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Abstract: We study the consensus of a family of recursive trees with novel features that include the initial states
controlled by a parameter. The consensus problem in a linear system with additive noises is characterized as network
coherence, which is defined by a Laplacian spectrum. Based on the structures of our recursive treelike model, we
obtain the recursive relationships for Laplacian eigenvalues in two successive steps and further derive the exact
solutions of first- and second-order coherences, which are calculated by the sum and square sum of the reciprocal of
all nonzero Laplacian eigenvalues. For a large network size N, the scalings of the first- and second-order coherences
are lnN and N, respectively. The smaller the number of initial nodes, the better the consensus bears. Finally, we
numerically investigate the relationship between network coherence and Laplacian energy, showing that the first-
and second-order coherences increase with the increase of Laplacian energy at approximately exponential and linear
rates, respectively.
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1 Introduction

Presently, complex networks (Strogatz, 2001;
Dorogovtsev and Mendes, 2002; Newman, 2003) are
considered as a powerful tool to understand the
topology and dynamics of complex systems with
a focus on some attributes, such as degree distri-
bution (Albert and Barabási, 2002), random walks
(Zhang et al., 2009), and synchronization (Russo and
Shorten, 2018; Wang et al., 2018). Among network
models, deterministic networks have attracted con-
siderable attention because precise results can be
well determined. This helps verify some random
network models. An issue on deterministic fractal
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networks is how to obtain exact solutions of topol-
ogy and dynamics, e.g., deriving analytical expres-
sions of mean first-passage time measuring the ef-
ficiency of random walks (Zhang et al., 2009). On
the other hand, the Laplacian spectrum of fractal
networks has been widely studied, and is related to
some structural properties and dynamical features
(Farkas et al., 2001; Goh et al., 2001; Dorogovtsev
et al., 2003).

The consensus problem in multi-agent systems
with noise is to design a measurement-based dis-
tributed protocol such that the agents will reach con-
sensus (Ma et al., 2010; Song et al., 2016). In cou-
pled complex networks, noise also has much effect on
the synchronization dynamics (Russo and Shorten,
2018). Recently, network coherence characterized
by the Laplacian spectrum has been introduced to
measure consensus errors (Patterson and Bamieh,
2014; Sun et al., 2014; Yi et al., 2015; Dai et al.,
2018; Zong et al., 2018). Pioneering work studied
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the network coherence of Vicsek fractals and showed
that its fractal dimension dominates the scalings of
coherence with network size (Patterson and Bamieh,
2014). However, the scalings of coherence in our
treelike networks are not related to fractal dimen-
sion (Sun et al., 2014). Yi et al. (2015) investigated
the consensus in a complex network with small-world
topology and found that the small-world topologi-
cal structure improves the performance of network
coherence. Dai et al. (2018) and Zong et al. (2018)
studied the effect of weights on the coherence in some
families of weighted networks.

The Laplacian energy of a graph is defined by
Laplacian eigenvalues (Gutman and Zhou, 2006),
and is equal to the sum of singular values of a shift of
the Laplacian matrix of the considered graph (Rob-
biano and Jimenez, 2009). This quantity has re-
ceived wide attention in many mathematical and
chemical fields such that it helps have a better un-
derstanding of π-electron energy of a molecule in
theoretical chemistry (Chu et al., 2016). To the best
of our knowledge, few results involve the relationship
between network coherence and Laplacian energy.

Inspired by the above discussion, we will inves-
tigate this relationship and further study the effect
of the initial states on network coherence. We first
introduce a controlled network parameter into our
recursive trees and propose a new method to cal-
culate the network coherence for this family of re-
cursive trees. Our results show that the consensus
becomes worse with a larger initial number of nodes.
Finally, we find that the first- and second-order co-
herences increase with the increase of Laplacian en-
ergy at approximately exponential and linear rates,
respectively.

2 Recursive trees with controlled ini-
tial states

In this study, we introduce a positive number r

to control the different initial states of our considered
recursive trees and denote T r

g the recursive trees after
g steps, where r ≥ 2 and g ≥ 1. These are built as
follows:

At the initial state g = 1, T r
1 includes the num-

ber of r nodes connected by (r − 1) edges. For the
subsequent steps g ≥ 2, T r

g is constructed by T r
g−1

by attaching one new node to each existing node in
T r
g−1 (Fig. 1). It is clear that our model has different

g=1

g=2

g=3

g=4

1 2 r−1 r

1 2 r−1 r

1 2 r−1 r

1 2 r−1 r

Fig. 1 Illustration of recursive trees T r
g (g = 1,2,3,4)

initial states by adjusting the parameter r. Based
on the structures of T r

g , we obtain the total number
of vertices N r

g and edges Er
g as N r

g = r · 2g−1 and
Er

g = r · 2g−1 − 1, respectively.

