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Abstract: In this study, the output tracking of delayed logical control networks (DLCNs) with state and control
constraints is further investigated. Compared with other delays, state-dependent delay updates its value depending on
the current state values and a pseudo-logical function. Multiple constraints mean that state values are constrained
in a nonempty set and the design of the controller is conditioned. Using the semi-tensor product of matrices,
dynamical equations of DLCNs are converted into an algebraic description, and an equivalent augmented system is
constructed. Based on the augmented system, the output tracking problem is transformed into a set stabilization
problem. A deformation of the state transition matrix is computed, and a necessary and sufficient condition is
derived for the output tracking of a DLCN with multi-constraint. This condition is easily verified by mathematical
software. In addition, the admissible state-feedback controller is designed to enable the outputs of the DLCN to
track the reference signal. Finally, theoretical results are illustrated by an example.
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1 Introduction

With the rapid development of gene microar-
ray technology and systems biology, gene regulatory
networks (GRNs) have shown great advantages in re-
vealing the interaction mechanism of DNA, mRNA,
and protein in cells. Note that Kauffman (1969)
initiated the concept of Boolean networks to model
GRNs. Using the binary values of “1” and “0” to
represent the active and inactive genes respectively,
and by describing the interactions between genes
by Boolean functions, the Boolean modelling frame-
works are easy to simulate and are little computa-

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61773371 and 61877036) and the Natural Science
Foundation of Shandong Province, China (No. ZR2019MF002)

ORCID: Ya-ting ZHENG, https://orcid.org/0000-0003-2166-
5602; Jun-e FENG, https://orcid.org/0000-0003-3881-3042
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2020

tionally taxing. Boolean networks provide a power-
ful tool for studying GRNs, and abundant excellent
results have been established (Akutsu et al., 2007; Ay
et al., 2009; Veliz-Cuba and Stigler, 2011). However,
the state of a gene is usually not limited to active
or inactive in real-world systems. We use a k-valued
logical network (logical variables have k different val-
ues) as a general network to model GRNs (Chaouiya
et al., 2012).

As is well known, because of some time-
consuming processes such as DNA translation and
RNA translation, time delay is inevitable in the gene
regulatory process, which plays a key role in the de-
velopment of living organisms. Therefore, time de-
lay should be concerned in the logical control net-
works when modeling the GRNs (Chueh and Lu,
2012; Haider and Pal, 2012; Li FF, 2018). More-
over, the length of the time delay may be related to
the current state of the gene. This motivates us to
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investigate logical control networks with state-
dependent delay, referred to as delayed logical con-
trol networks (DLCNs).

Cheng et al. (2012) defined a new mathemat-
ical tool, called semi-tensor product (STP), to an-
alyze and control logical control networks. Using
the STP method, the dynamics of logical control
networks can be converted into a unique bilinear
discrete-time system. Then, one can use classic lin-
ear control theory to solve a series of problems of log-
ical networks, such as disturbance decoupling (Liu
et al., 2017), observability (Fornasini and Valcher,
2013; Yu et al., 2019b), stability (Li YY et al., 2018;
Guo et al., 2019; Li H et al., 2019b; Zhu SY et al.,
2019a), stabilization (Bof et al., 2015; Lu et al.,
2018a; Li XD et al., 2019; Sun et al., 2020), and
controllability (Laschov and Margaliot, 2012, 2013;
Fornasini and Valcher, 2014; Wu et al., 2019; Zhu QX
et al., 2019). The STP method has also been applied
to the study of delayed logical (control) networks,
and some landmark results have been obtained (Fan
et al., 2018; Lu et al., 2018b; Tong et al., 2018;
Zhu SY et al., 2018; Li BW et al., 2019; Li H et
al., 2019a; Meng et al., 2019; Wang et al., 2019; Yu
et al., 2019a).

Note that some virulence genes are expected to
avoid synthesis, which may lead to a dangerous sit-
uation, such as the deterioration of a disease and
the metastasis of a cancer (Lu et al., 2016). In tar-
geted therapy, target gene fragment can be regarded
as a constant reference signal. Meanwhile, appropri-
ate medical intervention is necessary, but excessive
intervention may cause other side effects for organ-
isms. In logical control networks, the control inputs
can be viewed as medicine interventions. Therefore,
it is necessary to put some constraints to the states
and inputs of the logical networks when modeling the
practical GRNs. Moreover, because of the complex
internal relationship between states and limitation
of measurement equipment, the states are difficult
to identify directly. However, it is possible to obtain
the structure and function of the logical networks ac-
cording to the relationship between inputs and out-
puts (Li HT et al., 2015; Li YY et al., 2019; Zhong et
al., 2019; Zhu SY et al., 2019b). In fact, time delay
may destroy the controllability of logical networks,
driving us to design an admissible controller which
steers the outputs of the DLCN to track the given
constant signal while avoiding the forbidden states.

