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Abstract: In this study, the complete synchronization problem of coupled delayed Boolean networks (CDBNs) is
investigated. The state delays and output delays may not be equal, and the state delay in each Boolean network may
be different in the proposed CDBN model. Based on the semi-tensor product of matrices, a necessary and sufficient
condition for the complete synchronization of CDBNs is obtained. Then, an efficient algorithm for solving the
synchronization of CDBNs is provided. Finally, numerical examples are presented to demonstrate the effectiveness
of our algorithm.

Key words: Boolean networks; Synchronization; Time delay
https://doi.org/10.1631/FITEE.1900438 CLC number: O233

1 Introduction

Since Kauffman (1969) first introduced Boolean
networks (BNs), they have been used extensively in
modeling nonlinear and complex biological systems
(Shmulevich et al., 2003; Richardson, 2005; Cheng
and Qi, 2010). In a BN, each node’s state is described
by a binary variable, i.e., 1 (ON) or 0 (OFF). Each
node updates its state based on the states of other
nodes and the Boolean function (Heidel et al., 2003).
BNs are quite significant in that they can not only be
used in biological systems, but also provide a detailed
description of the behavior in many other systems
(Heidel et al., 2003; Zou and Zhu, 2014; Kobayashi
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and Hiraishi, 2017; Meng et al., 2018).
Recently, Cheng and Qi (2010) proposed the

semi-tensor product (STP) of matrices, which has
been applied to BNs successfully. Using the STP,
the unique algebraic framework of BNs can be con-
structed and the BNs can be transformed into an
equivalent discrete dynamical system (Cheng et al.,
2011). Based on the STP technique, many basic
problems concerning BNs have been studied, such as
stabilization (Guo et al., 2015; Li YY et al., 2018a;
Liu RJ et al., 2018; Lu et al., 2018; Zhu SY et al.,
2018, 2019; Li BW et al., 2019a; Huang et al., 2020;
Sun et al., 2020; Zhong et al., 2020), synchroniza-
tion (Heidel et al., 2003; Li R and Chu, 2012; Liu Y
et al., 2016; Li YY, 2017; Zhong et al., 2017; Li YY
et al., 2018b; Yang et al., 2019, 2020), optimal con-
trol (Wu and Shen, 2018; Zhu QX et al., 2018; Zhong
et al., 2019; Zhu SY et al., 2019), controllability and
observability (Laschov et al., 2013; Zhu QX et al.,
2019), output tracking (Liu Y et al., 2017; Li YY
et al., 2019), fault detection (Fornasini and Valcher,
2015), and robust invariant set of BNs (Tong et al.,
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2018; Li BW et al., 2019b, 2019c).
One of the goals of studying nonlinear systems is

to understand how collective behavior, such as syn-
chronization and consensus, emerges in networked
systems. Recently, synchronization of BNs has been
studied extensively because of its wide applications
in chemistry, economy, biology, and so on. Many in-
teresting synchronization problems of BNs have been
studied (Li R and Chu, 2012; Liu Y et al., 2016; Li
YY, 2017; Yang et al., 2019). In Li R and Chu (2012),
the complete synchronization of drive-response BNs
without time delay has been studied.

In the real world, time delays are unavoidable
and should be considered in BNs. In Zhong et al.
(2014), the complete synchronization of coupled de-
layed Boolean networks (CDBNs) was investigated.
In Liu RJ et al. (2018), a feedback controller was de-
signed to realize the stabilization of BNs with state
delay. However, it can be found that the models
in Zhong et al. (2014) require a condition that the
time delays between different nodes in different BNs
need to be the same. In fact, time delays in message
transmission between different nodes and BNs can
be distinctive in many real-world systems. More-
over, the different output delays should be consid-
ered in CDBNs. Motivated by the above discussion,
a complete synchronization of the coupled BNs with
arbitrary finite delays is investigated. Based on the
theory of STP, a necessary and sufficient criterion
for the complete synchronization of the CDBNs is
obtained. The contributions of this study can be
listed as follows:

1. In contrast to previous works, the restriction
that the output and state delays are equal is removed
in our model. Furthermore, we do not require the
assumption that the state delays in each BNs are
equal.

2. A necessary and sufficient criterion is given for
the complete synchronization of the proposed general
BN model.

3. An efficient algorithm is proposed to verify
the synchronization condition of CDBNs.

2 Preliminaries

2.1 Concepts and basic notations

To analyze the synchronization of CDBNs, we
first introduce the STP of matrices. Let ⊗ denote

the Kronecker product of matrices and I denote the
identity matrix.
Definition 1 (Cheng et al., 2011) The STP of two
matrices Cpq (p rows and q columns) and Dmn (m
rows and n columns) is

C �D = (C ⊗ Ie/q)(D ⊗ Ie/m),

where e is the least common multiple of q and m.
Based on the definition of STP, we can know

that the general matrix product is just a special case
of the STP when q = m. Hence, we will omit “�” for
convenience in the following if no confusion is caused.
Some symbols are presented as follows:

1. For a matrix F with p rows and q columns,
we define that Colk(F ) is the kth column of F and
Col(F ) := {Colk(F ) : 1 ≤ k ≤ q}.

