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Abstract: As an increasingly popular flow metering technology, Coriolis mass flowmeter exhibits high measurement accuracy 
under single-phase flow condition and is widely used in the industry. However, under complex flow conditions, such as two-phase 
flow, the measurement accuracy is greatly decreased due to various factors including improper signal processing methods. In this 
study, three digital signal processing methods—the quadrature demodulation (QD) method, Hilbert method, and sliding discrete 
time Fourier transform method—are analyzed for their applications in processing sensor signals and providing measurement 
results under gas-liquid two-phase flow condition. Based on the analysis, specific improvements are applied to each method to deal 
with the signals under two-phase flow condition. For simulation, sensor signals under single- and two-phase flow conditions are 
established using a random walk model. The phase difference tracking performances of these three methods are evaluated in the 
simulation. Based on the digital signal processor, a converter program is implemented on its evaluation board. The converter 
program is tested under single- and two-phase flow conditions. The improved signal processing methods are evaluated in terms of 
the measurement accuracy and complexity. The QD algorithm has the best performance under the single-phase flow condition. 
Under the two-phase flow condition, the QD algorithm performs a little better in terms of the indication error and repeatability than 
the improved Hilbert algorithm at 160, 250, and 420 kg/h flow points, whereas the Hilbert algorithm outperforms the QD algo-
rithm at the 600 kg/h flow point. 
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1  Introduction 
 

Coriolis mass flowmeters are widely used in the 
industry because of their direct measurement of fluid 
mass flow and high measurement accuracy under the 
single-phase flow condition (Wang T and Baker, 
2014). However, problems exist in Coriolis mass 
flowmeter applications in complex flow conditions, 

such as the gas-liquid two-phase flow condition. 
Under the two-phase flow condition, the resonance 
frequency of the measuring tube constantly fluctuates 
due to the change of the fluid density and the sharp 
increase of the damping ratio. The speed of traditional 
analog driving methods is relatively low, so the mass 
flow cannot be measured during the process of re-
constructing the driving signal; this results in the loss 
of the measuring points and even the phenomenon in 
which the measuring tube oscillation ceases. Due to 
this problem, many scholars have proposed various 
digital signal processing methods to calculate the 
phase difference. These methods have achieved high 
accuracy under the single-phase flow conditi- 
on. However, under the two-phase flow condition, the  
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frequency and amplitude of the sensor signals fluc-
tuate drastically, and the accuracies of different digital 
signal processing methods are affected to varying 
degrees. 

Under the two-phase flow condition, liquid and 
gas have different densities. A terahertz (THz) imag-
ing device for real-time multiphase flowmetering was 
proposed (Meribout et al., 2018, 2019). However, 
there is still no effective method for measuring two- 
phase flow using Coriolis flowmeters. When fluid 
flows in the measuring tube, the damping ratio of the 
measuring tube increases due to the dynamic charac-
teristics of the gas-liquid two-phase flow; the ampli-
tude of the signals from the measuring tube decreases, 
which causes errors in the measurement results (Tao 
et al., 2014). Due to the constant changes of the den-
sity of complex fluids, the damping ratio of the 
measuring tubes also changes continuously. There-
fore, a driving system is required to track the change 
of the resonant frequency in time and change the 
output energy continually to maintain the vibration of 
the measuring tube. 

The main ways to drive the measuring tube in-
clude analog drive and digital drive. Some scholars 
conducted a series of studies on analog drive and 
achieved certain results (Cage, 1988; Carpenter, 1988; 
Flecken, 1989; Kalotay et al., 1991). 

Maginnis (2003) generated drive signals to drive 
and control the measuring tube using a multiplying 
digital-to-analog converter (MDAC). The sensor 
signal was connected to the analog input of the 
MDAC, and the processor adjusted the MDAC output 
gain according to the signals from sensors. Finally, 
the analog signal output by the MDAC passed 
through the operational amplifier to generate a drive 
signal to the driver. Huang et al. (2016) studied a new 
analog drive circuit to drive measuring tubes that 
abandon traditional methods, in which the circuit was 
composed of discrete components. Instead, the inte-
grated chip technology was used to design the drive 
system, thus effectively avoiding interference prob-
lems caused by excessive discrete devices. Zamora 
and Henry (2008) developed a digital Coriolis con-
verter using the combination of a Pentium processor 
and the field programmable gate array (FPGA). The 
digital signal method was adopted to process the un-
derlying sensor signals, and a digitally driven method 
based on waveform synthesis was used to drive tube 
vibration in the system. The development of this dig-