2 Preliminaries

In this section, some necessary preparations, in-
cluding notations, definitions, and properties about
STP, are presented. (Cheng et al., 2012).

Notations are as follows:
1. [m : n] := [m, m+ 1, . . . , n].
2. Dk := {i1, i2, . . . , ik}, where i1, i2, . . . , ik

are k different integers.
3. Dn

k := Dk ×Dk × . . .×Dk
︸ ︷︷ ︸

n

.

4. 1T
n = [1, 1, . . . , 1

︸ ︷︷ ︸

n

].

5. δin: the ith column of identity matrix In.
6. Δn := {δin : 1 ≤ i ≤ n}.
7. Matrix L ∈ R

s×n is called a logical ma-
trix if L = [δi1s , δi2s , . . . , δins ], which can also be
briefly expressed as L = δs[i1, i2, . . . , in], where
i1, i2, . . . , in ∈ [1, 2, . . . , s].

8. Ls×n: the set of s× r logical matrices.
9. (L)s, n: (s, n)th element of the matrix L.
10. Rows(L): sth row of the matrix L.
11. Coln(L): nth column of the matrix L.

Definition 1 Let M ∈ R
m×n and N ∈ R

p×q

(Cheng et al., 2012). The STP of M and N is
expressed as

M �N = (M ⊗ Iα
n
)(N ⊗ Iα

p
), (1)

where ⊗ represents the Kronecker product and α

denotes the least common multiple of n and p.
To facilitate calculation, we identify the k-

valued logical variable ij ∈ Dk with a canonical vec-
tor δjk ∈ Δk (j = 1, 2, . . . , k). By a similar argu-
ment in Theorem 2.23 in Li ZQ and Cheng (2010), we
have the following Lemmas for the k-valued logical
function:
Lemma 1 Any k-valued n-ary logical function
f(a1, a2, . . . , an) with logical variables a1,a2, . . . ,

an ∈ Δk can be expressed in a canonical form as (Li
ZQ and Cheng, 2010)

f(a1, a2, . . . , an) = Mf �a1�a2� . . .�an, (2)

where Mf ∈ Lk×kn is the structure matrix of f .
Lemma 2 The STP has the following properties
(Cheng et al., 2012):

1. Let X ∈ R
t×1 and A ∈ R

m×n. Then X

�A = (It ⊗A)�X.
2. Let X ∈ R

m×1 and Y ∈ R
n×1. Define a swap

matrix W[m,n] := δmn[In ⊗ δ1m, In ⊗ δ2m, . . . , In
⊗δmm ] ∈ Lmn×mn. Then, Y �X = W[m,n]�X�Y .
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3. Let A ∈ Δm, B ∈ Δn, and C ∈ Δr be logical
vectors. Define Ψ [m, n, r] = 1T

m ⊗ In ⊗ 1T
r .

Then, Ψ [m, n, r]�A�B �C = B.
As a generalization of the conventional matrix

product, STP retains all the computational proper-
ties of the conventional matrix product. Hence, we
omit the symbol “�” if no confusion arises.

3 Main results

In this section, we first convert a DLCN into
its algebraic description and then investigate the
output tracking of the DLCN with state and input
constraints.

3.1 Problem formulation and algebraic
transformation

A DLCN with n nodes and p outputs can be
described as

{

ai(t+ 1) = fi(A(t− μ(A(t))), U(t)),

bj(t) = hj(A(t − μ(A(t)))),
(3)

where i = 1, 2, . . . , n, j = 1, 2, . . . , p, and a1, a2,

. . . , an ∈ Dk. A(t) = (a1(t), a2(t), . . . , an(t)) ∈
Dn

k , U(t) = (u1(t), u2(t), . . . , um(t)) ∈ Dm
k , and

B(t) = (b1(t), b2(t), . . . , bp(t)) ∈ Dp
k represent the

state, control, and output at time t, respectively.
fi : Dn+m

k → Dk and hj : Dn
k → Dk are logical

functions. μ(A(t)) denotes the state-dependent de-
lay, which updates values depending on the current
state values and a pseudo-logical function g : Dn

k →
[0 : μ∗]; that is, μ(A(t)) = g(A(t)) ∈ [0 : μ∗].

For a given reference signal Br = (br1 , br2 , . . . ,

brp), we aim to design an admissible state-feedback
controller, expressed as

ui(t) = ϕi

(

A(t)
)

, i = 1, 2, . . . , m, (4)

where ui(t) ∈ Dk and ϕi : Dn
k → Dk, under which

the output of system (3) is equivalent to Br; that is,

lim
t→∞B(t) = Br. (5)

To solve the output tracking problem, we first con-
vert system (3) and controller (4) into the equivalent
algebraic descriptions.

