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Abstract: The Griewank function is a typical multimodal benchmark function, composed of a quadratic convex
function and an oscillatory nonconvex function. The comparative importance of Griewank’s two major parts alters
in different dimensions. Different from most test functions, an unusual phenomenon appears when optimizing the
Griewank function. The Griewank function first becomes more difficult and then becomes easier to optimize with the
increase of dimension. In this study, from the methodology perspective, this phenomenon is explained by structural,
mathematical, and quantum analyses. Furthermore, frequency transformation and amplitude transformation are
implemented on the Griewank function to make a generalization. The multi-scale quantum harmonic oscillator
algorithm (MQHOA) with quantum tunnel effect is used to verify its characteristics. Experimental results indicate
that the Griewank function’s two-scale structure is the main reason for this phenomenon. The quantum tunneling
mechanism mentioned in this paper is an effective method which can be generalized to analyze the generation and
variation of solutions for numerous swarm optimization algorithms.

Key words: Griewank; Two-scale structure; Multi-scale quantum harmonic oscillator algorithm; Quantum tunnel
effect
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1 Introduction

The Griewank function was first used as a test
function to verify the generalized descent method
for global unconstrained minimization by Andreas
GRIEWANK from Humboldt University, Germany,
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in 1981 (Griewank, 1981). It is now a typical mul-
timodal test function in Congress on Evolutionary
Computation (CEC) (Liang et al., 2013), and has
been widely used to test state-of-the-art global opti-
mization algorithms and their variants, such as par-
ticle swarm optimization (PSO) (Shi and Eberhart,
1999), simulated annealing (SA) (Wang and Chen,
1996), differential evolution (DE) (Qin et al., 2009),
ant colony optimization (ACO) (Karaboga and Bas-
turk, 2007), hunting search (Oftadeh et al., 2010),
brain storm optimization (BSO) (Zhou et al., 2012),
the fireworks algorithm (FWA) (Tan and Zhu, 2010),
and the polar bear optimization (PBO) algorithm
(Połap and Woźniak, 2017).
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The global minimum of the Griewank function is
unique, located in the origin. The Griewank function
has a large number of local minima, exponentially
increasing with the dimension (Cho et al., 2008). The
complex structure of the Griewank function makes it
difficult to analytically solve the derivative of the
Griewank function to find the position of minima
(Cho et al., 2008).

It is generally believed that with the increase of
dimension, the global minimum becomes more and
more difficult to detect. However, this is not the case.
An unusual phenomenon can be found by optimiz-
ing the Griewank function with L-BFGS (Locatelli,
2003). With the increase of dimension, the expected
number of local searches to first hit the global min-
imum decreases dramatically. This phenomenon is
explained by mathematical analysis on the gradient
with the increase of dimension (Locatelli, 2003).

As the Griewank function has been widely used
as a test function by swarm optimization algorithms,
a similar phenomenon can be found by analyzing the
experimental data in this research area. In Zhang
et al. (2003), the Griewank function was used to test
the PSO algorithm with a random inertia weight,
opposite to other test functions, in which the mean
fitness value decreases with the increase of dimen-
sion for every population size. Karaboga and Bas-
turk (2007) proposed the artificial bee colony al-
gorithm (ABC). The Griewank function was used
to compare the performance of ACO, PSO, and
the particle swarm inspired evolutionary algorithm
(PS-EA). Mean and standard deviations of the func-
tion values obtained by these algorithms showed a
similar phenomenon that it is easier to optimize
a low-dimensional Griewank function than a high-
dimensional Griewank function. In Akbari et al.
(2010), the Griewank function was used to com-
pare the performance of the bee swarm optimiza-
tion algorithm with that of ABC and the bee and
foraging algorithm (BFA). When the dimension in-
creases from 10 to 30, the average fitness decreases
from 10−4 to 10−10. The same phenomenon can be
found in Chen and Zhao (2009), Akay and Karaboga
(2012), Gao et al. (2012), and Rao et al. (2012). In
these works, the dimensions of the Griewank func-
tion were all higher than 10 and the phenomenon of
the Griewank function whose dimension lower than
10 was neglected.

Can we draw the conclusion that the higher

the Griewank function’s dimension is, the easier it
can be optimized by swarm optimization algorithms?
Can the high success rate (SR) of optimizing a high-
dimensional Griewank function be used to verify the
performance of optimization algorithms?

In this study, we optimize the Griewank func-
tion by swarm intelligence algorithms and find an un-
usual phenomenon that the Griewank function first
becomes more difficult and then becomes easier to
optimize with the increase of dimension (abbreviated
as “the phenomenon”).

We conduct a deep analysis on the Griewank
function’s mathematical structure, and find out that
the Griewank function is composed of two major
parts. One is a quadratic convex function with a
unique global minimum, and the other is an oscilla-
tory nonconvex function with numerous local min-
ima. These two parts represent the two scales of
the Griewank function. With the increase of di-
mension, the comparative importance of these two
parts alters. For a low-dimensional Griewank func-
tion, the oscillatory nonconvex function has a greater
impact on the optimization results, while for a high-
dimensional Griewank function, the quadratic con-
vex function has a dominant influence on the op-
timization results. The two-scale structure is the
core difficulty in the optimization process. Struc-
ture, mathematical, and quantum analyses are made
to reveal the reason behind this phenomenon.

In addition, the generalization of the Griewank
function is proposed to make an in-depth analysis
on this phenomenon. The frequency transformed
parameter is used to adjust the distribution density
of the local optimal solution. The amplitude trans-
formed parameter is used to adjust the amplitude
of the quadratic convex function. The multi-scale
quantum harmonic oscillator optimization algorithm
(MQHOA) with quantum tunnel effect is used to op-
timize the generalized Griewank function.

The contributions of this study are listed below:
1. The phenomenon of optimizing the Griewank

function by swarm intelligence algorithms is found,
which is different from Locatelli (2003) and was not
mentioned in the literature on swarm intelligence
algorithms.