3 Network coherence

In this study, we propose a method to calcu-
late the first- and second-order coherences for this
family of recursive trees, to obtain the scalings of
network coherence with regard to the network size,
and finally to investigate the relationship between
network coherence and Laplacian energy.

3.1 First-order coherence

The first-order consensus dynamics in the pres-
ence of noise can be described by

ẋi(t) = −
∑

j∈Ωi

Lijxj(t) + ωi(t), (1)

where xi(t) denotes the state of vertex i at time
t, Ωi is the set of neighboring vertices of ver-
tex i, Lij is the element of Laplacian matrix L,
and ωi(t) is a delta-correlated Gaussian noise im-
posed on vertex i. Let x(t) =

(
x1(t), x2(t), . . . ,

xN (t)
)T ∈ R

N denote the system state and ω(t) =
(
ω1(t), ω2(t), . . . , ωN(t)

)T ∈ R
N be the vector of

uncorrelated variables of the noise. Then the con-
sensus system (1) reads as

ẋ(t) = −Lx(t) + ω(t). (2)

Definition 1 The first-order network coherence
is given by the mean steady-state variance of the
deviation from the average of all node values, which
is expressed as

H(1):= lim
t→∞

1

N

N∑

i=1

var
{
xi(t)− 1

N

N∑

j=1

xj(t)

}
.
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Then we define the output of system (2), which
is expressed as

y(t) = Px(t), (3)

where P = I − 1

N
11T is the projection operator

with I an identity matrix and 1 an N -vector of all
ones.

The first-order coherence H(1) is related to the
H2 norm of the above systems (2) and (3), that is,

H(1) =
1

N
tr

(∫ ∞

0

e−LTtP e−Ltdt

)
.

It has been shown that H(1) is completely de-
termined by the (N − 1) nonzero eigenvalues of the
Laplacian matrix (Xiao et al., 2007; Bamieh et al.,
2012) in Eq. (2), which is given by

H(1) =
1

2N

N∑

i=2

1

λi
,

where λ1, λ2, . . . , λN (0 = λ1 < λ2 ≤ · · · ≤ λN )
are the Laplacian eigenvalues.

3.2 Second-order coherence

In the second-order consensus problem, every
vertex has two state variables, x1,i(t) and x2,i(t).
Then the whole network can be denoted by two state
vectors, x1(t) and x2(t), where x1(t) ∈ R

N is the
position vector and x2(t) ∈ R

N is the velocity vec-
tor. The second-order consensus dynamics subject
to noises are given by

[
ẋ1(t)

ẋ2(t)

]
=

[
0 I

−L −L

] [
x1(t)

x2(t)

]
+

[
0

I

]
ω(t),

where ω(t) is a 2N -vector of zero-mean noise
processes.
Definition 2 The second-order network coherence
is defined as the mean steady-state variance of the
deviation from the average of position vector x1(t),
which is expressed as

H(2):= lim
t→∞

1

N

N∑

i=1

var
{
x1,i(t)− 1

N

N∑

j=1

x1,j(t)

}
.

In the same way, the second-order network coherence
is determined by the nonzero Laplacian eigenvalues,
as

H(2) =
1

2N

N∑

i=2

1

λ2
i

.

3.3 Laplacian eigenvalues

Let Ar
g = [Aij ]Nr

g×Nr
g

be the adjacency ma-
trix of T r

g , where Aij = Aji = 1 if nodes i and j

are connected; otherwise, Aij = Aji = 0. Hr
g =

diag(h1, h2, . . . , hNr
g
) is the diagonal degree matrix

of T r
g , where hi represents the degree of node i.

Then the Laplacian matrix Lr
g of T r

g is defined by
Lr

g = Hr
g −Ar

g.
Based on the structures of our recursive trees,

the adjacency matrix Ar
g and diagonal degree matrix

Hr
g read as

Ar
g =

(
Ar

g−1 Ir
g−1

Ir
g−1 0

)

and

Hr
g =

(
Hr

g−1 + Ir
g−1 0

0 Ir
g−1

)
,

where each block is an (r · 2g−2) × (r · 2g−2) matrix
and Ir

g−1 is an identity matrix. Then the Laplacian
matrix Lr

g is

Lr
g = Hr

g −Ar
g =

(
Lr

g−1 + Irg−1 − Ir
g−1

− Ir
g−1 Ir

g−1

)
.