2. Ik is an identity matrix with k rows and k

columns. We define that δik = Coli(Ik) and Δk :=

{δik : 1 ≤ i ≤ k}.
3. For convenience, we express F = [δi1p , δi2p ,

. . ., δiqp ] ∈ Lp×q as F = δp[i1, i2, . . . , iq].
4. We define Φn as δ22n{1, 2n + 2, . . . , (2n − 2) ·

2n + 2n − 1, 22n}.
5. W[a,b] is used to represent the swap matrix.

Label W[a,b]’s columns by (11, 12, . . ., 1b, . . ., a1, a2,
. . ., ab) and its rows by (11, 21, . . ., a1, . . ., 1b, 2b, . . .,
ab). Then its element in position ((M,N), (m,n)) is
assigned as

w(M,N),(m,n) = δM,N
m,n =

{
1, M = m and N = n,

0, otherwise.

6. We use vectors δ12 and δ22 to denote the
Boolean variables 1 and 0. The Boolean function
f : {1, 0}n → {1, 0} can be considered as a mapping
from Δn

2 to Δ2.
The STP of matrices has many good properties

(Cheng et al., 2011) and we list some of them, which
will be used in the following:

1. If σ ∈ Δn, for any matrix A, σ �A = (In ⊗
A)� σ.

2. If σ ∈ Δ2n , then we can obtain σ�σ = Φnσ.
3. We call Ed = δ2[1, 2, 1, 2] the dummy matrix.

Then, we have Edxy = y, ∀x,y ∈ Δ2.
4. If φ1 ∈ Δm and φ2 ∈ Δn, then W[m,n](φ2 �

φ1) = φ1 � φ2. For convenience, we use W[n] to
denote W[n,n].
Lemma 1 (Cheng et al., 2011) Let h : Δn

2 → Δ2

be a Boolean function and H ⊆ L2×2n the structure
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matrix of h. Then, for every (σ1,σ2, . . . ,σn) ∈ Δn
2 ,

h(σ1,σ2, . . . ,σn) = H � σ1 � σ2 � . . .� σn.

2.2 Problem formulation

The objective of this study is to give the nec-
essary and sufficient condition of synchronization of
the following system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xi
j(t+ 1) = f i

j

(
X1

j (t− τ1j ),X
2
j (t− τ2j ), . . . ,

XN
j (t− τNj ),Y1(t− α1),

Y2(t− α2), . . . ,YM (t− αM )
)
,

Yj(t) = hj

(
X1

j (t),X
2
j (t), . . . ,X

N
j (t)

)
,

(1)
where Xi

j ∈ Δ2 means the state of the ith node of the
jth BN and Yj means the output of the jth BN. Both
f i
j and hj are Boolean functions (j = 1, 2, . . . ,M

and i = 1, 2, . . . , N); αl (l = 1, 2, . . . ,M) and τkj
(k = 1, 2, . . . , N) are arbitrary integers, denoting
output delays and state delays, respectively. Denote
Xj(t) = �

N
k=1X

k
j (t), which represents the state of

the jth BN.
Definition 2 The array of BNs (1) is said to
realize complete synchronization if for any initial
states Xj(−τ), Xj(−τ + 1), . . ., Xj(−1), Xj(0) ∈
Δ2N , j = 1, 2, . . . ,M , there exists a positive integer
T such that ∀t ≥ T , Xj(t) = Xi(t) holds for any
1 ≤ i, j ≤ M .

3 Main results

3.1 A simplified model

Before we discuss the complete synchronization
criterion for system (1), an easier model⎧⎪⎨
⎪⎩

Xi
j(t+ 1) = f i

j

(
X1

j (t− τ1),X
2
j (t− τ2), . . . ,

XN
j (t− τN ),Y1(t),Y2(t), . . . ,YM (t)

)
,

Yj(t) = hj

(
X1

j (t),X
2
j (t), . . . ,X

N
j (t)

)
,

(2)
will be studied first, in which the time delay between
the ith (i = 1, 2, . . . , N) and jth (j = 1, 2, . . . ,M)
nodes in each Boolean network is the same and sat-
isfies the condition τ1 < τ2 < . . . < τN . Moreover,
the output delays do not exist in system (2).

Let F i
j and Hj be the structure matrices of f i

j

and hj , respectively. Define

Y (t) = �
M
k=1Yk(t).

In the following, some useful lemmas for system (2)
are given.

Lemma 2 Let uk = EdN−kW[2,2N−k]Edk−1.
Then

Xk
j (t− τk) = ukXj(t− τk).

The proof is given in Appendix A.
Lemma 3 Let M i

j = F i
ju1

{
�

N
k=2(I2(k−1)N⊗uk)

}
and X̂j(t) = �

N
k=1Xj(t− τk). It holds that

Xi
j(t+ 1) = M i

jX̂j(t)Y (t).

The proof is given in Appendix B.
Let

Mj = M1
j

{
�

N
i=2

[
(I2N2+M ⊗M i

j)�ΦN2+M

]}
.