Identifying the k-valued logical variables as
canonical vectors, we define a(t) = �

n
i=1ai(t) ∈ Δkn ,

b(t) = �
p
i=1bi(t) ∈ Δkp , and u(t) = �

m
i=1ui(t) ∈

Δkm . Following Lemma 1, it is easy to calculate
that

{

a(t+ 1) = Fu(t)a(t− μ(a(t))),

b(t) = Ha(t− μ(a(t))),
(6)

u(t) = Φa(t), (7)

μ(a(t)) = Ga(t), (8)

where F ∈ Lkn×km+n , H ∈ Lkp×kn , Φ ∈ Lkm×kn ,
and G ∈ R

1×kn

.
According to the values of the state-dependent

delay, we classify the state values into several differ-
ent sets as follows:

Υτ = {a(t)|μ(a(t)) = τ, τ ∈ [0 : μ∗]}. (9)

Specifically, we define Υτ = ∅ if there is no state
value that satisfies μ(a(t)) = τ . Clearly, Υi ∩Υj = ∅

(i �= j), and ∪μ∗
i=0Υi = Δkn .

Define a series of row vectors Mi ∈ R
1×kn

(i =
0, 1, . . . , μ∗) as

Colj(Mi) =

{

1, if δjkn ∈ Υi,

0, otherwise,
(10)

where j = 1, 2, . . . , kn. Then

Mia(t) =

{

1, if a(t) ∈ Υi,

0, otherwise.
(11)

Now, we remove the coupling from the first
equation of system (6). Suppose that μ(a(t)) =

τ ∈ [0 : μ∗] at time t, and then a(t) ∈ Υτ . Let
x(t) = �

t
i=t−μ∗a(i) ∈ Δk(μ∗+1)n . Then the straight-

forward calculation shows that

a(t+ 1) =Fu(t)a(t− τ)

=Mτa(t)⊗ (Fu(t)a(t− τ))

=(Mτ ⊗ F )W(kn, km+n)Ψ[k(μ∗−τ)n, kn, kτn]

� x(t)a(t)u(t)

=(Mτ ⊗ F )W(kn, km+n)Ψ[k(μ∗−τ)n, kn, kτn]

� (Ikμ∗n ⊗Mr, kn)W[km, k(μ∗+1)n]u(t)x(t)

:=Fτu(t)x(t).

(12)

System (12) can be rewritten as follows:

a(t+ 1) = F0u(t)x(t) + F1u(t)x(t) + . . .

+ Fμ∗u(t)x(t)

:= F̂ u(t)x(t),

(13)
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where F̂ = F0 + F1 + . . .+ Fμ∗ ∈ Lkn×k[m+(μ∗+1)n] .
Via a similar conversion process, the output and

controller can be rewritten as follows:
{

b(t) = Ĥx(t),

u(t) = Φ̂x(t),
(14)

where Ĥ ∈ Lkp×k(μ∗+1)n and Φ̂ ∈ Lkm×k(μ∗+1)n .
We augment system (12) into the following

system:

x(t+ 1) =a(t− μ∗ + 1)a(t− μ∗ + 2) . . .a(t+ 1)

=Ψ(kn, kμ∗n, 1)a(t− μ∗) . . .a(t)F̂ u(t)x(t)

=Ψ(kn, kμ∗n, 1)W[kn, k(μ∗+1)n]

� F̂ (Ikm ⊗M[r, k(μ∗+1)n])u(t)x(t)

:=Θu(t)x(t),

(15)

where Θ ∈ Lk(μ∗+1)n×km+(μ∗+1)n .
From the analysis above, we can see that any

state sequence (a(t− μ∗), a(t− μ∗ + 1), . . . , a(t))

of system (13) corresponds to a unique state x(t) =

�
t
i=t−μ∗a(i) of system (15). Moreover, any state

x(t) of system (15) can be decomposed into a unique
state sequence (a(t−μ∗), a(t−μ∗+1), . . . , a(t)) of
system (13). Therefore, system (13) is equivalent to
system (15), and we can focus on the augmented sys-
tem (15) to investigate the output tracking problem
of the original system (3).

3.2 Set stabilization of DLCNs with state and
control constraints

To avoid some undesirable states which stand
for virulence genes of the GRNs, we constrain the
state values of system (13) on a nonempty set Γa,
which is defined as

Γa = {δγ1

kn , δ
γ2

kn , . . . , δ
γζ

kn} ⊆ Δkn , (16)

where γ1 < γ2 < . . . < γζ .

By multiplying any μ∗ + 1 value of Γa, we con-
struct the following set:

Γx = {δξ1
k(μ∗+1)n , δ

ξ2
k(μ∗+1)n , . . . , δ

ξ
ζμ

∗+1

k(μ∗+1)n}, (17)

where ξ1 < ξ2 < . . . < ξζμ∗+1 . Then, the state values
of augmented system (15) belong to Γx. It should be
noted that if x(t+1) = Θu(t)x(t) /∈ Γa, then x(t+1)

is a forbidden value. Set Cx = {ξ1, ξ2, . . . , ξζμ∗+1}.

