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Abstract: In a dissipative gyroscopic system with four degrees of freedom and tensorial variables in contravariant (right upper 
index) and covariant (right lower index) forms, a Lagrangian-dissipative model, i.e., {L, D}-model, is obtained using second-order 
linear differential equations. The generalized elements are determined using the {L, D}-model of the system. When the prereq-
uisite of a Legendre transform is fulfilled, the Hamiltonian is found. The Lyapunov function is obtained as a residual energy 
function (REF). The REF consists of the sum of Hamiltonian and losses or dissipative energies (which are negative), and can be 
used for stability by Lyapunov’s second method. Stability conditions are mathematically proven. 
 
Key words: Lyapunov function; Residual energy function; Stability of dissipative gyroscopic system 
https://doi.org/10.1631/FITEE.1900014 CLC number: O313 
 
 
1  Introduction 
 

Stability of physical systems is important when 
considering the continuity of physical systems. There 
are many methods related to stability. One of them is 
Lyapunov’s second (or direct) method, which was 
investigated by Barbashin and Krasovsky (1952), 
Krasovskii (1959), Lasalle (1960), Yoshizawa (1966), 
Hahn (1967), Rouche et al. (1977), Marino and Nic-
osia (1983), Lyapunov (1992), McLachlan et al. 
(1998), and Maschke et al. (2000). Mathematical and 
physical foundations of Lagrangian and Hamiltonian 
were studied by Heil and Kitzka (1984) and Arnold 
(1989). In contrast, a physical or an engineering sys-
tem can be modeled by a Lagrangian L and a gener-
alized velocity proportional Rayleigh dissipation 
function D, i.e., {L, D}-model, and a Hamiltonian H 
depending on the tensorial variables in covariant and 

contravariant forms (Susse and Civelek, 2003). Ex-
tended Hamiltonians in different tensorial forms to 
directly obtain equations of generalized motion in 
dissipative systems proposed by Süsse and Civelek 
(2013) include the higher-order Lagrangian and 
nonconservative Hamiltonians. 

The Lyapunov exponent and the almost sure 
asymptotic stability of quasi-linear gyroscopic sys-
tems were studied by Huang and Zhu (2000). Exact 
stationary solutions of the stochastically excited and 
dissipated gyroscopic systems were studied by Ying 
and Zhu (2000). Chen LQ et al. (2004) focused on a 
continuous gyroscopic system with certain small 
nonlinear terms and parameter excitation terms. Other 
related works include Ao (2004), Kwon et al. (2005), 
and Yin and Ao (2006). The limitations of traditional 
approaches for constructing Lyapunov functions and 
the necessity of a new approach are well-known. New 
approaches are required to construct Lyapunov func-
tions for traditional systems within this context. 
Construction of a Lyapunov function in general cases 
remains an unsolved problem in physical/engineering 
science. Dissipative gyroscopic systems are  
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considered to be interesting examples that can help 
solve this problem. A Lyapunov function for a dissi-
pative dynamic system has not been constructed, and 
the systematic approach would be a great contribution 
to the field. Xu et al. (2011) obtained a Lyapunov 
function for a dissipative gyroscopic system, where 
some engineering scientists and applied mathemati-
cians could obtain such a system through the Lya-
punov function. Dynamic equivalence among Ham-
iltonian and Lyapunov functions was studied by Yuan 
et al. (2014). The stability of equilibrium for non- 
complex and non-holonomic mechanical systems 
(gradient systems) was investigated in Chen J et al. 
(2018), where a generalized skew symmetric matrix is 
a special form of a Lyapunov function. 

A linear dynamic approach is studied in this 
work, and intrinsic nonlinear dynamic approaches can 
be found in Yuan et al. (2013), where a potential 
function (defined as an energy function, a generalized 
Hamiltonian, or a Lyapunov function) describes a 
nonlinear dynamic system for the deterministic dy-
namics. Another work related to the nonlinear case is 
Ma et al. (2014), where for the first time potential 
functions were constructed in a continuous dissipative 
chaotic system and used to reveal its dynamic prop-
erties. Ma et al. (2014) proposed that a potential 
function is not unique for a deterministic system. 