2. Three analytical methods are proposed to in-
terpret this phenomenon, including structure anal-
ysis, mathematical analysis, and quantum analysis.
It is worth mentioning that the quantum tunneling
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mechanism is effective which can be generalized to
analyze the generation and variation of solutions in
optimization algorithms.

3. Frequency transformation and amplitude
transformation are implemented on the Griewank
function to make a generalization. The phenomenon
is further verified and explained by experimental
analysis on the generalized Griewank function.

Fig. 1 shows the roadmap of this study.

Objective function
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Fig. 1 Roadmap of this study

2 Statement of the problem

2.1 Definition of the Griewank function

The Griewank function is defined as follows:

f(x) =
1

4000

n∑

i=1

x2i −
n∏

i=1

cos
(
xi/

√
i
)
+ 1, (1)

where −600 ≤ xi ≤ 600, i = 1, 2, . . . , n.
The global minimum of the Griewank function

is unique, located in the origin. From Eq. (1), we can
find that the Griewank function is composed mainly

of two parts:

f(x) = g(x)− h(x) + 1. (2)

The first part is g(x), which is a quadratic con-
vex function as follows:

g(x) =
1

4000

n∑

i=1

x2i . (3)

The unique global minimum of g(x) is located in the
origin, which is the same as that of the Griewank
function.

The second part is h(x), which is an oscillatory
nonconvex function as follows:

h(x) =

n∏

i=1

cos
(
xi/

√
i
)
. (4)

The graphs of two-dimensional (2D) f(x), g(x),
and h(x) over the box [−20, 20]× [−20, 20] are shown
in Figs. 2a–2c. The Griewank function is the super-
position of g(x) and h(x). h(x) has a large number
of equivalent global minima. The oscillations intro-
duced by h(x) give rise to the many local minima of
the Griewank function.

2.2 Phenomenon of optimizing the Griewank
function with the increase of dimension

To better illustrate this phenomenon, we op-
timize the Griewank function with SPSO2011
(Zambrano-Bigiarini et al., 2013) in this subsection.
The search space of the Griewank function is [−100,
100]. The function dimension gradually increases
from 2 to 100. The scope of the inertia weight
is set within [0.4, 0.9]. The program is coded in
Matlab R2013a and executed on a Microsoft Surface
Pro4 (Intel CoreTM i5-7300U CPU @2.60 GHz, 6 GB
RAM, and operation system Windows 10). Exper-
imental results are obtained based on 51 indepen-
dent trials. For each run, the difference between
the current function value fmin(x) and theoretical
minimum function value f ′

min(x) is calculated. If
|fmin(x)− f ′

min(x)| < 10−3, this run is considered to
be successful.

The following evaluation criteria are calculated:
best fitness value (Best), mean fitness value (Mean),
standard deviation of fitness values (Std), success
rate (SR), lower bound of 95% confidence limit (L95),
and upper bound of 95% confidence limit (U95). Ex-
perimental results in different dimensions are listed
in Table 1.
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Fig. 2 Three-dimensional images of the Griewank function and its components: (a) Griewank (f(x)); (b) g(x);
(c) h(x)

Table 1 Best fitness value, mean fitness value, standard deviation of fitness values, and the success rate of
SPSO2011 on the Griewank function with function dimension gradually increasing from 2 to 100

Dimension Best Mean Std SR (%) L95 U95

D=2 9.19×10−10 4.95×10−7 3.09×10−7 100.00 4.13×10−7 5.78×10−7

D=3 4.32×10−7 2.74×10−3 3.35×10−3 52.94 1.82×10−3 3.66×10−3

D=4 3.35×10−4 1.04×10−2 6.15×10−3 5.88 8.71×10−3 1.21×10−2

D=5 5.02×10−5 2.21×10−2 1.31×10−2 3.92 1.85×10−2 2.57×10−2

D=6 4.70×10−4 2.90×10−2 1.16×10−2 1.96 2.58×10−2 3.22×10−2

D=7 9.92×10−7 3.02×10−2 1.44×10−2 1.96 2.63×10−2 3.42×10−2

D=8 7.84×10−7 3.53×10−2 4.34×10−2 7.84 2.34×10−2 4.72×10−2

D=9 7.30×10−7 2.26×10−2 1.35×10−2 1.96 1.89×10−2 2.63×10−2

D=10 6.77×10−7 1.71×10−2 1.17×10−2 13.73 1.39×10−2 2.03×10−2

D=11 6.23×10−7 1.27×10−2 1.10×10−2 25.49 9.68×10−3 1.57×10−2

D=12 6.23×10−7 8.93×10−3 1.15×10−2 50.98 5.77×10−3 1.21×10−2

D=13 5.34×10−7 6.86×10−3 8.05×10−3 47.06 4.65×10−3 9.07×10−3

D=14 6.70×10−7 6.38×10−3 7.70×10−3 49.02 4.27×10−3 8.50×10−3

D=15 4.60×10−7 7.63×10−3 9.43×10−3 45.10 5.04×10−3 1.02×10−2

D=20 7.13×10−7 7.05×10−3 9.72×10−3 49.02 4.83×10−3 9.72×10−3

D=30 8.74×10−7 5.99×10−3 8.05×10−3 52.94 3.78×10−3 8.20×10−3

D=40 8.90×10−7 5.94×10−3 7.68×10−3 56.86 3.83×10−3 8.05×10−3

D=50 9.30×10−7 5.99×10−3 6.95×10−3 49.02 4.08×10−3 7.90×10−3

D=60 9.55×10−7 2.22×10−3 4.27×10−3 76.47 1.05×10−3 3.39×10−3

D=80 9.67×10−7 3.48×10−3 6.03×10−3 70.59 1.83×10−3 5.14×10−3

D=100 9.59×10−7 4.73×10−3 6.85×10−3 58.82 2.85×10−3 6.61×10−3

Best: best fitness value; Mean: mean fitness value; Std: standard deviation of fitness values; SR: success rate; L95: lower
bound of 95% confidence limit; U95: upper bound of 95% confidence limit