From a practical point of view, we constrain
the control values on the nonempty set Γ c, which is
defined as

Γc = {δν1km , δν2km , . . . , δνskm}. (18)

In the rest of this work, system (13) with state
constraint (16) and control constraint (18) is simply
referred to as constrained system (13). System (15)
with state constraint (17) and control constraint (18)
is simply referred to as constrained system (15) for
narrative purposes.

Before presenting the results, we introduce
two symbols, which will be used later. Given a
control sequence u = {u(0), u(1), . . . , u(t −
1)}, it denotes that the state and output con-
straints of system (3) start from initial state x0 :=

a(−μ∗)a(−μ∗ + 1) . . .a(0) at time t by a(t;x0, u)

and b(t;x0, u), respectively. Set x(t;x0, u) :=

a(t− μ∗;x0, u)a(t− μ∗ + 1;x0, u) . . .a(t;x0, u).
Definition 2 Constrained system (13) is
Γa-stabilizable, if there exists an integer T ∈
N

+ and a state-feedback control sequence u =

{u(0), u(1), . . . , u(t − 1)} with u(i) ∈ Γc (i =

0, 1, . . . , t− 1), such that

a(t;x0, u) ∈ Γa, ∀ t ≥ T, (19)

where x0 ∈ Γx is an arbitrary initial state.
Similarly, the definition of set stabilization for

system (15) can be drawn as follows:
Definition 3 Constrained system (15) is Γx-
stabilizable, for any initial state x0 ∈ Γx, if there
exists an integer T ∈ N

+ and a state-feedback con-
trol sequence u = {u(0), u(1), . . . , u(t − 1)} with
u(i) ∈ Γc (i = 0, 1, . . . , t− 1), such that

x(t;x0, u) ∈ Γx, ∀ t ≥ T. (20)

Lemma 3 Constrained system (13) is Γa-
stabilizable via u(t) = Ĥx(t), if and only if con-
strained system (15) is Γx-stabilizable via u(t) =

Ĥx(t).
Set br = �

p
i=1bri := δεkp . According to the ref-

erence signal δεkp and output matrix Ĥ , we denote
a target set Ω, which contains all the states of con-
strained system (15) whose outputs are equivalent to
δεkp , as follows:

Ω ={δξ
k(μ∗+1)n |Colξ(Ĥ) = δεkp , ξ ∈ Cx}

:={δβ1

k(μ∗+1)n , δ
β2

k(μ∗+1)n , . . . , δ
βd

k(μ∗+1)n},
(21)
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where β1 < β2 < . . . < βd.
Following Definition 3, we derive the conclusion

as follows:
Theorem 1 The outputs of system (3) with
multi-constraint track the reference signal br via
state-feedback control, if and only if constrained sys-
tem (15) is Ω-stabilizable.
Proof Suppose that the outputs of system (3)
with state constraint (16) and control constraint (18)
track the reference signal br. Because the states of
system (3) have at most ζμ

∗+1 different values, there
exists a positive integer T ≤ ζμ

∗+1 and an admis-
sible state-feedback control sequence u, such that
b(t;x0, u) = br holds for any integer t ≥ T and
any initial state x0 ∈ Γx. Then, we can see that
x(t;x0, u) ∈ Ω holds, which combined with Defi-
nition 3 shows that constrained system (15) is Ω-
stabilizable.

Conversely, suppose that constrained sys-
tem (15) is Ω-stabilizable. Following Definition 3,
there exists an admissible state-feedback control se-
quence u and a positive integer T ≤ ζμ

∗+1, such that
x(t;x0, u) ∈ Ω holds for any integer t ≥ T and any
initial state x0 ∈ Γx. Furthermore, the composition
of set Ω implies that Ĥx(t;x0, u) = br. Thus, the
outputs of system (3) with multi-constraint track the
reference signal br.

3.3 Output tracking of DLCNs with state and
control constraints

Considering system (15) and control constraint
Γc, split Θ into km equal blocks and then sum up
these block matrices with indices ν1, ν2, . . . , νs as
follows:

Ξ = Σs
i=1Θνi , (22)

where Θνi = Θδνikm (i = 1, 2, . . . , s).
Lemma 4 As a special deformation of the state
transition matrix, Ξ effectively reflects the reacha-
bility between any two states of system (15). For
example, (Ξs)p, q > 0 denotes that there exists an
admissible state-feedback control sequence driving
δq
k(μ∗+1)n to δp

k(μ∗+1)n at the sth step.
In the following, we simplify the matrix Ξ to

determine the kernel-attractor set Ω.
Set

ΞΩ = ETΞE, (23)

where E = [δβ1

k(μ∗+1)n , δ
β2

k(μ∗+1)n , . . . , δ
βd

k(μ∗+1)n ].