ital system enables the measurement of more complex 
fluids, such as two-phase flow, but the cost of the 
Pentium processor is relatively high. Li XG and Xu 
(2009) proposed a driving scheme based on a non-
linear amplitude control algorithm, which not only 
shortened the starting time of the measuring tube but 
also strengthened control of the measuring tube drive 
under the two-phase flow condition. Li M et al. (2010) 
studied optimization of the driving method and used a 
random sequence and signal synthesis to maintain 
stable vibration of the measuring tube. A combination 
of a digital drive based on the phase-locked loop (PLL) 
principle and a traditional analog drive for drive 
control of the measuring tube was adopted by  
Shimada (2013). 

The signal processing technology is the key to 
the Coriolis mass flowmeter and plays a decisive role 
in improving the accuracy and stability of Coriolis 
mass flowmeter measurement under different condi-
tions. Because digital signal processing technology 
has experienced rapid development, many scholars 
have applied this technology to Coriolis mass flow-
meter signal processing. The primary methods in-
clude quadrature demodulation (QD), the Hilbert 
transform, the discrete-time Fourier transform 
(DTFT), PLL, zero-crossing detection, the adaptive 
line enhancer (ALE), and the sliding Goertzel algo-
rithm (SGA). 

The QD method has been widely used to calcu-
late the phase difference of sensor signals (Röck and 
Koschmieder, 2009; Wang JH, 2013; Kunze et al., 
2014; Svete et al., 2015). Kunze et al. (2014) used the 
QD method for signal processing under the two-phase 
flow condition. However, the accuracy of the QD 
method is highly dependent on the design of the low- 
pass filter. 

Yokoi and Owada (1996) used the Hilbert algo-
rithm for signal processing of Coriolis mass flow-
meters. Yang HY et al. (2012) proposed a new high- 
precision phase difference measurement method by 
combining the singular value decomposition (SVD) 
technique with the Hilbert algorithm. First, the signal 
was denoised by SVD and the original signal was 
reconstructed; then, the phase difference was calcu-
lated by the trigonometric function of the recon-
structed signal and its Hilbert transform. Shen et al. 
(2017) proposed a new Coriolis flowmeter method to 
estimate the phase difference based on the correlation 
and Hilbert transform, and this method decreases the 
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influence of non-integral sampling and makes the 
algorithm more universal. 

Romano (1990) used DTFT for signal pro-
cessing of Coriolis mass flowmeters. Li Y et al. (2010) 
combined various filters with a negative frequency 
modified recursive algorithm to process signals of the 
Coriolis flowmeter. Shen et al. (2015) adopted the 
idea of sliding recursion based on the traditional 
DTFT algorithm, taking the influence of negative 
frequency components into account. However, due to 
the limitation of experimental conditions, the real- 
time phase difference and time difference were not 
obtained. The measured time difference was obtained 
according to the performance curve of the flowmeter. 

Zhang et al. (2017) estimated the accuracy of 
measuring mass flow with a 15% density drop by 
simulation without real-time experimental calibration. 

In summary, many scholars have proposed var-
ious converter designs and digital signal processing 
methods to address the converter and signal pro-
cessing of Coriolis mass flowmeters. They have 
compared and analyzed the signal processing meth-
ods. However, their results have not been evaluated or 
optimized according to the performance of the algo-
rithm under actual working conditions, and whether 
the optimal signal processing algorithm among these 
methods is suitable for different gas volume fraction 
(GVF) conditions has not been determined through 
experimental results under the actual gas-liquid 
two-phase flow condition. To enhance the on-site 
measurement performance of Coriolis mass flowme-
ters, experiments under actual working conditions 
need to be done. 

Based on the previous achievements of our re-
search (Liu et al., 2018), we analyze three popular 
signal processing methods: QD, discrete Fourier 
transform (DFT), and Hilbert transform. We improve 
the DFT algorithm in our study. Calculation and re-
dundancy of the DFT are greatly reduced using the 
actual frequency from PLL. Dropout and finite im-
pulse response (FIR) are implemented in the Hilbert 
transform, which eliminates the effects of the end-
point and improves its accuracy. In addition, we cal-
ibrate the QD and Hilbert algorithms under single- 
and two-phase flow conditions. None of these has 
ever been done in previous research. The all-digital 
Coriolis flowmeter converter is designed based on a 
digital signal processor (DSP), and the improved 
methods are implemented on the converter. Various 
aspects of the improved signal processing methods 

are evaluated, such as measurement accuracy and 
complexity. 