It can be seen from the experimental data that
when D = 2, SR=100%. SR drops to the minimum
when D = 6 and rises to a relatively stable value
when D = 12. With the increase of dimension, the
SR of SPSO2011 first falls and then rises. When di-
mension is lower than six, the SR of SPSO2011 falls
with the increase of dimension, exhibiting the oppo-
site phenomenon (Zhang et al., 2003; Karaboga and
Basturk, 2007; Chen and Zhao, 2009; Akbari et al.,
2010; Akay and Karaboga, 2012; Gao et al., 2012;
Rao et al., 2012). This indicates that the structure
of the 2D Griewank function is simple and is easy
to optimize. SR decreases when the dimension in-
creases and reaches the minimum when the dimen-

sion is around six. When the dimension continues
to rise, the number of local minima increases, but
the impact of the oscillation part of the Griewank
function decreases. This makes it easier to find the
global optimum of the high-dimensional Griewank
function.

Furthermore, we optimize Ackley and Levy with
SPSO2011.

The definition of the Ackley function is as
follows:

f(x) = −20exp

(
− 0.2

√√√√ 1

n

n∑

i=1

x2i

)
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− exp

(
1

n

n∑

i=1

cos(2πxi)

)
+ 20 + e, (5)

where −600 ≤ xi ≤ 600, i = 1, 2, . . . , n.
The definition of the Levy function is as follows:

f(x) = sin2(πw1) + (wn − 1)2
[
1 + sin2(2πwn)

]

+

n−1∑

i=1

(wi − 1)2
[
1 + 10 sin2(πwi + 1)

]
,

wi =1 +
xi − 1

4
,

(6)

where −600 ≤ xi ≤ 600, i = 1, 2, . . . , n.
The relationship between SR and D is shown in

Fig. 3. With the increase of dimension D from 2 to
60, the SR of Griewank first falls and then rises, and
those of Ackley and Levy decrease gradually.

SR
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Fig. 3 Success rates (SRs) of Griewank, Ackley, and
Levy, optimized with SPSO2011

3 Methodology

In this section, the phenomenon is analyzed in
three ways: structural analysis, mathematical anal-
ysis, and quantum analysis.

3.1 Structural analysis

To explain the cause of the phenomenon men-
tioned above, detailed structural analysis of the
Griewank function is described. We separately
project 2-, 3-, 5-, and 10-dimensional Griewank func-
tions to a plane (Fig. 4). One thousand sampling
points are taken evenly in the solution space. For
each sampling point, the coordinates of each dimen-
sion are the same. These sampling points can be

projected to any plane, and the projections of these
sampling points to any plane are the same.

In Fig. 4, each subfigure contains three curves
of different colors. The green curve is the projection
of g(x) with a unique global minimum. The red
curve is the projection of h(x) with many equivalent
global minima. The blue curve superimposed by
red and green curves represents the projection of the
Griewank function.

As can be seen from Fig. 4, the Griewank func-
tion is obviously of a two-scale structure in low di-
mensions. The two parts of the Griewank function in
Eq. (2) can be considered as two scales of this func-
tion. g(x) is the large scale of the Griewank function,
representing the global information. h(x) is the small
scale of the Griewank function, representing the local
information.

For a 2D Griewank function, the structure is rel-
atively simple and is easy to optimize. The numbers
of the Griewank function’s minima for the two search
space for up to three dimensions are listed in Table 2
(Cho et al., 2008). For [−14, 14]n, the number of
minima increases from 5 to 157, and for [−28, 28]n,
the number of minima increases from 9 to 1215. As
for a low-dimensional Griewank function, with the
increase of dimension, the number of local minima
increases exponentially. The Griewank function be-
comes more difficult to optimize, which is similar to
other functions.

When the number of dimensions is larger than
six, the Griewank function becomes easier to opti-
mize with the increase of dimension. By comparing
the four subfigures of Fig. 4, we can see that the
impact of h(x) decreases with the increase of dimen-
sion. The local minima induced by h(x) can be ne-
glected in high-dimensional scenarios. The shapes of
f(x) and h(x) are very similar for a high-dimensional
Griewank function.

3.2 Mathematical analysis

As mentioned in Section 3.1, the Griewank func-
tion is composed of two major parts. The weight

Table 2 Number of minima for [−14, 14]n and [−28,
28]n

n [−14, 14]n [−28, 28]n

1 5 9
2 31 111
3 157 1215
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Fig. 4 Projecting an n-dimensional Griewank function to a plane: (a) n = 2; (b) n = 3; (c) n = 5; (d) n = 10.
References to color refer to the online version of this figure

of each part determines the shape of the Griewank
function.

The tangent slope represents the tilt degree of
a curve. The higher the tangent slope of the current
sampling point is, the harder it is to “jump out” of
local optima. Eq. (7) represents the tangent slope of
the Griewank function’s curve at point x. The tan-
gent slopes of the global minimum and local minima
are all 0.

f ′(x) =g′(x)− h′(x)

=
1

2000

n∑

i=1

xi −
n∑

i=1

sin
(
1/

√
i
)

·
n∏

i=1,j �=i

cos
(
xi/

√
i
)
. (7)

We can see that f ′(x) is composed of two parts,
g′(x) and h′(x). g′(x) is the sum of xi, n-dimensional
coordinates. The importance of g′(x) and h′(x) is
respectively defined as Lg′(x) and Lh′(x):

Lg′(x) =
g′(x)

g′(x) + h′(x)
, (8)

Lh′(x) =
h′(x)

g′(x) + h′(x)
. (9)

With the increase of n, the absolute value of
g′(x) increases accordingly. h′(x) is the product of
n values belonging to the interval [−1, 1]. As n in-
creases, the product of such values becomes so small
and thus can be neglected with respect to g′(x), as
shown below:

lim
n→+∞Lg′(x) = 1, (10)

lim
n→+∞Lh′(x) = 0. (11)

This means that with the increase of dimen-
sion, the impact of h(x) on f(x) decreases. The lo-
cal minima introduced by h(x) have little impact on
the global optimization process of a high-dimensional
Griewank function.