Based on Lemmas 2 and 3, we have

Xj(t+ 1) =�
N
k=1

(
Mk

j X̂j(t)Y (t)
)

=M1
j {�N

i=2[(I2N2+M ⊗M i
j)�ΦN2+M ]}

� X̂j(t)Y (t)

=MjX̂j(t)Y (t).
(3)

Letting H = ⊗M
j=1Hj , we can obtain

Y (t) =
(
H1 �

N
k=1 X

k
1 (t)

)⊗ (
H2 �

N
k=1 X

k
2 (t)

)⊗ . . .

⊗ (
HM �

N
k=1 X

k
M (t)

)
=(H1X1(t))⊗ (H2X2(t))⊗ . . .

⊗ (HMXM (t))

=(⊗M
j=1Hj)

(
�

M
k=1Xk(t)

)
=H �

M
j=1 Xj(t).

(4)
Hence, BN (2) can be described as algebraic repre-
sentations (3) and (4). Denote⎧⎪⎪⎨
⎪⎪⎩

W =W[2M ,2N2 ]�

{
�
M
i=2

[
(I2M ⊗W[2M ,2iN2 ])ΦM

]}
,

P = P1�
N−2
j=1 {I2jMN⊗Pj+1},

I = �
N−1
j=0

(
I
2(τj+1)MN⊗EdMN(τj+1−τj−1)

)
,

where Pq = �
M−1
j=1

(
I2jN⊗W[2N ,2j(N−q)N ]

)
, q =

1, 2, . . . , N − 1, and τ0 = 0.
Lemma 4 For system (2), the following equality
holds:

�
M
j=1Xj(t+ 1) =(⊗M

j=1Mj)WH(I2MN⊗P )

� I�τN
k=0

(
�

M
j=1Xj(t− k)

)
.

The proof is given in Appendix C.
Theorem 1 System (2) realizes synchronization if
and only if there exists a positive integer d satisfying

Col(QΩd−1)⊆
{
δρi

2MN :ρi=1+
(i−1)(2MN−1)

2N−1

}
,

(5)
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where d0 = min{m : m ≥ 1,QΩm−1 = QΩn−1, n >

m}, 1 ≤ d ≤ d0, Q = (⊗M
j=1Mj)WH(I2MN

⊗P )I, Ω = QW[2MNτN ,2MNτN+1]ΦMNτN , and i =

1, 2, . . . , 2N .
Proof First, let us show the necessity.

Let⎧⎪⎨
⎪⎩

V (t) = �
τN
k=0

(
�

M
j=1Xj(t− k)

)
,

Ω = QW[2MNτN ,2MNτN+1]ΦMNτN ,

Q = (⊗M
j=1Mj)WH(I2MN⊗P )I.

Then, Lemma 4 implies

�
M
j=1 Xj(t+ 1) = QV (t). (6)

Furthermore, it holds that

V (t+ 1) =�
τN
k=0

(
�

M
j=1Xj(t+ 1− k)

)
=QV (t)�τN

k=1

(
�

M
j=1Xj(t+ 1− k)

)
=QW[2MNτN ,2MN(τN+1)]

(
�

M
j=1Xj(t)

)
� . . .

(
�

M
j=1Xj(t− τN + 1)

)
V (t)

=QW[2MNτN ,2MNτN+1]ΦMNτNV (t)

=ΩV (t).

Hence, we have

�
M
j=1Xj(t) = QΩt−1

�
τN
k=0

(
�

M
j=1Xj(−k)

)
.

If system (2) realizes complete synchronization, then
for any initial values Xj(0), Xj(−1), . . ., Xj(−τN ),
j = 1, 2, . . . ,M , there exists a positive integer d

such that Xj(d) = Xi(d), ∀1 ≤ i, j ≤ M . Assume
Xj(d) = δr2N , where 1 ≤ r ≤ 2N , 1 ≤ j ≤ M . Then,
we have

QΩd−1
(
�

M
j=1Xj(0)

) (
�

M
j=1Xj(−1)

)
� . . .

(
�

M
j=1Xj(−τN )

)
= �

M
j=1Xj(d)

= δr2N � δr2N � δr2N � . . .� δr2N

= δρr

2MN , (7)

where ρr = 1 +
(r − 1)(2MN − 1)

2N − 1
.

Since �
M
j=1Xj(0), �

M
j=1Xj(−1), . . .,

�
M
j=1Xj(−τN ) are arbitrarily given, Eq. (7)

implies

Col(QΩd−1)⊆
{
δρi

2MN :ρi=1+
(i−1)(2MN−1)

2N−1

}
,

(8)
where i = 1, 2, . . . , 2N .

Assume d is the smallest positive integer sat-
isfying Eq. (8). Next, we shall prove 1 ≤ d ≤ d0

by the contradiction method. Suppose d > d0.
Denote s0 = min{i ≥ 0 : QΩd0+i = QΩd0−1}
and there exists a positive constant l satisfying
QΩl−1 = QΩd−1, d0 − 1 ≤ l − 1 ≤ d0 + s0 − 1.
That is to say,

Col{QΩd0−1} = Col{QΩd0+s0}
⊆ Col{QΩl−1} ⊆ Col{QΩd0−1}.

Hence, we have

Col{QΩd0−1} = Col{QΩd0+s0}
= Col{QΩl−1} = Col{QΩd−1},

which contradicts with the minimum of d. Therefore,
we can conclude that 1 ≤ d ≤ d0.