To find the spectrum of Lr
g, we need to solve the

roots of λr
g(x), that is

λr
g(x) = det(xIr

g − Lr
g)

= det

(
(x− 1)Ir

g−1 −Lr
g−1 Ir

g−1

Ir
g−1 (x− 1)Ir

g−1

)
.

According to the knowledge of the matrix, the
characteristic polynomial λr

g(x) of Lr
g is expressed as

λr
g(x) =det

(
(x− 1− 1

x− 1
)Ir

g−1 −Lr
g−1

)

· det
(
(x− 1)Ir

g−1

)

=(x− 1)r·2
g−2

· det
(
(x− 1− 1

x− 1
)Ir

g−1 −Lr
g−1

)
. (4)

From Eq. (4), λr
g(x) can be recursively recast as

λr
g(x) = (x− 1)r·2

g−2

λg−1

(
f(x)

)
, (5)

where

f(x) = x− 1− 1

x− 1
.
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The recurrent relationship between λr
g(x) and

λr
g−1(x) in Eq. (5) is important for obtaining the

first- and second-order coherences. Note that the
matrix Lr

g has r ·2g−1 Laplacian eigenvalues. Denote
Λr
g = {λg

1, λ
g
2, . . . , λ

g
r·2g−1} as the set of Laplacian

eigenvalues. To facilitate the following calculations,

the quantity x− 1− 1

x− 1
= λg−1

i is equivalent to

x2 − (λg−1
i + 2)x+ λg−1

i = 0. (6)

Thus, Eq. (6) shows that it will give birth to
two eigenvalues in Λr

g when an eigenvalue is taken
from Λr

g−1. For convenience, let the first eigenvalue
be λg

1 = 0.

3.4 Detailed calculations of H(1) and H(2)

In what follows, we introduce two quantities τrg
and φr

g to obtain the values of H(1) and H(2), i.e.,

τrg =

Nr
g∑

i=2

1

λg
i

and

φr
g =

Nr
g∑

i=2

1

(λg
i )

2
.

Using Eq. (6) and Vieta’s formulae, we obtain

λg
2i−1 + λg

2i = λg−1
i + 2, (7)

λg
2i−1 · λg

2i = λg−1
i . (8)

From Eqs. (7) and (8), we rewrite τrg and φr
g as

τrg =

Nr
g∑

i=2

1

λg
i

=
1

λg
2

+

[
1

λg
3

+
1

λg
4

]

+ · · ·+
[

1

λg
r·2g−1−1

+
1

λg
r·2g−1

]

=
1

2
+

λg
3 + λg

4

λg
3 · λg

4

+ · · ·+ λg
r·2g−1−1 + λg

r·2g−1

λg
r·2g−1−1 · λg

r·2g−1

=
1

2
+

λg−1
2 + 2

λg−1
2

+ · · ·+ λg−1
r·2g−2 + 2

λg−1
r·2g−2

=r · 2g−2 + 2τrg−1 −
1

2

and

φr
g =

Nr
g∑

i=2

1

(λg
i )

2

=
1

(λg
2)

2
+

[
1

(λg
3)

2
+

1

(λg
4)

2

]

+ · · ·+
[

1

(λg
r·2g−1−1)

2
+

1

(λg
r·2g−1)2

]

=
1

4
+

(λg
3 + λg

4)
2 − 2λg

3λ
g
4

(λg
3λ

g
4)

2

+· · ·+(λg
r·2g−1−1+λg

r·2g−1)
2−2λg

r·2g−1−1λ
g
r·2g−1

(λg
r·2g−1−1λ

g
r·2g−1)2

=
1

4
+

(λg−1
2 + 2)2 − 2λg−1

2

(λg−1
2 )2

+ · · ·+ (λg−1
r·2g−2 + 2)2 − 2λg−1

r·2g−2

(λg−1
r·2g−2)2

=2τrg−1 + 4φr
g−1 + r · 2g−2 − 3

4
.

Furthermore, we obtain the recursive relation-
ships of τrg and φr

g, that is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τrg = r · 2g−2 − 1

2
+ 2τrg−1,

2τrg−1 = 2 · (r · 2g−3)− 2× 1

2
+ 22τrg−2,

22τrg−2 = 22 · (r · 2g−4)− 22 × 1

2
+ 23τrg−3,

. . .