3.3 Quantum analysis

In this subsection, the phenomenon is analyzed
by quantum tunnel effect (Muthukrishnan et al.,
2016).
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For most optimization algorithms, to find the
global optimal solution of the objective function, an
iterative operation is executed from current sampling
points towards the position of the optimal solution
through various mechanisms. Falling into a local
optimal solution is a common phenomenon in this
process. Most global optimization algorithms have
the solution generation mechanism to “jump out” of
local optima, e.g., Gaussian mutation in FWA (Tan
and Zhu, 2010), uniform random disturbance in SA
(Kirkpatrick et al., 1983), the idea generation process
in BSO (Zhou et al., 2012), and mutation in DE (Qin
et al., 2009). These mechanisms can be explained by
the tunnel effect.

MQHOA (Wang et al., 2013) is a newly pro-
posed optimization algorithm based on the quantum
theory, which has attained good performance on mul-
timodal optimization (Wang et al., 2018a) and com-
bination optimization (Wang et al., 2016), and can
be applied to practical problems. The inspiration of
MQHOA is the probability interpretation of a quan-
tum wave function (Wang et al., 2018b), which pro-
vides MQHOA the quantum tunnel effect to “jump
out” of local optima. This provides a new approach
for analyzing the phenomenon.

3.3.1 Wave function

Wave function is an important concept in quan-
tum theory, meaning the probability that a particle
will appear at a certain location.

Gaussian function is used as the probability
distribution function in MQHOA’s sampling pro-
cess. MQHOA’s wave function |ψk(x)|2 is defined
as the superposition of k Gaussian functions, shown
as follows:

|ψk(x)|2 =

k∑

i=1

N(xi, σ
2
s )

=

k∑

i=1

1√
2πσs

e−(x−xi)
2/(2σ2

s ). (12)

Fig. 5 is the wave function image of the
Griewank function at a high-level energy state with
σs=0.625. Fig. 5 shows the probability distribution
of the current sampling. The raised areas in this
figure are sampling areas with high probability.

x
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10
5
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−10

Fig. 5 Wave function of the Griewank function

3.3.2 Quantum tunnel effect based on MQHOA

Quantum tunnel effect is the phenomenon un-
der the probability interpretation of MQHOA’s wave
function in the interval [a, b]. The sampling point
can appear anywhere as shown in Fig. 5, once the
new sampling point is superior to the current so-
lution. The possibility of quantum tunnel effect is
defined as follows:

P(a,b) =

∫ b

a

|ψk(x)|2dx

=

k∑

i=1

∫ b

a

N(xi, σ
2
s )dx

=

k∑

i=1

∫ b

a

1√
2πσs

e−(x−xi)
2/(2σ2

s )dx

s.t. f(x) > f(a).

(13)

Eq. (13) can be explained with the help of Fig. 6.
In Fig. 6, the solid blue line represents the objective
function f(x). The global optimum of f(x) is lo-
cated at −2, and the local optimum is located at 2.
The dashed pink line represents the wave function of
f(x) with reference to Eq. (12). Point A is one of
the current sampling points, locating in the local op-
timal region. To find the global optimal solution, we
should obtain the sampling point in the global opti-
mal region. The dashed green line is the Gaussian
sampling function with current σs. The possibility
of sampling point A moving to the global optimal
region [a, b] is defined as follows:

P1 =

∫ b

a

N(c, σ2
s )dx

=

∫ b

a

1√
2πσs

e−(x−c)2/(2σ2
s )dx. (14)

P1 decreases dramatically with the reduction of σs.



Huang et al. / Front Inform Technol Electron Eng 2019 20(10):1344-1360 1351

Quantum tunnel effect occurs when a better so-
lution is generated in the dark red area, for example,
point C. If a worse solution such as B is generated,
this solution will be discarded and the quantum tun-
nel effect will not occur.

From Fig. 6, the two dashed green lines mean
that with the iteration of MQHOA, the variance of
Gaussian sampling decreases, and the possibility of
quantum tunnel effect on the current sampling point
decreases accordingly.
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Fig. 6 Schematic of quantum tunnel effect. Refer-
ences to color refer to the online version of this figure

There are three important parameters in Fig. 6.
With the increase of dimension, these parameters
of the Griewank function will alter correspondingly:
(1) the vertical distance between the global optimum
and the local optimum; (2) the horizontal distance
between the global optimum and the local optimum;
(3) the oscillation amplitude of the local optimal
region.

It can be found from Table 2 that with the in-
crease of dimension, the number of local optima in-
creases exponentially. When projected into one di-
mension, we can find that the horizontal distance
between the global optimum and the local optimum
stays stable (Fig. 4).

As can be seen from Eqs. (1) and (2), with the
increase of dimension, f(x) increases with the help
of g(x), and the decrease of h(x) can be neglected.
Combining Figs. 4 and 6, we can find that, with the
increase of dimension, the vertical distance between
the global optimum and the local optimum increases,
and that the oscillation amplitude of the local opti-
mal region decreases.

3.3.3 Experimental explanation of the quantum tun-
nel effect

What effect does these parameters have on op-
timizing the Griewank function? The double-well
function, which includes all of the above parameters,
is a suitable test function. The double-well function
is defined as follows:

f(x) = V
(x2 − a2)2

a4
+ bx, (15)

where V = f(0) represents the barrier height of the
double-well function, a is the vertical distance be-
tween the global optimum and the local optimum,
and b is the horizontal distance between the global
optimum and the local optimum. We conduct experi-
ments on parameters V and b of the double-well func-
tion to explain the phenomenon by quantum tunnel
effect.