Next, let us show the sufficiency.
Assume there is a positive integer d satisfying

Eq. (5). It follows from Col(QΩd−1) ⊆
{
δρi

2MN :

ρi = 1 +
(i − 1)(2MN − 1)

2N − 1
, i = 1, 2, . . . , 2N

}
and

Col{QΩt−1} ⊆ Col{QΩd−1} (t ≥ d) that

Col(QΩd−1)⊆
{
δρi

2MN :ρi=1+
(i−1)(2MN−1)

2N−1

}
,

(9)
where i = 1, 2, . . . , 2N .

For any initial values Xj(0),Xj(−1), . . .,
Xj(−τN ), j = 1, 2, . . . ,M , there exists a positive
integer r satisfying 1 ≤ r ≤ 2N and

�
M
j=1Xj(t) =δρr

2MN = δr2N δr2N . . . δr2N .

Notice that ρr = 1 +
(r − 1)(2MN − 1)

2N − 1
, which

implies

Xj(t) = δr2N , ∀t ≥ d, 1 ≤ j ≤ M.

Hence, we can obtain that for any initial values
Xj(0), Xj(−1), . . ., Xj(−τN ), j = 1, 2, . . . ,M , and
∀t ≥ d,

X1(t) = X2(t) = . . . = XM (t) = δr2N .

3.2 Algorithm for solving system (1)

In this subsection, we consider the synchroniza-
tion of system (1). According to Theorem 1, we know
that the synchronization of system (2) is decided by
matrices Q and Ω. Due to the complexity of sys-
tem (1), it is hard to give the explicit expression of
matrices Q and Ω corresponding to system (1). In



Liu et al. / Front Inform Technol Electron Eng 2020 21(2):281-293 285

the following, specific steps will be taken to construct
matrices Q and Ω of system (1).

Step 1: Obtain the algebraic representation of
system (1).

Let
Ŷ (t) = �

M
k=1Yk(t− αk)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ(j1) = min{τ1j , τ2j , . . . , τNj },
τ(j2) = min

1≤i1<i2≤N
max{τ i1j , τ i2j },

τ(j3) = min
1≤i1<i2<i3≤N

max{τ i1j , τ i2j , τ i3j },
...

τ(jN) = max{τ1j , τ2j , . . . , τNj }.

(10)

Denote M i
j = F i

ju1

{
�

N
k=2(I2(k−1)N⊗uk)

}
, where

uk = EdN−kW[2,2N−k]Edk−1. It follows from
Lemma 2 that

Xi
j(t+ 1) = F i

j

{
�

N
s=1X

s
j (t− τsj )

}
Ŷ (t)

= F i
ju1

{
�

N
k=2(I2(k−1)N⊗uk)

}
�

{
�

N
s=1Xj(t− τsj )

}
Ŷ (t)

= M i
j

{
�

N
s=1Xj(t− τsj )

}
Ŷ (t).

According to properties 1–4 of STP, we can
change the form of Xi

j(t + 1). The expression of
Xi

j(t+ 1) can be rewritten as

M̄ i
jXj(t− τ(j1))Xj(t− τ(j2)) . . .Xj(t− τ(jN))Ŷ (t),

(11)
where M̄ i

j is determined by τ1j , τ
2
j , . . . , τ

(N−1)
j , τNj .

Let M̄j = M̄1
j

{
�

N
i=2

[
(I2N2+M ⊗ M̄ i

j)�ΦN2+M

]}
and X̂j(t) = �

N
k=1Xj(t− τ(jk)). Hence,

Xj(t+ 1) =

{
M̄1

j �
N
k=1 Xj(t− τ(jk))Ŷ (t)

}

�

{
M̄2

j �
N
k=1 Xj(t− τ(jk))Ŷ (t)

}
. . .

�

{
M̄N

j �
N
k=1 Xj(t− τ(jk))Ŷ (t)

}

=M̄1
j

{
�

N
i=2

[
(I2N2+M ⊗ M̄ i

j)

�ΦN2+M

]}
�

N
k=1 Xj(t− τ(jk))Ŷ (t)

=M̄jX̂j(t)Ŷ (t).
(12)

For the output of the BNs, let H = ⊗M
j=1Hj. We

can derive

Y (t) = H �
M
j=1 Xj(t). (13)

Therefore, the algebraic representation of system (1)
can be described by Eqs. (12) and (13).

Step 2: Obtain the expression of
�

M
j=1

(
X̂j(t)Ŷ (t)

)
using �

τM
k=0

(
�

M
j=1Xj(t− k)

)
and Ŷ (t).

First, the algebraic representation of system (1)
implies

�
M
j=1 Xj(t+ 1) = (⊗M

j=1M̄j)
[
�

M
j=1

(
X̂j(t)Ŷ (t)

)]
.

(14)
Note that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̂1(t) =X1(t− τ(11))X1(t− τ(12))

� . . .X1(t− τ(1N)),

X̂2(t) =X2(t− τ(21))X2(t− τ(22))

� . . .X2(t− τ(2N)),

...

X̂M (t) =XM (t− τ(M1))XM (t− τ(M2))

� . . .XM (t− τ(MN)).

(15)

Since τj1, τj2, . . . , τjN are arbitrary integers, it is pos-
sible that

Xi(t− τ(iq)) = Xi(t− τ(i(q+1)))

= . . . = Xi(t− τ(i(q+k))).