Then, the kernel-attractor set is constructed as
follows:

N =

{

δ
βj

k(μ∗+1)n

∣

∣

(

d
∑

s=1

(ΞΩ)
s
)

j, j
> 0

}

:={δβ′
1

k(μ∗+1)n , δ
β′
2

k(μ∗+1)n , . . . , δ
β′
z

k(μ∗+1)n}, (24)

where N ⊆ Ω contains all the kernel attractors of Ω.
Set CN = {β′

1, β
′
2, . . . , β

′
z}.

We define a new matrix QN as follows:

QN = RTΞR, (25)

where rank(R) = ζμ
∗+1 − z + 1 and

{

Col1(R) =
∑z

j=1 δ
β′
j

k(μ∗+1)n ,

Coli(R) = δξ
k(μ∗+1)n ∈ Γx \N, i ∈ [2 : ζμ

∗+1 − z].

(26)
Theorem 2 The outputs of system (3) with multi-
constraint track the reference signal br via state-
feedback control, if and only if there exists an integer
η ∈ [1 : ζμ

∗+1− z] and a kernel-attractor set N ⊆ Ω,
such that

Row1(Q
η
N ) > 0. (27)

Proof Suppose that the outputs of system (3)
with state constraint (16) and control constraint (18)
track the reference signal br via u = Φ̂x(t) within
a finite time, which together with Theorem 1 re-
flects that constrained system (15) is Ω-stabilizable.
Then, we can obtain the following closed-loop
system:

x(t+ 1) = Θ̂x(t), (28)

where Θ̂ = ΘΦ̂Mr, k(μ∗+1)n . Determine the kernel-

attractor set N := {δβ′
1

k(μ∗+1)n , δ
β′
2

k(μ∗+1)n , . . . ,

δ
β′
z

k(μ∗+1)n} ⊆ Ω from Eq. (24). Denote the state tran-
sition period of system (28) by η. Then, for any ini-
tial state x0 ∈ Γx, there exists an admissible control
sequence u = {u(0), u(1), . . . , u(η − 1)}, such that
x(η;x0, u) ∈ N . Besides kernel attractors, there are
ζμ

∗+1 − z different states; hence, η ∈ [1 : ζμ
∗+1 − z].

The matrix R defined in Eq. (26) is used to pick up
the useful rows and columns of matrix Ξ with indices
{β′

1, β′
2, . . . , β′

z}, which combined with Lemma 4
shows that Eq. (27) holds.

Conversely, assume that Eq. (27) holds. It is
easy to derive that Row1(Q

s
N ) > 0 holds for any

integer s > η, reflecting that for any state x0 ∈ Γx,
there exists an admissible control sequence u such
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that x(s;x0, u) ∈ N ⊆ Ω holds for any s ≥ η. By
Definition 3, we can see that constrained system (15)
is Ω-stabilizable. Moreover, following Theorem 1,
the outputs of system (3) with multi-constraint track
the reference signal br.

Suppose that Eq. (27) holds. We consider to de-
sign the admissible state-feedback controller to en-
able the outputs of system (3) with multi-constraint
to track the reference signal br. First, the reachable
sets of the kernel-attractor set N are constructed as
follows:

R1(N) ={δik(μ∗+1)n |Ξβ′
i, i > 0,

∀β′
i ∈ CN , i ∈ Cx}\N, (29)

Rs(N) ={δj
k(μ∗+1)n |Ξs

β′
i,j

> 0, ∀β′
i ∈ CN ,

j ∈ Cx}\Rs−1, s = 2, 3, . . . , ζμ
∗+1 − z.

(30)

Clearly, Ri(N) ∩ Rj(N) = ∅ (∀i �= j) and

∪ζμ∗+1−z
i=1 Ri(N) ∪ N = Γx. Then, we focus on de-

signing a state-feedback controller u(t) = δpi

km ∈ Γc

to achieve the following objectives:
1. For any state x(t) = δi

k(μ∗+1)n ∈ N ∪ R1, we
achieve x(t+ 1) = Θpjδ

i
k(μ∗+1)n ∈ N .

2. For any state x(t) = δi
k(μ∗+1)n ∈ Rs, we

achieve x(t + 1) = Θpjδ
i
k(μ∗+1)n ∈ Rs−1, 2 ≤ s ≤

ζμ
∗+1 − z.

Based on the analysis above, the state-feedback
controller can be designed as follows:

u(t) = δkm(p1, p2, . . . , pk(μ∗+1)n)x(t). (31)

4 An illustrative example

In this section, we give an illustrative example
to show the effectiveness of the results.
Example 1 Consider the following DLCN with
G = [1, 1, 0, 1, 0, 1, 1, 1], which models a biological
network. Refer to Veliz-Cuba and Stigler (2011) for
details.