Fig. 7 shows the influence of V on the optimiza-
tion of SR. With the increase of V , SR decreases
gradually. This means that the probability of cross-
ing over the barrier to the optimal solution area de-
creases with the increase of the barrier height. This
is because the optimal solution area becomes steeper
with the increase of V . The quantum tunnel effect
decreases. By comparing the three curves in Fig. 7,
we can see that with the increase of b, SR increases
correspondingly.
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Fig. 7 An experiment on parameter V (a = 6, V

increases from 5 to 200)

Fig. 8 shows the influence of b on the optimiza-
tion of SR. With the increase of b, SR increases grad-
ually. This means that with the increase of the hori-
zontal distance between the global optimum and the
local optimum, the probability of “jumping out” of
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local optima increases. The quantum tunnel effect is
enhanced. By comparing the three curves in Fig. 8,
we can see that with the increase of V , SR decreases
correspondingly. The same phenomenon can be ob-
served in Fig. 7.
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Fig. 8 An experiment on parameter b (a = 6, b

increases from 0.02 to 1)

To better illustrate the quantum tunnel effect,
we track MQHOA’s wave function in the optimiza-
tion process of the 2D Griewank function.

Three sub-experiments are done with different
sampling group parameter (k) and initial sigma (σ0).
The snapshots of the wave function in the optimiza-
tion process are presented in Fig. 9. Detailed de-
scriptions are as follows:

1. Figs. 9a–9d: k=20, σ0=2
In Fig. 9a, σ0 is set to 2, 10% of the definition

domain. This means that in the initial stage each
point’s sampling area is a small portion of the sam-
pling area. The initial wave function image is shown
in Fig. 9a. The sampling point can “jump” to the
global optimal region due to quantum tunnel effect.
The possibility of quantum tunnel effect decreases
with the decrease of σ. In this sub-experiment, the
global optimal solution is obtained accurately.

2. Figs. 9e–9h: k=20, σ0=20
In Fig. 9e, σ0 is equal to the value of the def-

inition domain. This guarantees that the sampling
area covers the entire domain more evenly. The ini-
tial wave function image is shown in Fig. 9e, which
is very flat in shape. With the iteration of MQHOA,
sampling points gather gradually, and σ shrinks.
In Fig. 9f, several competitive sampling areas ap-
pear. Due to the quantum tunnel effect, the com-
petitive areas are constantly changing. In this sub-

experiment, the global optimal solution is obtained
accurately.

3. Figs. 9i–9l: k=10, σ0=2
In Fig. 9i, σ0 is set to 2. The initial distri-

bution of sampling points is more scattered. With
the process of optimization, these points distribute
more evenly, as shown in Fig. 9j. Then three com-
petitive sampling areas appear and evolve into two
more competitive sampling areas. The vertical dis-
tance between the two areas is very small. With the
decrease of the vertical distance between the global
optimum and local optimum, the quantum tunnel
effect decreases. It becomes more difficult to obtain
the global optimal solution. Eventually, the global
optimal solution is not obtained accurately within a
specified number of iterations.

4 Generalization of the Griewank func-
tion with experimental analysis

In Section 3, the phenomenon is researched from
the methodology perspective. In this section, we fo-
cus on the generalization of the Griewank function to
make an in-depth analysis of the phenomenon. The
Griewank function is composed of two parts, which
can be considered as two scales. The weights of the
two parts represent the competitive significance of
the two scales, which has an important influence
on the optimization results of the Griewank func-
tion. Based on this structure, frequency transforma-
tion and amplitude transformation are implemented
on the Griewank function to make a generalization.
The phenomenon is further verified and explained
by experimental analysis on a generalized Griewank
function.

4.1 Definition of the generalized Griewank
function

Based on the Griewank function’s two-scale
structure, a generalized Griewank function is defined
as follows:

f1(x) = g1(x)− h1(x) + 1

=
A

4000

n∑

i=1

x2i −
n∏

i=1

cos

(
F · xi√

i

)
+ 1, (16)

where −600 ≤ x ≤ 600, i = 1, 2, . . . , n.
Compared with Eq. (2), we introduce two new

parameters: frequency parameter F and amplitude
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Fig. 9 Wave functions of the Griewank function optimized by MQHOA: (a) initial status (k=20, σ0=2, i=1,
σ=2); (b) competitive sampling areas appear (k=20, σ0=2, i=400, σ=2); (c) aggregate and approach to the
optimal solution (k=20, σ0=2, i=450, σ=2); (d) the global optimal solution is obtained accurately (k=20,
σ0=2, i=20000, σ=2); (e) initial status, very flat in shape (k=20, σ0=20, i=1, σ=20); (f) competitive sampling
areas appear (k=20, σ0=20, i=505, σ=2.5); (g) the optimal area becomes obvious (k=20, σ0=20, i=7611,
σ=1.25); (h) the global optimal solution is obtained accurately (k=20, σ0=20, i=7613, σ=0.625); (i) initial
status, the sampling area is very scattered (k=10, σ0=2, i=1, σ=2); (j) sampling points gather gradually
(k=10, σ0=2, i=250, σ=2); (k) three competitive sampling areas appear (k=10, σ0=2, i=2500, σ=2); (l)
two competitive sampling areas compete with each other, and the global optimal solution is not obtained
accurately (k=10, σ0=2, i=20000, σ=2)

parameter A. With parameters F and A, the fre-
quency and amplitude transformed Griewank func-
tions are constructed as follows:

1. Frequency transformed Griewank function

F is used to adjust the frequency of the oscil-
latory nonconvex function. Fig. 10 shows the pro-
jection of a three-dimensional (3D) frequency trans-

formed Griewank function to a plane, with the fre-
quency parameter F separately setting to 0.5, 1, 3,
and 10. In Fig. 10, the green curve remains un-
changed. With the increase of F , the number of
local minima increases rapidly. It is more likely to
be trapped in local minima.