2g−2τr2 = 2g−2 · (r · 20)− 2g−2 × 1

2
+ 2g−1τr1 .

Solving the above equations gives

τrg = (rg − r − 1) · 2g−2 + 2g−1τr1 +
1

2
. (9)

Hence, we need to calculate this quantity τr1 ,
and it becomes

τr1 =

Nr
1∑

i=2

1

λ1
i

.

According to the initial states of recursive trees,
we obtain its Laplacian matrix, i.e.,

Lr
1 = Hr

1 −Ar
1

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 2 −1

0 0 0 · · · −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where Hr
1 and Ar

1 are

Hr
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0

0 2 0 · · · 0 0

0 0 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 2 0

0 0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Ar
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0

1 0 1 · · · 0 0

0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1

0 0 0 · · · 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solving Lr
1x = λx gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 −x2 = λx1,

−x1 +2x2 −x3 = λx2,

−x2 +2x3 −x4 = λx3,
...

...
...

...
...

...
...

−xr−2 +2xr−1 −xr = λxr−1,

−xr−1 +xr = λxr ,

where x = (x1, x2, . . . , xr)
T. Furthermore,

Qr
1(λ)x1 = 0, (10)

where

Qr
1(λ) = λ− 1− 1

(λ− 2)− 1
(λ−2)− 1

···(λ−2)− 1
λ−1

.

Since x1 �= 0, Eq. (10) is

Qr
1(λ) = 0. (11)

From Eq. (11), we know that Qr
1(λ) = 0 has

a unique root 0. In the following, we introduce
a new quantity U r

1 (λ) to find the other Laplacian
eigenvalues, i.e.,

U r
1 (λ) =

1

λ
Qr

1(λ).

We denote two polynomials M r
1 (λ) and Dr

1(λ)

satisfying U r
1 (λ) =

M r
1 (λ)

Dr
1(λ)

and gcd[M r
1 (λ), D

r
1(λ)] =

1, where gcd is the greatest common divisor of two
polynomials, and mr

1(0) and dr1(0) are the constant

terms of M r
1 (λ) and Dr

1(λ), respectively. Then
M r

1 (λ) and Dr
1(λ) are

M r
1 (λ) = (λ− 1)M r−1

1 (λ)−Dr−1
1 (λ)

and
Dr

1(λ) = λM r−1
1 (λ)−Dr−1

1 (λ).

By the initial conditions of m2
1(0) = −2 and

d21(0) = −1, we obtain

mr
1(0) = (−1)r−1 · r

and
dr1(0) = (−1)r−1.

We continue to calculate the coefficients of the
first- and second-order terms of λ in M r

1 (λ) and
Dr

1(λ), denoted by mr
1(1), mr

1(2), dr1(1), and dr1(2),
respectively. Using the initial conditions of m2

1(1) =

1, d21(1) = 1, m2
1(2) = 0, and d21(2) = 0, we obtain

mr
1(1) =(−1)r

r(r − 1)(r + 1)

6
,

mr
1(2) =(−1)r−1 (r − 2)(r − 1)r(r + 1)(r + 2)

120
,

dr1(1) =(−1)r
(r − 1)r

2
,

and

dr1(2) = (−1)r−1 (r − 2)(r − 1)r(r + 1)

24
.

Since U r
1 (λ) has (r − 1) roots, we introduce a

new polynomial W r
1 (λ) as

W r
1 (λ) =M r

1 (λ) − 0 · (Dr
1(λ))

=
(
λ− λ1

2

) (
λ− λ1

3

)
. . .
(
λ− λ1

r

)
. (12)

Based on Eq. (12), the coefficients wr
1(0), wr

1(1),
and wr

1(2) of W r
1 (λ) are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wr
1(0) = (−1)r−1 · r,

wr
1(1) = (−1)r

r(r − 1)(r + 1)

6
,

wr
1(2) = (−1)r−1

· (r − 2)(r − 1)r(r + 1)(r + 2)

120
.

Then we obtain the solutions of τr1 and φr
1 as

τr1 =

Nr
1∑

i=2

1

λ1
i

= −wr
1(1)

wr
1(0)

=
(r − 1)(r + 1)

6
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and

φr
1 =

Nr
1∑

i=2

1

(λ1
i )

2
=

(
wr

1(1)

wr
1(0)

)2

− 2
wr

1(2)

wr
1(0)

=
(r − 1)(r + 1)(2r2 + 7)

180
.