 
 

2  Algorithm improvement and analysis 

2.1  Simulated signals 

The random walk model (Li M and Henry, 2016) 
is used in the simulation to generate time-varying 
sensor signals with randomly varying frequency, 
amplitude, and phase difference: 
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where s1(n) and s2(n) are the simulated sensor signals, 
A(n) the amplitude, f(n) the frequency, and φ(n) the 
phase difference. e1(n), e2(n), eA(n), ef (n), and eφ(n) 
are white noise without correlation between each 
other. Meanwhile, 

1
,eσ  

2
,eσ  σA, σf, and σφ are the 

coefficients generated by multiplying the walk am-
plitudes and walk factors for the random noise. The 
initial apparent density drop values of 15% and 50% 
under the two-phase flow condition are 
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2.2  Quadrature demodulation 

QD is a widely used technique to track the phase 
difference between two signals (Mehendale, 2008; 
Röck and Koschmieder, 2009; Kunze et al., 2014; 
Svete et al., 2015). It was also applied on the two- 
phase flow condition (Kunze et al., 2014). 
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Because filter design plays an important role in 
the accuracy of QD, in this study, we improve this 
method by further optimizing the filter structure and 
parameters. Considering the computational complex-
ity and real-time performance of DSP, the infinite 
impulse response (IIR) digital filter is chosen for the 
low-pass filtering of the QD algorithm. 

When the filter is in the kth sampling, the input is 
u(k) and output is y(k). Then the filter calculates its 
output according to Eq. (4): 

 
y(k)=LPAy(k−1)+LPBu(k),                 (4) 

 
where LPA and LPB are two coefficients of the filter, 
and y(k−1) is the sample output at the (k−1)th sam-
pling. LPA and LPB can be calculated as 
 

LPA=fs/(fs+2πfc),                        (5) 
LPB=1−LPA,                              (6) 

 
where fs is the sampling frequency of the signal and fc 
the cut-off frequency of the filter. When the signal 
with frequency higher than fc passes through the filter, 
the signal amplitude greatly decreases and the signal 
with lower frequency maintains a certain amplitude. 

fc affects the computation accuracy of the algo-
rithm. When fc is high, the filter delay is relatively low, 
the filter output is sensitive to the noise, and the cor-
responding phase difference fluctuates. When fc is 
low, the filter delay becomes large, the filter output is 
relatively stable, and the fluctuation of the phase 
difference can be dramatically reduced. MATLAB is 
used to simulate the QD method with different low- 
pass filter parameters under single- and two-phase 
flow conditions. Then, we evaluate their perfor-
mances and select the low-pass filter with the best 
parameters. 

The above-mentioned QD method needs to filter 
the original signal of double frequency and reserve 
the DC signal. Eqs. (7) and (8) show the process: 
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Two filter schemes, which are composed of six 
independent IIR low-pass filters, are compared in the 
test. For the convenience of description, they are 
numbered LP1–LP6. The first four filters, LP1–LP4, 
have the same coefficient. Their cut-off frequency is 
fc1=0.5f1 (Here, f1 is the frequency of the sensor sig-
nal). The cut-off frequency of filters LP5 and LP6 in 
scheme 1 is fc2=0.005f1, and the cut-off frequency of 
filters LP5 and LP6 in scheme 2 is fc2′=0.45f1. 

The random walk model (Röck and 
Koschmieder, 2009) is used to simulate time-varying 
sensor signals under single- and two-phase flow 
conditions. The sampling frequency fs is 16 000 Hz. 
The number of sampled points is 80 000. The accu-
racy of the QD algorithm using two filtering schemes 
is evaluated by the root mean square error (RMSE): 
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where ˆ

iX  is the calculated phase difference, Xi the 
true value of the phase difference, and n the total 
number of calculation times. Accuracy of QD calcu-
lations is shown in Table 1. 
 
 
 
 
 
 
 

 
Compared with scheme 2, a lower cut-off fre-

quency is implemented in scheme 1. Under single- 
and two-phase flow conditions, the RMSE of the 
phase difference results is smaller and the accuracy is 
higher. Thus, the parameters in scheme 1 are adopted 
for further experiments. 