In fact, if there are two terms Xi(t − τ(ij1)) =

Xi(t− τ(ij2)), we need to make sure that there is no
identical item on the right-hand side of each equa-
tion in Eq. (15). Then, based on properties 1–4 of
STP, Eq. (15) can be transformed into
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̂1(t) = A1X1(t− φ(11))X1(t− φ(12))

� . . .X1(t− φ(1N1)),

X̂2(t) = A2X2(t− φ(21))X2(t− φ(22))

� . . .X2(t− φ(2N2)),

...

X̂M (t) = AMXM (t− φ(M1))XM (t− φ(M2))

� . . .XM (t− φ(MNM )),

(16)

where φ(ij) ∈ {τi1, τi2, . . . , τiN}, φ(i1) < φ(i2) <

. . . < φ(iNi), and i = 1, 2, . . . ,M . In addition, Aj

can be derived from τj1, τj2, . . . , τjN .
For example, equation

X̂1(t) = X1(t− 1)X1(t− 3)X1(t− 1) (17)
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is transformed into

X̂1(t) =X1(t− 1)W[2N ]X1(t− 1)X1(t− 3)

=(I2N ⊗W[2N ])ΦNX1(t− 1)X1(t− 3)

=A1X1(t− 1)X1(t− 3),

where A1 = (I2N ⊗W[2N ])ΦN .
For the convenience of subsequent calculations,

based on properties 1–4 of STP, we can transform
Eq. (16) to the following equivalent equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X̂1(t) = D1 �
τm
k=0 X1(t− k),

X̂2(t) = D2 �
τm
k=0 X2(t− k),

...

X̂M (t) = DM �
τm
k=0 XM (t− k),

(18)

where τm = max{φ(1N1), φ(2N2), . . . , φ(MNM ), α1,
α2, . . . , αM} and Dj (j = 1, 2, . . . ,M) are ob-
tained based on φ(j1), φ(j2), . . . , φ(jNj), and τm.
Let X̃k(t) = �

τm
s=0Xk(t − s), D = D1 �

M
k=2

{(I2(k−1)N(τm+1) ⊗Dk)} . According to Eq. (18), we
can obtain

X̂s(t) = DsX̃s(t), s = 1, 2, . . . , M,

and

�
M
k=1X̂k(t) =D1X̃1(t)D2X̃2(t) . . .DMX̃M (t)

=D1(I2N(τm+1) ⊗D2)X̃1(t)X̃2(t)

�D3X̃3(t) . . .DMX̃M (t)

. . .

=D1 �
M
k=2 {(I2(k−1)N(τm+1) ⊗Dk)}

� X̃1(t)X̃2(t) . . . X̃M (t)

=D �
M
k=1 X̃k(t).

(19)
Denote⎧⎨
⎩

W =W[2M ,2N2 ]�

{
�
M
i=2

[
(I2M ⊗W2M ,2iN2 )ΦM

]}
,

P̄ = P̄1(I2MN ⊗ P̄2) . . . (I2(τm−1)MN ⊗ P̄τm),

where P̄q = �
M−1
j=1 (I2jN ⊗ W[2N ,2j(τm−q+1)N ]), q =

1, 2, . . . , τm.
Lemma 5 For system (1), the following equality
holds:

�
M
j=1{X̂j(t)Ŷ (t)} = W (I2M ⊗DP̄ )Ŷ (t)

�
τM
k=0

(
�

M
j=1Xj(t− k)

)
.

The proof is given in Appendix D.

Step 3: Obtain matrices Q and Ω.
Note that Ŷ (t) = Y1(t − α1)Y2(t − α2) . . .�

YM (t− αM ), and it can be obtained that

Ŷ (t) = {H1X1(t− α1)} ⊗ {H2X2(t− α2)}
⊗ . . .⊗ {HMXM (t− αM )}

={⊗M
j=1Hj}�M

k=1 Xk(t− αk)

=H �
M
k=1 Xk(t− αk),

(20)

where H = ⊗M
j=1Hj.

Lemma 6 Let

R =�
M
k=1

(
I2N(M−k) ⊗

{
W

[2MN(αM+1−k+1)−N ,2N ]

� (I
2MN(αM+1−k+1)−N ⊗ΦN )

})
.

Then

Ŷ (t)�τM
k=0

{
�

M
j=1Xj(t− k)

}
= HR�

τM
k=0

{
�

M
j=1Xj(t− k)

}
.

The proof is given in Appendix E.
Based on Lemmas 5 and 6, we have

�
M
j=1X̂j(t)Ŷ (t) = W (I2N ⊗DP )HR

�
τM
k=0

(
�

M
j=1Xj(t− k)

)
.

(21)

Eqs. (14) and (21) imply

�
M
j=1Xj(t+ 1) = (⊗M

j=1M̄j)W (I2N ⊗DP )HR

�
τM
k=0

(
�

M
j=1Xj(t− k)

)
.