Substituting τr1 into Eq. (9) yields

τrg =(rg − r − 1) · 2g−2 + 2g−1τr1 +
1

2

=(rg − r − 1) · 2g−2 +
2g−2(r2 − 1)

3
+

1

2
.

In the same way, we obtain φr
g, i.e.,

φr
g =4g−1

[
(r − 1)(r + 1)(2r2 + 7)

180

]

+ (2g − g − 3)2g−2r

+ 2g−2(2g−1 − 1)
r2 − 4

3
+

4g−1 − 1

12
.

Finally, we obtain the first- and second-order
network coherences as

H(1) =
τrg
2N r

g

=
(rg − r − 1) · 2g−2 + 1

2 + 2g−2(r2−1)
3

r · 2g

=
rg − r − 1

4r
+

r2 − 1

12r
+

1

r · 2g+1
(13)

and

H(2) =
φr
g

2N r
g

=2g−2

[
(r − 1)(r + 1)(2r2 + 7)

180r

]

+
2g − g − 3

4
+

(2g−1 − 1)(r2 − 4)

12r

+
4g−1 − 1

3r · 2g+2
. (14)

Via N r
g = r · 2g−1, we have g = (lnN r

g − ln r)/

ln 2. Therefore, for a large network (i.e., N r
g →

∞), we obtain the first- and second-order network
coherences with regard to network order N r

g as
H(1) − lnN r

g and H(2) − N r
g , respectively. Fig. 2

plots the network coherence versus network size N r
g

with different initial states (r = 5, 10, 15), implying
that the consensus becomes better with the smaller
number of nodes in the initial states.

0.0

0.5

1.0

1.5

2.0

2.5

3.5

3.0

lnNg
r

H
(1
)

0.5 1.0 1.5 2.0

r=5 r=10 r=15(a)

lnNg
r

H(
2)

0

r=5 r=10 r=15(b)
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300

400

500

600

700

2.0

Fig. 2 Semilogarithmic graph of network coherence
with regard to network size Nr

g at different initial
states (r = 5, 10, 15): (a) H(1); (b) H(2)

4 Laplacian energy

Gutman and Zhou (2006) proposed the concept
of Laplacian energy, defined as its Laplacian eigen-
values, i.e.,

LE(T r
g ) =

Nr
g∑

i=1

∣∣∣∣λi −
2Er

g

N r
g

∣∣∣∣

=

Nr
g∑

i=1

∣∣∣∣λi +
1

r · 2g−2
− 2

∣∣∣∣ . (15)

As an example, we numerically calculate the
Laplacian energy in Eq. (15) and the network co-
herences H(1) and H(2) in Eqs. (13) and (14). The
relationship between Laplacian energy and network
coherence at different initial states (r = 5, 10, 15) is
given in Fig. 3. We can observe that the first-order
coherence increases with the increase of Laplacian
energy at an exponential rate, while the second-order



Hong et al. / Front Inform Technol Electron Eng 2020 21(6):931-938 937

r=5 r=10 r=15(a)

LE(Tg)
r

0.0

0.5

1.0

1.5

2.0

2.5

3.5

3.0

H
(1
)

0 1000 2000 3000 4000 5000 6000

LE(Tg)
r

0 200 400 600 800

H(
2)

0

100

200

300

400

500

600

700
r=5 r=10 r=15(b)

Fig. 3 Network coherence versus Laplacian energy
with different initial states (r = 5, 10, 15): (a) H(1);
(b) H(2)

coherence increases at a linear rate. Furthermore,
the second-order consensus is worse than the first-
order one. However, they are both better with a
smaller number of nodes at the initial states.

5 Conclusions

We have investigated the consensus dynamics
with additive noise in a family of deterministic
recursive trees and have obtained the scalings of
network coherence with regard to the network size,
showing that the first- and second-order coherences
increase with the increase of the network size at the
logarithmic and linear rates for a large network size,
respectively. Based on the structures of our con-
sidered recursive trees, we have proposed a method
to derive the exact solutions of network coherence.
The results showed that the consensus is better
with a smaller number of nodes at the initial states.
Finally, we have studied the relationship between
network coherence and Laplacian energy. The first-

and second-order coherences showed exponential
and linear relationship with the Laplacian energy,
respectively. It is noted that we only numerically
studied this relationship in this type of recursive
tree, so whether the conclusions hold for other
recursive trees, even some complex networks, needs
further investigation.
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