2.3  Hilbert transform 

The method based on the Hilbert transform has 
been applied in Coriolis signal processing (Yokoi and 
Owada, 1996). For the endpoint effect phenomenon, 
the “dropout” method is adopted to discard the data at 
the endpoints on both sides of the signal; only the 
middle part is reserved for the calculation of the 
subsequent phase difference (Yang JW and Jia, 2006). 
For the original signal and the signal after the Hilbert 

Table 1 Accuracy of quadrature demodulation  
calculations 

Condition RMSE (°) 
Scheme 1 Scheme 2 

Single-phase flow 8.1520×10−5 7.9288×10−4 
Two-phase flow 7.5648×10−3 2.1886×10−2 
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transform, the first 1/8 and the last 1/8 sampling 
points in a cycle are discarded, and the middle 3/4 
sampling points are reserved for subsequent phase 
difference calculation. The random walk model is 
used to create signals of single- and two-phase flow in 
MATLAB. The signal-to-noise ratio (SNR) is set to 
57 dB. Table 2 shows the RMSE values of the phase 
difference calculated using the Hilbert algorithm 
without or with dropout under single- and two- 
phase flow conditions. 

 
 
 
 

 

 
 
 
From the above results, the algorithm under the 

two-phase flow condition is much more influenced by 
the endpoint effect than under the single-phase flow 
condition due to the large fluctuation of the signal 
frequency and amplitude. The dropout technique can 
significantly weaken the influence of the endpoint 
effect on the results under the two-phase flow condi-
tion and improve the accuracy of the algorithm. 

In addition, the Hilbert algorithm is more sensi-
tive to noise. In the process of algorithm implemen-
tation, SNR significantly influences algorithm accu-
racy. In this study, the FIR sliding average filtering 
method is adopted in the Hilbert algorithm to improve 
accuracy. 

The FIR moving average filter is the most 
commonly used filter in the time domain (Fan, 1995), 
and is optimal for suppressing random noise and 
preserving steep edges. Random noise causes erro-
neous measurement results. By means of multipoint 
aggregation and averaging, which can eliminate the 
influence of random noise to a maximum extent, 
reasonable data is obtained. The FIR moving average 
filter is expressed as 
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FIR performs filtering by convolving the input 

signal with a rectangular pulse. The larger the length 
of the moving average filter, the better the suppres-
sion performance of the random noise. The FIR slid-

ing filter is applied after the Hilbert algorithm. The 
phase difference calculated by the algorithm is subject 
to moving average filtering. We change the length of 
the FIR filter and investigate the filtering effect of the 
FIR sliding average filter on the phase difference of 
the Hilbert algorithm. 

The random walk model is used to create signals 
of single- and two-phase flow. The dropout technique 
is applied to the algorithm, and the 1/8 data of the 
front and rear endpoints is discarded. The ability to 
calculate the phase difference using the Hilbert algo-
rithm with different FIR filter lengths is evaluated. 
FIR filter lengths are set to 1, 10, 100, and 1000. SNR 
is 57 dB. Figs. 1 and 2 show the phase difference 
results using the Hilbert algorithm with different FIR 
filter lengths under single- and two-phase flow con-
ditions, respectively. 

Tables 3 and 4 show the RMSE of the phase 
difference calculated by the Hilbert algorithm using 
FIR filters of different lengths under single- and 
two-phase flow conditions, respectively. It can be 
seen from the results that with the increase of the FIR 
filter length, the RMSE of the phase difference cal-
culated by the Hilbert algorithm decreases. We can 
improve the accuracy of the algorithm by increasing 
the length of the FIR filter appropriately while 
meeting real-time requirements. 

 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 

 

2.4  Discrete Fourier transform 

Romano (1990) introduced DFT into Coriolis 
signal processing. In recent years, many scholars have 
studied the DFT method and proposed different  

Table 2  Accuracy of the Hilbert algorithm with or without 
dropout 

Condition 
RMSE (°) 

Single-phase flow Two-phase flow 
Without dropout 8.0721×10−2 1.8733×10−1 

With dropout 8.0329×10−2 8.0580×10−2 
 

Table 3  Accuracy of the Hilbert algorithm with different 
FIR filter lengths under the single-phase flow condition 

Length of the FIR filter RMSE (°) 
1 8.0174×10−2 
10 3.5353×10−2 

100 1.1654×10−2 
1000 3.5354×10−3 

 
Table 4  Accuracy of the Hilbert algorithm with different 
FIR filter lengths under the two-phase flow condition 

Length of the FIR filter RMSE (°) 
1 8.1210×10−2 
10 3.5567×10−2 

100 1.1221×10−2 
1000 5.1398×10−3 
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Fig. 1  Results of the Hilbert algorithm with the FIR filter lengths of 1 (a), 10 (b), 100 (c), and 1000 (d) under the single- 
phase flow condition (References to color refer to the online version of this figure) 
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Fig. 2  Results of the Hilbert algorithm with the FIR filter lengths of 1 (a), 10 (b), 100 (c), and 1000 (d) under the two- 
phase flow condition (References to color refer to the online version of this figure) 
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measures to improve the DFT method, such as sliding 
DFT, recursive DTFT, and recursive sliding DTFT 
(SDTFT) (Tu and Zhang, 2008; Zhang et al., 2017). 