The use of the sum of kinetic and potential en-
ergies together with the generalized velocity propor-
tional (Rayleigh) dissipation function (in tensorial 
forms) was described for the stability analysis by 
Civelek and Diemar (2003). Civelek (2018) obtained 
Lyapunov functions as residual energy functions 
(REFs) in a systematic way different from other  
approaches. 

A four-dimensional linearized dissipative 
gyroscopic system with a perturbed differential 
equation in Xu et al. (2011) has the following matrix: 

 
( ) ( ) .+ + + + = 0 q G B q C R q                  (1) 

 
Considering vectors and matrixes expressed below: 
 

1

2

0 0
= , , ,

0 0

0 0
, ,

0 0

g bq
g bq

r c
r c

     
= =     −    

   
= =   −   
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Eq. (1) can be rewritten as the following scalar 
differential equations: 

 

( )
1 1 1 2 2

2 2 1 1 1

2 2 2 1 1
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0

,

0
.
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
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2  {L, D}-model 
 

Using the {L, D}-model of the system, these 
linear differential equations can be obtained through 
the extended Euler-Lagrangian differential equation: 

 
d , 1, 2, , ,
d

k
k k k

L L D F k f
t q q q
∂ ∂ ∂

− + = =
∂ ∂ ∂



 

   (4) 

 
where Fk is the generalized external force and k the 
number of degrees of freedom. The linear differential 
equation of a dissipative generalized motion in its 
most general form is expressed as 

 

,k k k k
k k k kM q Rq Kq C F+ + + =             (5) 

,
k

k k kk k k

k k k k

R K C Fq q q
M M M M

+ + + =        (6) 

 
where the left lower index is the usual index, kM≠0 the 
generalized mass, kR the resistive loss, kK the 
potential elements, kC a constant, and k=1, 2. By 
comparing Eqs. (3) and (6), we can determine the 
generalized elements, constants, and external forces 
as follows: 
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Using Eq. (3), the generalized velocity 

proportional Rayleigh dissipation functions including 
the constant term kC take the following forms: 

 

( ) ( )1 1 2 2
1 21 2, .D DM q cq M q cq

q q
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Therefore, the {L, D}-model with an autono-
mous Lagrangian L has the forms below: 

 

( )
( )

( )
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( ) ( ) ( )

2 2 2

1

1 2 1 1 1 2 2 2
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where ( )kT q  and U(qk) are kinetic and potential 

energy parts of the Lagrangian, respectively. 
 

 
3  Generalized momenta, Hamiltonian, and 
configuration space 

 
The generalized momenta and their first-time 

derivative are expressed as 
 

( )
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The prerequisite of a Legendre transform is 

expressed as 
 

det det 0, , 1, 2, , .j
j k k

pL j k f
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If Eq. (11) is fulfilled, the Hamiltonian H+ 

related to Lagrangian L is expressed as 
 

( )
1

, .
f

k k
k k

k
H p q p q L+

=

= −∑                  (12) 

For this case, the condition is expressed as 

1
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where the metric tensor and its inverse are 

1
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where K is the normalization constant, the right lower 
index is in covariant form, and the right upper index is 
in contravariant tensorial form. 

The metric tensor has a nonzero determinant, 
and its inverse consists of symmetric constant 
elements. Consequently, the generalized motion takes 
place in the Euclidean space. However, this does not 
make any difference in our considerations for this 
case. The generalized coordinates and momenta can 
be transformed between the covariant and 
contravariant forms as follows: 
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For our case, the Hamiltonian is expressed as 
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4  Residual energy function and stability 
 
In this section, we will prove that the REF 

appears as an autonomous Lyapunov function. 
The REF is defined as 
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Thus, the REF here is expressed as 
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The first term of the right-hand side of Eq. (18) is 
an autonomous Hamiltonian, and therefore its first- 
time derivative is zero. Hence, considering the first- 
time derivative of the REF, we can obtain 

 

( ) ( )1 1 1 2 2 2
1 2 .M q cq q M q cq q+ = + + +

   H    (19) 
 
For marginal or asymptotic stability, the 

necessary condition is expressed as 
 

( ) ( )1 1 1 2 2 2
1 2 0.M q cq q M q cq q+ + + ≤       (20) 

 
For condition (20) to be negative semidefinite, it 

must satisfy 
 

( ) ( )0 0.r r r r r r
r M q cq q q cq q+ ≤ ⇒ + ≤       (21) 