2. Amplitude transformed Griewank function
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Fig. 10 Projecting a three-dimensional frequency transformed Griewank function to a plane: (a) F=0.5; (b)
F=1; (c) F=3; (d) F=10. References to color refer to the online version of this figure

Parameter A is used to adjust the amplitude of
the quadratic convex function. Fig. 11 shows the
projection of a 3D amplitude transformed Griewank
function to a plane. The amplitude parameter A is
separately set to 0.1, 1, 3, and 5. The red curve is the
projection of h1(x), which results in a large number
of local minima. The green curve is the projection
of g1(x). As can be seen from Fig. 11, with the in-
crease of A, the amplitude of quadratic convex func-
tion g1(x) increases. The blue curve superimposed
by red and green curves represents the projection of
the amplitude transformed Griewank function. By
comparing the four blue curves of Fig. 11, we can see
that the impact of h1(x) decreases with the increase
of amplitude, and it becomes easier to obtain the
global optimal solution.

4.2 Algorithm flow of MQHOA

As we pointed out in Section 3.1, the Griewank
function is a two-scale structure. To perform an in-
depth study on the generalized Griewank function,
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Fig. 11 Projecting a three-dimensional amplitude
transformed Griewank function to a plane (amplitude
parameter A=0.1, 1, 3, or 5). References to color re-
fer to the online version of this figure

we optimize the generalized Griewank function with
MQHOA in this study.

Energy level stabilization, energy level decline,
and scale adjustment are the main steps of MQHOA.
The initial scale equals the search space of each di-
mension. After energy level decline, the current
scale is cut to half. Then energy level stabilization
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and energy level decline are executed repeatedly at
a smaller scale. The details of the MQHOA were
described in Wang et al. (2018c).

The pseudocode of MQHOA is listed in Algo-
rithm 1. The notations used in this subsection are
listed in Table 3. Parameters of MQHOA in this
subsection are set as σmin = 10−6 and k = 20.

Algorithm 1 MQHOA

1: Initialize k, σmin, MIN, MAX, and σs=MAX−MIN

2: Randomly generate xi in [MIN,MAX], where
i = 1, 2, . . . , k

3: Calculate Fi = f(xi), F opt=fmin(xi), and xopt = xi

4: while σs > σmin do
5: Set Flagstable = 0

6: while Flagstable == 0 do
7: ∀ xi, generate x′

i ∼ N(xi, σ2
s )

8: ∀ xi and x′
i, if F (x′

i) < F (xi) then
xi = x′

i, Flagstable = 1

9: end while
10: Update the worst solution xworst = xmean

11: σs = σs/2

12: end while
13: Output: xopt and F opt

Table 3 Notations

Notation Definition

MIN Lower bound of the search space
MAX Upper bound of the search space
MaxFES Maximum number of function

evaluations in each run
Flagstable Stop criterion of stabilization operation
k Number of sampling points
σmin Convergence accuracy
σs Current scale
xi Current optimal solution, i = 1, 2, ..., k

x′
i New solution generated by N(xi, σ2

s )

xmean Mean value of xi

xworst Worst solution in xi

xopt Best solution in xi

The following analysis of MQHOA is based on
the pseudocode in Algorithm 1.

There are two while loops in the pseudocode,
covering the three main stages of MQHOA.

1. Energy level stabilization
The inner layer loop corresponds to energy level

stabilization, which is the basic arithmetic unit of
MQHOA. After initialization, new solutions are gen-
erated in turn by Gaussian sampling based on every
candidate solution. By this way, the nearby area of
candidate solutions is fully exploited, searching for
better solutions. A flag with an initial value of 0

is used to evaluate the status of energy level stabi-
lization. If the function value of any sampling point
is better than the corresponding candidate solution,
the corresponding candidate solution will be replaced
by the new sampling point, and the flag is set to 1 to
end the energy level stabilization stage.

2. Energy level decline
Energy level decline is an important component

of MQHOA’s physical model, and is executed imme-
diately after the energy level stabilization stage. A
new sampling point is generated based on all of cur-
rent candidate solutions to replace the current worst
candidate solution. The coordinates of the new sam-
pling point are the average of all the coordinates.
Global information is introduced to the system in
this stage, which can increase the diversity of the
sampling points.

Different from the conventional MQHOA, we
make changes to the energy level decline strategy in
this study. Energy level decline will not be executed
repeatedly at the current scale; it occurs once at each
scale. This mechanism can effectively avoid invalid
energy level declination in conventional MQHOA,
speed up the convergence, and improve the accuracy
of MQHOA.

3. Scale adjustment
Scale adjustment is executed immediately after

the energy level decline stage. The current scale is
cut to half to search intensively in a smaller area. If
the variance of current candidate solutions is larger
than the search accuracy (σs > σmin), the program
jumps to the energy level stabilization stage. The
program terminates until σs ≤ σmin.

4.3 Experimental study on the generalized
Griewank function

4.3.1 Optimizing the frequency transformed
Griewank function

As for a frequency transformed Griewank func-
tion, frequency gradually increases from 1 to 10.
Three typical dimensions are selected: D=2, D=5,
and D=10. Experimental results of optimizing the
frequency transformed Griewank function are listed
in Table 4.

From the data displayed in Table 4, we have the
following two observations:

1. For all of the three dimensions, as the
frequency increases, it becomes more difficult to
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Table 4 Best fitness value, mean fitness value, standard deviation of fitness values, and the success rate of
MQHOA on the frequency transformed Griewank function with frequency gradually increasing from 1 to 10