The signal frequency is calculated by DFT, while 
the phase of the signal is obtained in the location of 
the maximum spectrum lines. The phase difference 
can be calculated by subtracting the phase of two 
signals. 

This method is efficient in operation and resists 
the harmonic interference well. However, it needs 
integral period sampling and has a higher computa-
tional cost, which limits its practicality. When the 
sample sequence is not an integer multiple of the 
signal period, the spectral leakage problem results in 
phase difference errors (Tu and Zhang, 2008). 

In this study, the traditional DFT is improved and 
the SDTFT which can greatly reduce the computa-
tional load of the algorithm is obtained. The tradi-
tional DFT is expressed as follows: 
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where k=0, 1, …, N−1. 

DFT is actually the correlation between the 
original signal and the sine and cosine signals of fre-
quency kfs/N, where k=0, 1, …, N−1. When k is a 
certain value, kfs/N is closest to the signal frequency at 
which the signal obtains its peak value. The traditional 
DFT method uses the DFT value Sk at the frequency of 
kfs/N to obtain the signal phase information. In the 
SDTFT algorithm designed in this study, the real 
frequency of the signal is substituted for kfs/N, and the 
real frequency of the signal is obtained by the PLL of 
the driving part. Therefore, SDTFT is expressed as 
follows: 
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where f is the signal frequency obtained from the PLL, 
fs the sampling frequency, and Sf the value after DFT 
of the signal at frequency f. When calculating the 
above formula, the length of the Fourier transform 
sequence is set to 4000, and the sliding method is used 
to update the DFT value every time a new sample 
point s(n) is acquired. When n≤4000, the value of the 
new DFT is 
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where Sf,n−1 is the value of the DFT at the last sampling 
point. When n>4000, DFT can be expressed as  
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s s

s s

2π 2π ( 4000)( 4000) cos sin

2π 2π( ) cos sin .

f n f nS S

fn f ns n i
f f

fn fns n i
f f

−=

    −
− − −    

     
    

+ −    
     

(15) 

Thus, the phase of the original signal is 

( )arg( ) atan 2(Im( ),Re( )) ,f f fS S S=         (16) 

 
where Im refers to the imaginary part of a complex 
number, and it forms a complex number with the real part 
referred to as Re. 

The phase difference can be obtained by sub-
tracting the phase of two signals. The SDTFT de-
signed in this study obtains the real frequency of the 
signal through the PLL, to directly calculate the DFT 
at the real frequency of the signal. Furthermore, the 
calculation cost of the traditional DFT algorithm is 
greatly reduced by adopting the sliding method. 
 
 
3  Comparison of algorithms 
 

To verify the anti-noise performance of SDTFT, 
we compare the SDTFT algorithm with the QD and 
Hilbert algorithms. The random walk model is used to 
establish the sensor signal under the single-phase 
flow condition, and the random noise (white noise) of 
different SNRs is added to the signal to evaluate the 
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accuracy of the phase difference between these three 
algorithms. As shown in Fig. 3, the SNRs of the sig-
nals are set to 37, 57, and 77 dB. The three algorithms 
are evaluated in these three cases because SNR values 
can reflect the real situation to a great extent. Table 5 
shows the RMSE of the phase difference results. 

According to Fig. 3 and Table 5, the QD and 
Hilbert algorithms are more sensitive to noise. As the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SNR decreases, the accuracy of the QD and Hilbert 
algorithms decreases by 1–2 orders of magnitude. The 
accuracy of the SDTFT algorithm is almost  
unaffected by the SNR. It has good anti-noise  
performance. 