(22)
Let V (t) = �

τM
s=0

(
�

M
j=1Xj(t− s)

)
. Eq. (22) implies

�
M
j=1Xj(t+ 1) = QV (t),

where

Q = (⊗M
j=1M̄j)W (I2N ⊗DP )HR. (23)

Hence, the relationship between V (t + 1) and V (t)

is as follows:

V (t+ 1) = �
τM
s=0

(
�

M
j=1Xj(t+ 1− s)

)
=QV (t)�M

j=1 Xj(t)�
M
j=1 Xj(t− 1)

. . .�M
j=1 Xj(t+ 1− τM )

=QW[2MN(τM ),2MN(τM+1)] �
M
j=1 Xj(t)

�
M
j=1 Xj(t− 1) . . .�M

j=1 Xj(t+ 1− τM )

· V (t)

=QW[2MN(τM ),2MN(τM+1)]ΦMN(τM )V (t).
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Therefore, we can obtain matrix Ω as

Ω = QW[2MN(τM ),2MN(τM+1)]ΦMN(τM). (24)

This completes step 3 and matrices Q and Ω are
obtained as Eqs. (23) and (24), respectively.

Step 4: Obtain the expression of �M
j=1Xj(t+1)

with �
τM
s=0

(
�

M
j=1Xj(−s)

)
.

According to step 3, we have
{

�
M
j=1Xj(t+ 1) = QV (t),

V (t+ 1) = ΩV (t).

Based on the results above, we have

�
M
j=1XXXj(t+ 1) =QQQΩΩΩt

�
τM
s=0

(
�

M
j=1 XXXj(−s)

)
.

Based on the above discussion, an efficient al-
gorithm for constructing matrices Q and Ω of sys-
tem (1) and the expression of �M

j=1Xj(t+ 1) can be
summarized (Algorithm 1).

From Algorithm 1, matrices Q and Ω can be
obtained. Furthermore, we can judge the synchro-
nization of system (1) based on these two matrices.

Algorithm 1 Construction of Q and Ω

1: Obtain the algebraic representation of the system
2: Obtain the expression of �

M
j=1

(
X̂j(t)Ŷ (t)

)
with

�
τM
k=0

(
�

M
j=1Xj(t− k)

)
and Ŷ (t)

3: Obtain matrices Q and Ω

4: Obtain the expression
�

M
j=1Xj(t+ 1) = QΩt

�
τM
s=0

(
�

M
j=1Xj(−s)

)

Theorem 2 System synchronization occurs if and
only if there exists a positive integer d satisfying

Col(QΩd−1)⊆
{
δρi

2MN :ρi=1+
(i−1)(2MN−1)

2N−1

}
,

where d0 = min{m : m ≥ 1,QΩm−1 = QΩn−1, n >

m}, 1 ≤ d ≤ d0, and i = 1, 2, . . . , 2N .
The proofs of Theorems 1 and 2 are similar. So,

we omit that of Theorem 2 here.
Remark 1 The difference between Theorems 1
and 2 is just the matrices Q and Ω. According to
the proof of Theorem 1, it can be found that we may
obtain different d0 for different matrices Q and Ω.
Remark 2 In many real coupled BNs, time de-
lays are ubiquitous at the moment of information
exchange. It should be pointed out that in most
previous works it is assumed that there are no time

delays in the BNs or that time delays between dif-
ferent nodes in different BNs need to be the same.
This requirement is removed in our model, meaning
that the results of this study are more general com-
pared with previous results (Zhong et al., 2014; Lu
et al., 2016; Liu Y et al., 2017; Liu RJ et al., 2018).
Furthermore, the unified framework is constructed
to analyze the delayed coupled BNs, which can be
seen as the extension of the method in Zhong et al.
(2014), Lu et al. (2016), Liu Y et al. (2017), and Liu
RJ et al. (2018). Using the framework proposed here
to analyze the delayed coupled Boolean networks,
we can further extend many previous results to more
general cases.

4 Numerical examples

In this section, we illustrate the effectiveness
of the proposed algorithm through two numerical
examples.
Example 1 Consider the CDBNs as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1
1 (t+ 1) =

(
X1

1 (t− 1) ∧ (Y1(t) ∨ Y2(t))
)

∨ (¬X1
1 (t− 1) ∧ ¬ (Y1(t) → Y2(t))

)
,

X1
2 (t+ 1) =

(
X1

2 (t− 2) ∧ ¬ (Y1(t) → Y2(t))
)

∨ (¬X1
2 (t− 1) ∧ (Y1(t) ∨ Y2(t))

)
,

Y1(t) = ¬X1
1 (t),

Y2(t) = ¬X1
2 (t).

(25)
By some computations, the algebraic representation
of Eq. (25) is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X1
1 (t+ 1) = F 1

1 X
1
1 (t− 1)Y1(t)Y2(t),

X1
2 (t+ 1) = F 1

2 X
1
2 (t− 2)Y1(t)Y2(t),

Y1(t) = H1X
1
1 (t),

Y2(t) = H2X
1
2 (t),

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F 1
1 =δ2[1, 1, 1, 2, 2, 1, 2, 2],

F 1
2 =δ2[2, 1, 2, 2, 1, 1, 1, 2],

H1 =δ2[2, 1],

H2 =δ2[2, 1].