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

a1(t+ 1) =¬u1(t) ∧ (a2(t− μ(A(t)))

∨ a3(t− μ(A(t)))),

a2(t+ 1) =¬u1(t) ∧ u2(t) ∧ a1(t− μ(A(t))),

a3(t+ 1) =¬u1(t) ∧ (u2(t) ∨ (u3(t)

∧ a1(t− μ(A(t))))),
(32)

where xi ∈ D2 (i = 1, 2, 3) and A(t) = (a1(t), a2(t),

a3(t)).

In this example, to observe the effect of delay on
the state, we specify that the outputs depict the state
values with state-dependent delay; that is, bi(t) =

ai(t− μ(A(t))), where i = 1, 2, 3.
Converting the logical variables into the canon-

ical vector form, we define a(t) = �
3
i=1ai(t) ∈ Δ8,

b(t) = �
3
i=1bi(t) ∈ Δ8, u(t) = �

3
i=1ui(t) ∈ Δ8, and

x(t) = a(t− 1)a(t) ∈ Δ64.
Suppose that the state constraint is Γa =

{δ18 , δ28 , δ48 , δ68} and the control constraint is Γc =

{δ58 , δ68 , δ78}. We aim to design a state-feedback con-
troller under which the outputs of system (32) track
the given reference signal br = δ18 . Following Eqs. (9)
and (10), we classify the states into the following two
sets:

1. Υ0 = {δ38 , δ58} and M0 = [0, 0, 1, 0,

1, 0, 0, 0].
2. Υ1 = {δ18 , δ28 , δ48 , δ68 , δ78 , δ88} and M1 =

[1, 1, 0, 1, 0, 1, 1, 1].
According to Eqs. (12)–(14), system (32) can be

converted into the following form:
{

a(t+ 1) = F̂ u(t)x(t),

b(t) = Ĥx(t),
(33)

where

Ĥ = δ8[1, 1, 3, 1, 5, 1, 1, 1, 2, 2, 3, 2, 5, 2, 2, 2,

3, 3, 3, 3, 5, 3, 3, 3, 4, 4, 3, 4, 5, 4, 4, 4,

. . .

5, 5, 3, 5, 5, 5, 5, 5, 6, 6, 3, 6, 5, 6, 6, 6,

7, 7, 3, 7, 5, 7, 7, 7, 8, 8, 3, 8, 5, 8, 8, 8]

∈ L8×64.

(34)
Following Eq. (15), we convert the first equation

of system (33) into the following augmented system:

x(t+ 1) = Θu(t)x(t), (35)

where

Θ = δ64[4, 12, 20, 28, 36, 44, 52, 60, 8, 16,

36, 48, 56, 64, 4, 12, 20, 28, 36, 44,

. . .

36, 48, 56, 64, 4, 12, 20, 28, 36, 44,

52, 60, 8, 16, 20, 32, 36, 48, 56, 64]

∈ L64×512.

(36)

Multiplying any two states in Γa, we obtain
the following augmented state constraint: Γx =
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{δ164, δ264, δ364, δ864, δ964, δ1064 , δ1164 , δ1664 , δ1764 , δ1864 , δ1964 ,
δ2464 , δ

49
64 , δ

50
64 , δ

51
64 , δ

56
64 , δ

57
64 , δ

58
64 , δ

59
64 , δ

64
64}.

Based on matrix Ĥ , we compute that Ω =

{δ164, δ264, δ864}.
Following Eqs. (23) and (27), Ξ andQ are easily

calculated. Let N = {δ164}. Then, we derive that
Row1(Q

16
N ) > 0. By Theorem 2, we can see that the

outputs of system (32) track the reference signal br
via the following state-feedback controller:

u(t) = δ8[i1, i2, . . . , i64]x(t), (37)

where
⎧

⎪
⎪
⎨

⎪
⎪
⎩

ij = 5, j = 1, 2, 3, 9, 10, 11, 16, 17, 18, 19, 50,

51, 56, 57, 58, 59, 63, 64,

ij = 7, j = 7, 8, 15, 23, 24, ..., 48.

(38)

5 Conclusions

In summary, using the STP method we have
converted the dynamics of the DLCN into a bilinear
discrete-time system and constructed an equivalent
augmented system. Based on the augmented sys-
tem, we have transformed the output tracking prob-
lem into a set stabilization problem. Considering
the state and control constraints, we have modified
the state transition matrix and presented some nec-
essary and sufficient conditions for output tracking
of the system. In addition, we have designed the
state-feedback controller to drive the outputs of the
constrained DLCN to track the reference signal. We
have given an illustrative example to show that the
new results are effective.

Contributors
Ya-ting ZHENG drafted the manuscript. Jun-e

FENG revised and finalized the manuscript.

