,
and a magnetometer were used to estimate the atti-
tude of the drone. Their configurations are listed in
Table 1. A radio telemetry was used to record the
flight data. Experiments were designed in this sub-
section to simulate erroneous situations or bugs of
bus drivers. We set up the system so that bugs occur
every 5–10 s, whose effect is to delay the execution of
the driver code for as long as 0.2 s. This simulates the
situation where the driver keeps polling for new data
without enforcing any timeout mechanism. In this
case, an anomaly in the device may block the driver

Fig. 8 Drone used in experiments

for a long time, which in turn blocks the execution
of the whole system.

Two drone systems were tested in the real field
and the results were further compared. The first sys-
tem is the drone system with a verified SPI bus driver
as explained in the previous section. The second one
is a system with an unverified SPI bus driver. Both
of these two systems were equipped with the verified
I2C bus driver.

Ten trials have been carried out with different
bugs randomly occurring in the SPI bus driver. We
recorded and compared attitudes of the drone (roll,
pitch, and yaw) since they are the most critical met-
rics to its safety. The attitudes were computed by
the same gradient descent method (Madgwick et al.,
2011) using inertial measurement unit (IMU) data
read from the SPI bus.

4.2 Results and discussion

Fig. 9 shows the roll angles of the unverified
drone system. Solid lines in Fig. 9a represent the
computed actual roll angles while dashed lines rep-
resent the desired values required by the remote con-
troller. The differences between the actual and de-
sired values (errors) are shown in Fig. 9b. Three
peaks of errors are observed in the timeline 8.6 s,

Table 1 Configurations of three sensors of the drone∗

Sensor Chip name Measurement range Sensitivity Sampling rate

Accelerometer MPU9250 ±8g 4096 LSB/g 200 Hz
Gyroscope MPU9250 ±1000 dps 32.8 LSB/dps 200 Hz
Magnetometer HMC5883 ±1.3 Gs 1090 LSB/Gs 75 Hz
∗ Taken from datasheets of MPU9250 and HMC5883. g: standard gravity; dps: degree per second; Gs: gauss; LSB: least
significant bit
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Fig. 9 Roll angle response of drone with an unverified
SPI bus driver: (a) roll angle; (b) roll angle error; (c)
SPI bus bug

16.8 s, and 28.5 s. At these time intervals, software
bugs in the device drivers cause delayed process and
response of sensor data, which further block the con-
troller’s execution for the next multiple control pe-
riods. Software bugs are also detected at 1.8 s and
23.2 s in the timeline (Fig. 9c). However, these bugs
have no obvious impact on the roll angle, due to the
relatively steady attitude of the drone. When these
bugs occur, the input of each motor will be the same
as it in the previous period. If the current attitude
of the drone does not change a lot compared with
the previous one, the drone will stay stable using the
same motor input. The same phenomenon exists on
the pitch angle (Fig. 10).

Fig. 11 shows the value of the yaw angle, which
does not experience the same variation upon software
faults caused by bugs. It is attributed to the sensor
fusion algorithm, which uses data from both the IMU
(connected with the SPI bus) and the magnetometer
(connected to the I2C bus) to improve the accuracy
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Fig. 10 Pitch angle response of drone with an unver-
ified SPI bus driver: (a) pitch angle; (b) pitch angle
error; (c) SPI bus bug
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Fig. 11 Yaw angle response of drone with an unver-
ified SPI bus driver: (a) yaw angle; (b) yaw angle
error; (c) SPI bus bug

of the estimated yaw angle.
Fig. 12 shows comparison of attitude errors be-

tween these two drone systems. The existance of
software bugs leads to significant differences between
desired and actual pitch and roll angles.

Fig. 13 shows a series of snapshots for differ-
ent drone flights in a consequent timeline. Drones
in Figs. 13a and 13b have installed verified device
drivers. They could hover, and are able to change
their attitudes and fly forward. Fig. 13c shows the
situation where there are bugs in the drone’s SPI bus
driver, and shows greater variations of the drone’s at-
titude compared to Figs. 13a and 13b, even if they are
operated in the same manner. Fig. 13 demonstrates
that bugs in the SPI bus driver indeed degrade the
stability of a drone.
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Fig. 13 Empirical comparison between systems with ((a) and (b)) or without (c) a verified SPI bus driver

5 Conclusions

A new software architecture and development
method targeting at safety and reliability for a drone
system has been proposed in this study. With the
help of formal verification, several bus drivers which
play critical roles in flight control were verified. Ex-
periments in the filed tests showed that the proposed
system enjoys improved reliability by eliminating
the subtle bugs that can be introduced in software
development.

In our future work, we plan to extend the pro-
posed architecture with virtualization support. A
hypervisor could be introduced to support third-part
systems without compromising the inherited safety
and security by enforcing strong isolation and non-
interference properties.
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