Matrices Q and Ω can be computed based on Algo-
rithm 1 and we can obtain

QΩ6 = QΩ8

and

d0 = min{m : m ≥ 1,QΩm−1 = QΩn−1, n > m} = 7.
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Then, we check whether there exists a positive in-
teger d satisfying 1 ≤ d ≤ 7 and Col(QΩd−1) ⊆
{δi4 : i = 1, i = 4}. When d = 7, we can obtain by
computation that

QΩ6 =δ4[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 1, 4, 1, 4].

Hence,

Col{QΩ6} ⊆ {δi4 : i = 1, i = 4}.
Thus, the system can realize synchronization accord-
ing to Theorem 2. The initial values are chosen
as X1(−2) = δ12 , X2(−2) = δ22 , X1(−1) = δ22 ,
X2(−1) = δ12 , X1(0) = δ12 , and X2(0) = δ22 . Fig. 1
shows the state evolution of CDBNs (25), where
X1(t) = X2(t) is represented by 1 and X1(t) �=
X2(t) is represented by −1.
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Fig. 1 States of the system in Example 1

Example 2 Consider the CDBNs as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1
1 (t+ 1) =

(
X1

1 (t− 1) ∨ Y1(t)
) → (¬Y2(t)) ,

X1
2 (t+ 1) = X1

2 (t− 2) ↔ (Y1(t) ↑ Y2(t)) ,

Y1(t) = ¬X1
1 (t),

Y2(t) = X1
2 (t).

(26)
The algebraic representation of Eq. (26) can be ex-
pressed as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X1
1 (t+ 1) = F 1

1X
1
1 (t− 1)Y1(t)Y2(t),

X1
2 (t+ 1) = F 1

2X
1
2 (t− 2)Y1(t)Y2(t),

Y1(t) = H1X
1
1 (t),

Y2(t) = H2X
1
2 (t),

where
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F 1
1 =δ2[2, 1, 2, 1, 2, 1, 1, 1],

F 1
2 =δ2[2, 1, 1, 1, 1, 2, 2, 2],

H1 =δ2[2, 1],

H2 =δ2[1, 2].

Matrices Q and Ω can be computed based on Algo-
rithm 1. By computation, we can obtain

QΩ4 = QΩ7

and

d0 = min{m : m ≥ 1,QΩm−1 = QΩn−1, n > m} = 5.

Then, we need to check whether there exists a
positive integer d satisfying 1 ≤ d ≤ 5 and
Col(QΩd−1) ⊆ {δi4 : i = 1, i = 4}.

If d = 1, then

QΩd−1 =δ4[3, 4, 3, 4, 3, 4, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2,

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,

4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2].

However,

Col{Q} � {δi4 : i = 1, i = 4}.

If d = 2, then

QΩd−1 =δ4[4, 1, 4, 1, 3, 2, 3, 2, 3, 1, 3, 1, 4, 2, 4, 2,

3, 1, 3, 1, 4, 2, 4, 2, 3, 1, 3, 1, 4, 2, 4, 2,

1, 4, 1, 4, 2, 3, 2, 3, 1, 4, 1, 4, 2, 3, 2, 3,

1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2].

However,

Col{QΩ} � {δi4 : i = 1, i = 4}.

If d = 3, then

QΩd−1 =δ4[1, 1, 1, 1, 1, 4, 1, 4, 4, 3, 4, 3, 1, 1, 1, 1,

3, 4, 3, 4, 2, 2, 2, 2, 3, 4, 3, 4, 2, 2, 2, 2,

1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4,

4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2].

However,

Col{QΩ2} � {δi4 : i = 1, i = 4}.



Liu et al. / Front Inform Technol Electron Eng 2020 21(2):281-293 289

If d = 4, then

QΩd−1 =δ4[1, 4, 1, 4, 1, 4, 1, 4, 1, 3, 1, 3, 1, 4, 1, 4,

4, 2, 4, 2, 1, 2, 1, 2, 4, 2, 4, 2, 1, 2, 1, 2,

4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1,

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2].

However,

Col{QΩ3} � {δi4 : i = 1, i = 4}.

If d = 5, then

QΩd−1 =δ4[4, 1, 4, 1, 1, 2, 1, 2, 1, 4, 1, 4, 4, 2, 4, 2,

1, 1, 1, 1, 4, 2, 4, 2, 1, 1, 1, 1, 4, 2, 4, 2,

1, 4, 1, 4, 2, 1, 2, 1, 1, 4, 1, 4, 2, 1, 2, 1,

1, 1, 1, 1, 4, 2, 4, 2, 1, 1, 1, 1, 4, 2, 4, 2].

However,

Col{QΩ4} � {δi4 : i = 1, i = 4}.