Compliance with ethics guidelines
Ya-ting ZHENG and Jun-e FENG declare that they

have no conflict of interest.

References
Akutsu T, Hayashida M, Ching WK, et al., 2007. Control of

Boolean networks: hardness results and algorithms for
tree structured networks. J Theor Biol, 244(4):670-679.
https://doi.org/10.1016/j.jtbi.2006.09.023

Ay F, Xu F, Kahveci T, 2009. Scalable steady state analysis
of Boolean biological regulatory networks. PLoS ONE,
4(12):e7992.
https://doi.org/10.1371/journal.pone.0007992

Bof N, Fornasini E, Valcher ME, 2015. Output feedback
stabilization of Boolean control networks. Automatica,
57:21-28.
https://doi.org/10.1016/j.automatica.2015.03.032

Chaouiya C, Naldi A, Thieffry D, 2012. Logical modelling of
gene regulatory networks with GINsim. In: van Helden
J, Toussaint A, Thieffry D (Eds.), Bacterial Molecular
Networks. Springer, New York, p.463-479.
https://doi.org/10.1007/978-1-61779-361-5_23

Cheng D, Qi H, Zhao Y, 2012. An Introduction to Semi-
tensor Product of Matrices and its Applications. World
Scientific, Singapore.

Chueh TH, Lu HHS, 2012. Inference of biological pathway
from gene expression profiles by time delay Boolean
networks. PLoS ONE, 7(8):e42095.
https://doi.org/10.1371/journal.pone.0042095

Fan HB, Feng JE, Meng M, et al., 2018. General decompo-
sition of fuzzy relations: semi-tensor product approach.
Fuzzy Set Syst, p.1-16.
https://doi.org/10.1016/j.fss.2018.12.012

Fornasini E, Valcher ME, 2013. Observability, recon-
structibility and state observers of Boolean control net-
works. IEEE Trans Autom Contr, 58(6):1390-1401.
https://doi.org/10.1109/TAC.2012.2231592

Fornasini E, Valcher ME, 2014. Optimal control of
Boolean control networks. IEEE Trans Autom Contr,
59(5):1258-1270.
https://doi.org/10.1109/TAC.2013.2294821

Guo YQ, Zhou RP, Wu YH, et al., 2019. Stability and set
stability in distribution of probabilistic Boolean net-
works. IEEE Trans Autom Contr, 64(2):736-742.
https://doi.org/10.1109/TAC.2018.2833170

Haider S, Pal R, 2012. Boolean network inference from
time series data incorporating prior biological knowl-
edge. BMC Genom, 13:S9.
https://doi.org/10.1186/1471-2164-13-S6-S9

Kauffman S, 1969. Metabolic stability and epigenesis in
randomly constructed genetic nets. J Theor Biol,
22(3):437-467.
https://doi.org/10.1016/0022-5193(69)90015-0

Laschov D, Margaliot M, 2012. Controllability of Boolean
control networks via the Perro–Frobenius theory. Au-
tomatica, 48(6):1218-1223.
https://doi.org/10.1016/j.automatica.2012.03.022

Laschov D, Margaliot M, 2013. Minimum-time control of
Boolean networks. SIAM J Contr Optim, 51(4):2869-
2892. https://doi.org/10.1137/110844660

Li BW, Lou JG, Liu Y, et al., 2019. Robust invariant set anal-
ysis of Boolean networks. Complexity, 2019:2731395.
https://doi.org/10.1155/2019/2731395

Li FF, 2018. Stability of Boolean networks with delays
using pinning control. IEEE Trans Contr Netw Syst,
5(1):179-185.
https://doi.org/10.1109/TCNS.2016.2585861

Li H, Zheng Y, Alsaadi F, 2019a. Algebraic formulation and
topological structure of Boolean networks with state-
dependent delay. J Comput Appl Math, 350:87-97.
https://doi.org/10.1016/j.cam.2018.10.003

Li H, Xu X, Ding X, 2019b. Finite-time stability analysis
of stochastic switched Boolean networks with impulsive
effect. Appl Math Comput, 347:557-565.
https://doi.org/10.1016/j.amc.2018.11.018



Zheng and Feng / Front Inform Technol Electron Eng 2020 21(2):316-323 323

Li HT, Wang YZ, Xie LH, 2015. Output tracking control of
Boolean control networks via state feedback: constant
reference signal case. Automatica, 59:54-59.
https://doi.org/10.1016/j.automatica.2015.06.004

Li XD, Li HT, Zhao GD, 2019. Function perturbation impact
on feedback stabilization of Boolean control networks.
IEEE Trans Neur Netw Learn Syst, 30(8):2548-2554.
https://doi.org/10.1109/TNNLS.2018.2881168