 
4.1  Marginal stability 

Because rq ≠0⇒qr(t)≠constant, we can obtain 
 

0.r rq cq+ =                          (22) 
 
Eq. (22) is an undamped oscillator, and the only 

fix point can be found through the equivalent 
first-order system, which is expressed as  

 

,
.

r r

r r

q v
v cq

 =


= −





                             (23) 

 
The fix point is given as (0, 0), which is a center 

type. The solution of the differential equation for the 
equality case, i.e., Eq. (22), is expressed as 

 
2

1,2e ( ) 0 i .t c cλ λ λ+ = ⇒ = ±            (24) 

Thus, the related variable is expressed as 

( ) ( )i( ) e cos isin ,r ctq t ct ct±= = ±     (25) 
 

representing a complex oscillation. This means that 
the solution must be in the form of sinusoidal 
oscillation with an angular velocity of :c cω =  

 
i

i

Re{e } cos( ),

Im{e } sin( ).

c

c

t
c

t
c

t

t

ω

ω

ω

ω

±

±

 =


= ±
                   (26) 

The related trajectories in the state space are 
closed curves in the form of ellipse, and the motion is 
clockwise as 0c cω = >  and is periodic, expressed 
as 

 
2 2[ ( )] [ ( )] 1.r rq t v t c+ =                   (27) 

 
Thus, the marginal stability condition is proven. 

4.2  Asymptotic stability 

In contrast to marginal stability, for asymptotic 
stability, the differential inequality case of inequality 
(21) is valid. The condition of asymptotic stability is 
given when the related solutions 

 
( ) 0r r rq cq q+ <                        (28) 

 
of inequality (21) are fulfilled. Instead of attempting 
to solve this nonlinear differential inequality, the 
following approach is preferred:  

For inequality (21), two possibilities exist: 
 

1. 0, 0.r r rq cq q+ > <   

In this case, we have 

20 e ( ) 0

i and i no solution.

r r tq cq c

c c

λ λ

λ λ

+ > ⇒ + >

⇒ > < − ⇒



   (29) 

 
2. 0, 0.r r rq cq q+ < >   

In this case, we can obtain 

2e ( ) 0 i i .t c c cλ λ λ+ < ⇒ − < <          (30) 
 

In this interval, the term is strictly negative. 
Hence, the results are expressed as follows: 

 

( ) ( )i

i

e e cos isin

e ( ), 0,

ct t t

ct k

t c t c

q t

α α

α

± − −

±

 = ± 

≤ = ≥
   (31) 

 
where the equality case to qk(t) is valid when α=0. The 

term of ( ) ( )e cos isint ct ctα−  ±   represents a 

spiral point sinking toward the origin, i.e., asymptotic 
stability. 
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The factor λ can be considered the angular 
velocity, i.e., ω=λ. This means that for sinusoidal 
oscillations among the angular frequencies, i.e., 
−ωc<−ω<ωc, the system is asymptotically stable. 
Therefore, the condition of asymptotic stability is 
proven. 

Using the results above, conditions of marginal 
and asymptotic stability can be combined and 
rewritten as an angular frequency interval: 

 
.c cω ω ω− ≤ ≤                          (32) 

 
Thus, the conditions of negative definiteness of 

the REF, i.e., Eq. (18), are proven, and the REF 
fulfills all the properties of an autonomous Lyapunov 
function. As we can see, the prerequisite of the 
condition of negative semidefiniteness of the REF can 
be proven, and thus the REF can be considered an 
autonomous Lyapunov function. 

 
 

5  Conclusions 
 

In this study, a classical dissipative gyroscopic 
system has been investigated in a systematic manner 
within a Lagrangian-dissipative system. Using the 
Hamiltonian and dissipation functions of the system, 
a residual energy function (REF) related to the system 
has been developed. Through the first-time derivative 
of the REF, stability conditions have been proven 
mathematically for marginal and asymptotic cases of 
this function, i.e., positive semidefiniteness and 
angular frequency interval. An autonomous 
Lyapunov function could be constructed as an REF, 
and the stability of the concomitant system has been 
discussed. 

The method proposed can be easily applied to 
different systems including coupled ones. Lagrangian 
and Hamiltonian can be applied to nonlinear systems, 
and the application of such an REF approach to 
nonlinear systems requires further research. 
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