Under the single-phase flow condition, the fre-
quency and amplitude of signals are relatively stable. 
The SDTFT algorithm has a small error and high  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3  Results of the QD, SDTFT, and Hilbert algorithms with different signal-to-noise ratios (SNRs) under the single- 

phase flow condition: (a) SNR=37 dB; (b) SNR=57 dB; (c) SNR=77 dB 
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precision. Under the two-phase flow condition, the 
frequency and amplitude of signals fluctuate greatly. 
To evaluate the accuracy of the SDTFT algorithm 
under the two-phase flow condition, the random walk 
model is used to establish the sensor signals under 
single- and two-phase flow conditions. We set the 
sampling frequency fs to 1000 Hz, the number of 
sampling points N to 80 000, and SNR to 57 dB. 
Figs. 4 and 5 show the phase difference results of the 
three algorithms under single- and two-phase flow 
conditions, respectively. Table 6 shows the RMSE of 
the calculation results. Table 7 shows the computation 
time results of these three algorithms. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 
 

From Table 7, the computation time of the QD 
algorithm is the shortest, while that of the Hilbert 
algorithm is the longest. From the point of view of 
accuracy, under the single-phase flow condition, all 
these three algorithms can track the phase difference 
of the calculated signals. RMSEs of the QD and 
Hilbert algorithms are slightly larger than that of the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Indication error of the phase difference obtained 
using the three algorithms 

Algorithm RMSE (°) 
SNR=37 dB 57 dB 77 dB 

QD 2.2137×10−2 2.4907×10−3 1.4036×10−3 
SDTFT 8.1123×10−4 7.4495×10−4 8.3253×10−4 
Hilbert 2.1360×10−2 2.1257×10−3 8.0486×10−4 

 

Table 6  Errors of the three algorithms in phase difference 
calculation 

Algorithm RMSE (°) 
Single-phase flow Two-phase flow 

QD 2.6553×10−3 1.0713×10−2 
SDTFT 7.7421×10−4 2.1986×10−1 
Hilbert 2.1798×10−3 6.8203×10−3 

 
Table 7  Computation time of the three algorithms 

Algorithm Computation time (s) 
QD 0.296 844 

SDTFT 0.417 790 
Hilbert 1.520 965 

 

Fig. 4  Phase difference results obtained using the QD (a), SDTFT (b), and Hilbert (c) algorithms under the single-phase 
flow condition (References to color refer to the online version of this figure) 
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Fig. 5  Phase difference results obtained using the QD (a), SDTFT (b), and Hilbert (c) algorithms under the two-phase 
flow condition (References to color refer to the online version of this figure) 
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SDTFT algorithm. Under the two-phase flow 
condition, the accuracies of the QD and Hilbert 
algorithms are reduced, and the phase difference can 
be tracked. However, the SDTFT algorithm cannot 
track the phase difference due to the large frequency 
fluctuation under the two-phase flow condition. 

 
 

4  Experimental verification 

4.1  Converter design 

Algorithms were implemented on an embedded 
platform. The converter system implemented three 
major functions, i.e., digital driving, digital signal 
processing, and universal serial bus (USB) commu-
nication. One button was used to select whether to 
implement the QD algorithm or not. The software 
system is shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
A digital driving method was implemented to 

drive the flow tube of the Coriolis flowmeter. The 
selected algorithm was executed to calculate the 
amplitude and phase, and the frequency and 
amplitude of the driving signal were controlled. The 

amplitude of the driving signal was adjusted through a 
proportion integration (PI) controller so that the flow 
tube vibrated at the set amplitude. The frequency 
control was based on the PLL. The PI controller was 
used to continuously adjust the frequency of the 
driving signal, which makes the phase difference 
between the sensor signal and the driving signal be 
zero. The reconstructed driving signal was output to 
the driver through the DA to actuate the oscillation of 
the flow tubes. These two algorithms were robust to 
frequency fluctuation and could track phase 
difference changes under the two-phase flow 
condition. Because the SDTFT algorithm is sensitive 
to frequency fluctuation, it was not adopted. The USB 
communication protocol was used to transmit 
information with the host computer. At the same time, 
this part can accept control commands and parameter 
modification from the host computer. 

4.2  Experimental results 

The digital driving method was experimentally 
verified under single- and two-phase flow conditions. 
The static start-stop gravitational method was used on 
the water flow rig to undertake calibration and testing 
based on the QD and Hilbert algorithms under single- 
and two-phase flow conditions. 