Dimension F Best Mean Std SR (%) L95 U95

1 3.82×10−13 1.02×10−3 2.57×10−3 86.27 3.15×10−4 1.73×10−3

1.1 1.96×10−12 1.32×10−3 2.54×10−3 78.43 6.23×10−4 2.02×10−3

1.2 1.36×10−11 1.31×10−3 2.26×10−3 74.51 6.90×10−4 1.93×10−3

D = 2 1.5 3.17×10−13 1.53×10−3 1.71×10−3 54.90 1.01×10−3 2.00×10−3

2 1.11×10−12 1.06×10−3 1.39×10−3 52.94 6.80×10−4 1.44×10−3

4 1.77×10−11 1.11×10−3 1.09×10−3 54.90 8.11×10−4 1.41×10−3

10 4.50×10−12 1.50×10−3 1.75×10−3 47.06 1.02×10−3 1.98×10−3

1 1.31×10−13 5.36×10−3 5.23×10−3 45.10 3.92×10−3 6.80×10−3

1.1 9.30×10−14 5.19×10−3 4.77×10−3 39.22 3.88×10−3 6.50×10−3

1.2 1.97×10−13 6.01×10−3 5.12×10−3 29.41 4.61×10−3 7.42×10−3

D = 5 1.5 2.73×10−13 4.99×10−3 3.84×10−3 19.61 3.94×10−3 6.04×10−3

2 1.91×10−12 5.22×10−3 4.00×10−3 3.92 4.12×10−3 6.32×10−3

4 6.17×10−4 5.51×10−3 3.43×10−3 3.92 4.57×10−3 6.45×10−3

10 4.93×10−4 4.43×10−3 2.65×10−3 3.92 3.70×10−3 5.16×10−3

1 4.04×10−13 1.45×10−4 1.04×10−3 98.04 −1.40× 10−4 4.30×10−4

1.1 6.03×10−13 1.60×10−4 1.14×10−3 98.04 −1.53× 10−4 4.73×10−4

1.2 6.16×10−13 1.34×10−4 9.59×10−4 98.04 −1.29× 10−4 3.98×10−4

D = 10 1.5 1.27×10−12 6.66×10−4 1.52×10−3 82.35 2.21×10−4 1.11×10−3

2 2.68×10−12 1.44×10−3 2.17×10−3 58.82 8.44×10−4 2.04×10−3

4 2.77×10−11 2.16×10−3 1.29×10−3 25.49 1.81×10−3 2.51×10−3

10 6.42×10−4 2.14×10−3 1.04×10−3 13.73 1.86×10−3 2.42×10−3

Best: best fitness value; Mean: mean fitness value; Std: standard deviation of fitness values; SR: success rate; L95: lower bound
of 95% confidence limit; U95: upper bound of 95% confidence limit

optimize the frequency transformed Griewank
function.

With the increase of F , the frequency of

cos

(
F · xi√

i

)
increases to F times, and the fre-

quency of
∏n

i=1 cos

(
F · xi√

i

)
increases to Fn times.

This means that the frequency of the number of lo-
cal minima in each dimension increases to F times,
and the total number of local minima increases to
Fn times. The probability of jumping out of the lo-
cal optima decreases. Therefore, SR decreases with
the increase of F . The best fitness value obtained by
MQHOA remains a high precision for every F . The
mean fitness and standard deviation of fitness values
stay at around 10−3.

2. With the increase of dimension, the SR of
MQHOA first falls and then rises.

When the dimension is five, MQHOA’s SR is
lower than that with dimension 2 or 10. The 2D
Griewank function is simple and is easy to optimize.
With the increase of dimension, the number of local
minima of the frequency transformed Griewank func-
tion increases exponentially, and it is more difficult
to optimize. When the dimension is more than five

and continues to grow, the frequency transformed
Griewank function becomes easier to optimize with
the increase of dimension. This corresponds with the
experimental results in Table 1.

Global search and local search are the two si-
multaneous operations of swarm optimization algo-
rithms. The aim of global search and local search
is exploration and exploitation of the search space.
Global search performs in a wide area to increase the
diversity of solutions. Local search repeatedly tries
to move from the current sampling point to a nearby
sampling point.

When optimizing the Griewank function by
MQHOA, the optimization process can be divided
into global search and local search. At the beginning
of optimization, the sampling points are distributed
in a wide area, and have a large probability to move
to a farther area. This stage can be considered as
the global search. As the iteration proceeds, the
scale of MQHOA shrinks. The sampling points are
generated locally on a small scale, which guarantees
a detailed optimization of the possible optimal area.
This stage is local search.

The transition from global search to local search
can be evaluated by the standard deviation of current
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candidate solutions (σs):

σs =

√√√√
k∑

i=1

(xi − x)2. (17)

When σs is large, the distribution of current can-
didate solutions is more dispersed. The algorithm is
in the global search phase. As the iteration pro-
ceeds, σs continues to decrease, which causes the
scale of MQHOA to shrink. With the decrease of
σs, MQHOA gradually transits from global search to
local search.

For the Griewank function, the initial scale of
MQHOA is 200 and σs = 10−6. The current scale
of MQHOA is cut to half in each scale adjustment
operation. We can calculate that MQHOA has 27
scales in the optimization process. For a frequency
transformed Griewank function, we count the num-
ber of iterations in each scale. Experiments are done
on 2-, 5-, and 10-dimensional frequency transformed
Griewank functions. F is separately set to 1, 4, and
10. Fig. 12 shows the number of iterations in each
scale.

As can be seen from Fig. 12, each subgraph
has three curves, which represent F=1, F=4, and
F=10, separately. With the increase of the scale
number, the scale of MQHOA is cut to half contin-
uously. MQHOA gradually transits from global to
local search. The rectangle in each subgraph shows
this transformation process. We can see that with
the increase of F , the transition from global search
to local search delays. With the increase of F , the
number and the distribution density of local minima
increase. Local search is done in a smaller area. As a
result, MQHOA transits from global to local search
at a smaller scale. This corresponds with the charac-
teristic of the frequency transformed Griewank func-
tion mentioned in Section 4.1. The three subgraphs
show the same trend.