Li YY, Li BW, Liu Y, et al., 2018. Set stability and set
stabilization of switched Boolean networks with state-
based switching. IEEE Access, 6:35624-35630.
https://doi.org/10.1109/ACCESS.2018.2851391

Li YY, Liu RJ, Lou JG, et al., 2019. Output tracking of
Boolean control networks driven by constant reference
signal. IEEE Access, 7:112572-112577.
https://doi.org/10.1109/ACCESS.2019.2934740

Li ZQ, Cheng DZ, 2010. Algebraic approach to dynamics of
multivalued networks. Int J Bifurc Chaos, 20(3):561-
582. https://doi.org/10.1142/S0218127410025892

Liu Y, Li BW, Lu JQ, et al., 2017. Pinning control for the
disturbance decoupling problem of Boolean networks.
IEEE Trans Autom Contr, 62(12):6595-6601.
https://doi.org/10.1109/TAC.2017.2715181

Lu JQ, Zhong J, Ho DWC, et al., 2016. On controllability
of delayed Boolean control networks. SIAM J Contr
Optim, 54(2):475-494.
https://doi.org/10.1137/140991820

Lu JQ, Sun LJ, Liu Y, et al., 2018a. Stabilization of Boolean
control networks under aperiodic sampled-data control.
SIAM J Contr Optim, 56(6):4385-4404.
https://doi.org/10.1137/18M1169308

Lu JQ, Li ML, Huang TW, et al., 2018b. The transformation
between the Galois NLFSRs and the Fibonacci NLF-
SRs via semi-tensor product of matrices. Automatica,
96:393-397.
https://doi.org/10.1016/j.automatica.2018.07.011

Meng M, Lam J, Feng JE, et al., 2019. Stability and
stabilization of Boolean networks with stochastic delays.
IEEE Trans Autom Contr, 64(2):790-796.
https://doi.org/10.1109/TAC.2018.2835366

Sun LJ, Lu JQ, Ching WK, 2020. Switching-based stabiliza-
tion of aperiodic sampled-data Boolean control networks
with all subsystems unstable. Front Inform Technol
Electron Eng, 21(2):260-267.
https://doi.org/10.1631/FITEE.1900312

Tong LY, Liu Y, Li YY, et al., 2018. Robust control in-
variance of probabilistic Boolean control networks via
event-triggered control. IEEE Access, 6:37767-37774.
https://doi.org/10.1109/ACCESS.2018.2828128

Veliz-Cuba A, Stigler B, 2011. Boolean models can explain
bistability in the lac operon. J Comput Biol, 18(6):783-
794. https://doi.org/10.1089/cmb.2011.0031

Wang B, Feng JE, Meng M, 2019. Model matching of
switched asynchronous sequential machines via matrix
approach. Int J Contr, 92(10):2430-2440.
https://doi.org/10.1080/00207179.2018.1441552

Wu YH, Sun XM, Zhao XD, et al., 2019. Optimal control
of Boolean control networks with average cost: a policy
iteration approach. Automatica, 100:378-387.
https://doi.org/10.1016/j.automatica.2018.11.036

Yu YY, Feng JE, Pan JF, 2019a. Block decoupling of
Boolean control networks. IEEE Trans Autom Contr,
64(8):3129-3140.
https://doi.org/10.1109/TAC.2018.2880411

Yu YY, Wang B, Feng JE, 2019b. Input observability of
Boolean control networks. Neurocomputing, 333:22-28.
https://doi.org/10.1016/j.neucom.2018.12.014

Zhong J, Ho DWC, Lu JQ, et al., 2019. Pinning controllers
for activation output tracking of Boolean network under
one-bit perturbation. IEEE Trans Cybern, 49(9):3398-
3408. https://doi.org/10.1109/TCYB.2018.2842819

Zhu QX, Liu Y, Lu J, et al., 2019. Further results on
the controllability of Boolean control networks. IEEE
Trans Autom Contr, 64(1):440-442.
https://doi.org/10.1109/TAC.2018.2830642

Zhu SY, Lou JG, Liu Y, et al., 2018. Event-triggered con-
trol for the stabilization of probabilistic Boolean control
networks. Complexity, 2018:9259348.
https://doi.org/10.1155/2018/9259348

Zhu SY, Lu JQ, Liu Y, 2019a. Asymptotical stability of
probabilistic Boolean networks with state delays. IEEE
Trans Autom Contr, in press.
https://doi.org/10.1109/TAC.2019.2934532

Zhu SY, Lu JQ, Liu Y, et al., 2019b. Output tracking
of probabilistic Boolean networks by output feedback
control. Inform Sci, 483:96-105.
https://doi.org/10.1016/j.ins.2018.12.087


	Introduction
	Preliminaries
	Main results
	Problem formulation and algebraic transformation
	Set stabilization of DLCNs with state and control constraints
	Output tracking of DLCNs with state and control constraints

	An illustrative example
	Conclusions