4.2.1 Experiments under the single-phase flow  
condition 

To verify the universality of the designed con-
verter driving system, two different Coriolis mass 
flowmeter sensors were tested. The first sensor had 
twin bent tubes with an 8-mm inner diameter and the 
second sensor had twin bent tubes with a 25-mm inner 
diameter. Experiments were completed on the water 
flow rig (Fig. 7). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Software system of the Coriolis mass flowmeter  
converter  
AD: analog-to-digital; QD: quadrature demodulation;  
DA: digital-to-analog; IIR: infinite impulse response;  
PI: proportion integration; USB: universal serial bus 

Start
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Fig. 7  A photo of the water flow rig 
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A start-stop method was adopted in our experi-
ments. The standard calibration rig can achieve an 
expanded uncertainty of 0.03% (k=2). The gas 
flowmeter used in the experiments was an Alicat M 
series digital mass flowmeter (20-1-00-0-1000-600- 
KM2022, Alicat, USA) with a maximum flow rate of 
600 mL/min. The maximum accuracy was 0.4% and 
repeatability was 0.2%. We took the value of the 
weighing scale as a reference and compared it with 
the accumulated flow obtained by the prototype 
converter using a digital signal processing (DSP). 
Each flow point was measured three times. Fluid 
density, driving signal frequency, driving signal am-
plitude, amplitude of the sensor signal, frequency of 
the sensor signal, and sensor signal phase information 
were obtained in a DSP. This information was up-
loaded to the personal computer (PC); the prototype 
converter could accept instruction from the PC and 
change the parameter at the same time. 

The host computer collected the frequency and 
amplitude of the driving signal and the amplitude and 
phase information of the two signals from the sensors. 
Tables 8 and 9 show the average experimental data of 
two different sensors in 20 s under the single-phase 
flow condition. Among them, the 100% full-scale 
driving signal amplitude corresponded to a 1.3-V 
voltage, and the 100% full-scale sensor signal corre-
sponded to a 212-mV voltage (150 mV RMS). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The phase value in Tables 8 and 9 is the average 
of the phase values from sensors A and B. This data 
was used as the input of the PI controlled phase for 
driving the module’s PLL. In Table 8, for the 8-mm 
twin bent tubes, the repeatability of the converter 
driving process to frequency control was 0.000 75%. 
The sensor amplitude set value was about 40%, and 
the values of the repeatability of the amplitude control 
from two sensors were 0.149 72% and 0.107 00%. 
The average value of the PLL for the phase was 
0.001 324 55° (set value was 0°), and the standard 
deviation was 0.027 55°. In Table 9, for the 25-mm 
twin bent tubes, the repeatability of the converter 
driving process to frequency control was 0.000 29%. 
The program amplitude set value was about 80%, and 
the values of the repeatability of amplitude control 
from two sensors were 0.021 98% and 0.020 18%. 
The average value of the PLL for the phase was 
0.000 022 45° (set value was 0°), and the standard 
deviation was 0.010 53°. 

4.2.2 Experiments under the two-phase flow  
condition 

To evaluate the driving effect of the designed 
digital drive system under the two-phase flow condi-
tion, experiments under the gas-liquid two-phase flow 
condition were carried out on the water flow rig. In 
the experiments, 8-mm twin bent tubes were  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8  Driving system data from twin bent tubes with 8-mm inner diameter under the single-phase flow condition 

Parameter Average Standard deviation Repeatability (%) 
Frequency of the driving signal (Hz) 205.554 271 7 0.001 55 0.000 75 
Amplitude of the driving signal (%) 13.579 787 2 0.036 29 0.267 24 
Amplitude of sensor A (%) 40.008 890 7 0.059 90 0.149 72 
Phase of sensor A (°) −0.106 780 75 0.027 68  
Amplitude of sensor B (%) 38.130 017 95 0.040 80 0.107 00 
Phase of sensor B (°) 0.109 429 85 0.027 83  
Phase (°) 0.001 324 55 0.027 55  

 
Table 9  Driving system data from twin bent tubes with 25-mm inner diameter under the single-phase flow condition 

Parameter Average Standard deviation Repeatability (%) 
Frequency of driving signal (Hz) 234.512 568 0.000 69 0.000 29 
Amplitude of driving signal (%) 16.833 420 15 0.011 06 0.065 70 
Amplitude of sensor A (%) 79.396 604 65 0.017 45 0.021 98 
Phase of sensor A (°) 0.165 793 0.011 09  
Amplitude of sensor B (%) 79.990 237 45 0.016 14 0.020 18 
Phase of sensor B (°) −0.165 748 1 0.010 50  