Therefore, there does not exist any positive in-
teger d satisfying 1 ≤ d ≤ 5 and Col(QΩd−1) ⊆
{δi4 : i = 1, i = 4}. Thus, the system cannot re-
alize synchronization according to Theorem 2. The
initial values of the system are chosen as X1(−2) =

δ12 , X2(−2) = δ22 , X1(−1) = δ12 , X2(−1) = δ12 ,
X1(0) = δ22 , and X2(0) = δ22 . Fig. 2 shows the state
evolution of CDBNs (26), where X1(t) = X2(t) is
represented by 1 and X1(t) �= X2(t) is represented
by −1. It can be seen from Fig. 2 that the system is
not synchronous.
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Fig. 2 States of the system in Example 2

5 Conclusions and discussion

We have studied mainly complete synchroniza-
tion of CDBNs. We first converted the equations of
CDBNs into an algebraic form. Then a necessary
and sufficient criterion for the complete synchro-
nization of CDBNs has been presented. Note that
the model proposed in this study is more general
than those in previous studies. Furthermore, a
design algorithm has been provided to judge the
synchronization of CDBNs. Finally, numerical
examples have been presented to demonstrate the
effectiveness of the algorithm.
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Appendix A: Proof of Lemma 2

It can be derived that

XN
j (t− τN ) =EdN−1X1

j (t− τN )X2
j (t− τN )

� . . .XN
j (t− τN )

=EdN−1Xj(t− τN ).

(A1)

Similarly, we can obtain

XN−1
j (t− τN−1)

=EdXN
j (t− τN−1)X

N−1
j (t− τN−1)

=EdW[2,2]X
N−1
j (t− τN−1)X

N
j (t− τN−1)

=EdW[2,2]EdN−2X1
j (t− τN−1)

�X2
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N
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=EdW[2,2]EdN−2Xj(t− τN−1)

. . .

(A2)
and

X1
j (t− τ1)

=EdN−1X2
j (t− τ1) . . .X

N
j (t− τ1)X

1
j (t− τ1)

=EdN−1W[2,2N−1] �
N
k=1 X

k
j (t− τ1)

=EdN−1W[2,2N−1]Xj(t− τ1).
(A3)

Let uk = EdN−kW[2,2N−k]Edk−1. According
to Eqs. (A1)−(A3), it can be summarized that

Xk
j (t− τk) = EdN−kW[2,2N−k]Edk−1Xj(t− τk)

= ukXj(t− τk).

Appendix B: Proof of Lemma 3

Let M i
j = F i

ju1

{
�

N
k=2(I2(k−1)N ⊗ uk)

}
and

X̂j(t) = �
N
k=1Xj(t− τk). Then, we have
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Appendix C: Proof of Lemma 4

Let⎧⎨
⎩
W =W[2M ,2N2 ]�
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(I2M ⊗W[2M ,2iN2 ])ΦM

]}
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One can obtain from Eq. (3) that

�
M
j=1Xj(t+1) = {⊗M

j=1Mj}
{
�

M
j=1

(
X̂j(t)Y (t)

)}
.

(C2)
Hence, we have

�
M
j=1 Xj(t+ 1) = (⊗M

j=1Mj)WY (t)�M
s=1 X̂s(t).

(C3)
Let P1 = �

M−1
j=1 (I2jN ⊗ W[2N ,2j(N−1)N ]). It holds

that

�
M
k=1 X̂k(t)

=X1(t− τ1){�N
i=2X1(t− τi)}X2(t− τ1)

� {�N
i=2X2(t−τi)} . . .XM (t−τ1){�N

i=2XM (t−τi)}
=X1(t−τ1)W[2N ,2(N−1)N ]X2(t−τ1)�

N
i=2X1(t−τi)

�
N
i=2 X2(t− τi)X3(t− τ1)�

N
i=2 X3(t− τi)

� . . .XM (t− τ1)�
N
i=2 XM (t− τi)

=(I2N ⊗W[2N ,2(N−1)N ])X1(t− τ1)X2(t− τ1)

�W[2N ,22(N−1)N ]X3(t− τ1)�
N
i=2 X1(t− τi)

�
N
i=2 X2(t− τi)�

N
i=2 X3(t− τi)X4(t− τ1)

�
N
i=2 X4(t− τi) . . .XM (t− τ1)�

N
i=2 XM (t− τi)

=(I2N ⊗W[2N ,2(N−1)N ])(I22N ⊗W[2N ,22(N−1)N ])

� . . . (I2(M−1)N ⊗W[2N ,2(M−1)(N−1)N ])

�
M
k=1 Xk(t− τ1)

{
�

M
j=1

[
�

N
i=2Xj(t− τi)

]}
=P1{�M

k=1Xk(t−τ1)}{�M
j=1(�

N
i=2Xj(t−τi))}. (C4)



292 Liu et al. / Front Inform Technol Electron Eng 2020 21(2):281-293

Similar to Eq. (C4), let P2 = �
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Let P = P1(I2MN ⊗P2)(I22MN ⊗P3) . . . (I2(N−2)MN⊗
PN−1). According to Eqs. (C4) and (C6), it holds
that

�
M
k=1X̂k(t) =P1

{
�

M
k−1Xk(t− τ1)

}
. . .PN−1

�
M
k=1 Xk(t− τN−1)�

M
k=1 Xk(t− τN )

=P1(I2MN ⊗ P2)(I22MN ⊗ P3) . . .

� (I2(N−2)MN ⊗ PN−1)�
M
k=1 Xk(t− τ1)

�
M
k=1 Xk(t− τ2) . . .�

M
k=1 Xk(t− τN )

=P �
N
j=1

{
�

M
k=1Xk(t− τj)

}
. (C7)

Based on Eq. (C3) and (C7), let τ0 = 0. We have
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Appendix D: Proof of Lemma 5
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Appendix E: Proof of Lemma 6
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According to Eqs. (20) and (E1), we have
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