4.3.2 Optimizing the amplitude transformed
Griewank function

As for an amplitude transformed Griewank
function, the amplitude parameter A ranges from
0.001 to 5. We select the same dimensions as in
Table 4. Experimental results of optimizing the am-
plitude transformed Griewank function are listed in
Table 5.
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Fig. 12 Number of iterations in each scale (optimiz-
ing frequency transformed Griewank function with
MQHOA): (a) 2D; (b) 5D; (c) 10D

From the data displayed in Table 5, we have the
following two observations:

1. Similar to that in Section 4.3.1, with the
increase of dimension, the SR of MQHOA first falls
and then rises.

2. With the increase of A, the SR of MQHOA
first falls and then rises.

When adjusting parameter A, the amplitude of
the quadratic convex function changes accordingly.
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Table 5 Best fitness value, mean fitness value, standard deviation of fitness values, and the success rate of
MQHOA on the amplitude transformed Griewank function with amplitude ranging from 0.001 to 5

Dimension A Best Mean Std SR (%) L95 U95

D = 2

0.001 1.99×10−9 2.96×10−5 3.10×10−5 100.00 1.84×10−5 3.54×10−5

0.01 5.62×10−13 2.29×10−4 2.11×10−4 100.00 1.71×10−4 2.87×10−4

0.1 9.79×10−13 1.17×10−3 1.37×10−3 74.51 7.94×10−4 1.55×10−3

0.2 1.65×10−13 1.19×10−3 1.38×10−3 41.18 8.11×10−4 1.57×10−3

0.5 5.14×10−12 1.45×10−3 1.82×10−3 60.78 9.50×10−4 1.95×10−4

1 3.82×10−13 1.02×10−3 2.57×10−3 86.27 5.89×10−4 1.45×10−3

2 5.02×10−13 2.90×10−4 2.07×10−3 98.04 −2.78× 10−4 8.58×10−4

5 4.05×10−12 5.32×10−9 1.39×10−8 100.00 1.51×10−9 9.13×10−9

D = 5

0.001 1.97×10−5 1.24×10−4 6.16×10−5 100.00 1.07×10−4 1.41×10−4

0.01 1.48×10−4 1.06×10−3 7.36×10−4 54.90 8.58×10−4 1.26×10−3

0.1 7.40×10−4 4.52×10−3 2.52×10−3 1.96 3.83×10−3 5.21×10−3

0.2 1.71×10−13 4.80×10−3 3.24×10−3 5.88 3.91×10−3 5.69×10−3

0.5 5.98×10−14 5.78×10−3 4.57×10−3 21.57 4.53×10−3 7.03×10−3

1 1.31×10−13 5.36×10−3 5.23×10−3 45.10 3.92×10−3 6.80×10−3

2 4.74×10−14 2.80×10−3 6.70×10−3 84.31 9.60×10−4 4.64×10−3

5 3.01×10−14 5.45×10−9 1.28×10−8 100.00 1.94×10−9 8.96×10−9

D = 10

0.001 7.16×10−5 2.90×10−4 1.35×10−4 100.00 2.53×10−4 3.27×10−4

0.01 3.70×10−4 1.45×10−3 8.26×10−4 35.29 1.22×10−3 1.68×10−3

0.1 3.17×10−12 2.60×10−3 1.83×10−3 23.53 2.10×10−3 3.10×10−3

0.2 7.26×10−13 1.88×10−3 1.98×10−3 37.25 1.34×10−3 2.42×10−3

0.5 3.35×10−13 6.04×10−4 1.55×10−3 86.27 1.79×10−4 1.03×10−3

1 4.04×10−13 1.45×10−4 1.04×10−3 98.04 −1.40× 10−4 4.30×10−4

2 1.92×10−13 7.66×10−10 2.62×10−9 100.00 4.70×10−11 1.48×10−9

5 6.49×10−13 1.45×10−9 2.02×10−9 100.00 2.12×10−10 1.32×10−9

Best: best fitness value; Mean: mean fitness value; Std: standard deviation of fitness values; SR: success rate; L95: lower bound
of 95% confidence limit; U95: upper bound of 95% confidence limit

When A is 0.001, the impact of g1(x) is very small
and can be neglected. The problem of optimizing
f1(x) is approximate to optimizing the oscillatory
nonconvex function h1(x)+1, which has many global
minima. Theoretically speaking, the smaller A is,
the more difficult it is to optimize f1(x), which does
not match the experimental data. This is caused
by the convergence accuracy of MQHOA. The local
optimal solution of f1(x) can also achieve the con-
vergence accuracy requirement of MQHOA, which
meets MQHOA’s termination condition. So, the SR
does not reflect the real situations.

This situation changes when A is in the range
[0.1, 0.2]. When A increases to 0.1, the local optimal
solution of f1(x) cannot meet MQHOA’s termination
condition. When A is 0.1, the values of local minima
near the global optimal solution and global minimum
are similar. It is quite difficult to obtain the global
optimal solution. In this situation, MQHOA easily
falls into a local optimum while satisfying the con-
vergence accuracy.

When A continues to increase, the impact of

h1(x) decreases. The problem of optimizing f1(x)

can gradually be approximate to optimizing the
quadratic convex function g1(x). So, the SR of
MQHOA gradually increases to 100%.

For the amplitude transformed Griewank func-
tion, we count the number of iterations in each scale.
Experiments are done on 2-, 5-, and 10-dimensional
amplitude transformed Griewank functions. A is
separately set to 1, 5 and 10. Fig. 13 shows the
number of iterations in each scale.

As can be seen from Fig. 13, three curves coin-
cide well when the scale number is small. That is to
say, as for the Griewank function, amplitude trans-
formation has little effect on global search. When
the scale number is larger than 15, we can find that
the number of iterations increases with the increase
of A. That is to say, with the increase of the ampli-
tude parameter, local search becomes more difficult.
This corresponds with the characteristic of the am-
plitude transformed Griewank function mentioned
in Section 4.1. The three subfigures show the same
trend.
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Fig. 13 Number of iterations in each scale (optimiz-
ing amplitude transformed Griewank function with
MQHOA): (a) 2D; (b) 5D; (c) 10D

5 Conclusions

In this paper the characteristic of optimizing the
Griewank function by swarm intelligence algorithms
has been researched. The Griewank function first
becomes more difficult and then becomes easier to
optimize with the increase of dimension. Structural,
mathematical, and quantum analyses have been
conducted on the Griewank function to explain this
phenomenon. MQHOA has been used to optimize
the generalized Griewank function and it performs

well. In the future research, we will continue to
investigate the generalized model of the Griewank
function and enrich the applications of MQHOA
such as heat production optimization (Książek et al.,
2017; Woźniak et al., 2018).
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