Phase (°) 0.000 022 45 0.010 53  
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connected to the fluid pipeline, and gas-liquid two- 
phase flow with a GVF of about 20% was constructed 
by a constant gas source. The data was recorded by 
the host computer. Fig. 8 shows the fluctuation of the 
driving signal frequency under the two-phase flow 
condition, and Fig. 9 shows the amplitude of the 
sensor signal under the two-phase flow condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It can be seen from Table 8 that the twin bent 
tubes with an 8-mm inner diameter had a resonance 
frequency of 205.554 271 7 Hz under the single-phase 
flow condition. Fig. 8 shows the signal drive fre-
quency fluctuation under the two-phase flow condi-
tion with a GVF of about 20%. The range was from 
205 to 213 Hz. It basically conformed to the fluctua-
tion of the resonance frequency under the two-phase 
flow condition. 

Fig. 9 shows the sensor signal amplitude infor-
mation under the two-phase flow condition. The am-
plitude was set to 40%. The amplitude of the sensor 
signal fluctuated between 20% and 43%, which ba-
sically conformed to the fluctuation of the signal 
amplitude of the Coriolis mass flowmeter under the 
two-phase flow condition. Under the two-phase flow 
condition, the converter designed in the study can 

drive the sensor to vibrate continuously. 
Experiments were carried out on the unimproved 

Hilbert algorithm. Twin bent tubes with an 8-mm 
inner diameter were used as the primary instrument, 
which can measure a maximum flow point of 
1000 kg/h. Under the single-phase flow condition, the 
Hilbert algorithm was verified on the water flow rig 
(Fig. 7) via the static start-stop method. Four kinds of 
flow points were selected for calibration, i.e., 160, 
250, 420, and 600 kg/h. Each kind of flow point was 
measured three times. 

Table 10 shows the calibration results of the 
unimproved and improved Hilbert algorithms under 
the single-phase flow condition. It can be seen from 
Table 10 that the unimproved Hilbert algorithm had 
larger errors and poorer repeatability. After adding the 
“dropout” technique and combining the FIR filter to 
improve the accuracy, the indication error was re-
duced and repeatability was significantly improved. 

Another experiment was implemented based on 
the QD algorithm and the improved Hilbert algorithm. 
Experimental calibrations for single-phase flow and 
gas-water two-phase flow were carried out. The flow 
points were the same as in Table 10. Table 11 presents 
the calibration results of the QD and Hilbert algo-
rithms under the single-phase flow condition. 

The two-phase flow condition was created by 
adding gas to the pipe. Experiments under the two- 
phase flow condition were performed, and a constant 
gas source was added to the pipe at a gas flow rate of 
600 mL/min. Table 12 shows the calibration results of 
the QD and Hilbert algorithms under the two-phase 
flow condition. 

Under the single-phase flow condition, the 
indication error of the QD algorithm was smaller than 
that of the Hilbert algorithm at four kinds of flow 
points, and the repeatibility was smaller than that of 
the Hilbert algorithm at most flow points. Host 
computer real-time data showed that the zero-point 
stability of the QD algorithm was better than that of 
the Hilbert algorithm. We can conclude that the QD 
algorithm is more robust under the single-phase flow 
condition. 

Under the two-phase flow condition, due to the 
mixing of gas and liquid, the fluid density fluctuated, 
and the signal frequency and amplitude fluctuated 
wildly. Under a constant gas flow rate, as the flow rate 
of the liquid flow decreased, the GVF increased and  

Fig. 8  Frequency of the driving signal under the two- 
phase flow condition 
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the indication errors of both algorithms increased. 
Only at the 600 kg/h flow point, were the indication 
error and repeatability of the Hilbert algorithm both 
smaller than the counterparts of the QD algorithm. 
When the gas content was large at the other three 
kinds of flow points, the error of the QD algorithm 
was smaller than that of the Hilbert algorithm, and the 
repeatability was larger than that of the Hilbert 
algorithm. 
 
 
5  Conclusions 

 
In this study, we have made improvements in the 

original Hilbert and DTFT algorithms and evaluated 
their performances on an embedded platform. 
Experiments have been carried out under single- and 
two-phase flow conditions to determine which 
algorithm has the smaller indication error. 

The flow test results showed that the improved 
Hilbert algorithm can reduce the measurement error 
and improve repeatability. In the comparison 
experiment between the QD algorithm and the 
improved Hilbert algorithm, under the single-phase  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
flow condition, the indication error of the QD 
algorithm was smaller than that of the Hilbert 
algorithm at four flow rates, and the repeatability was 
also smaller. Under the two-phase flow condition, the 
indication error of the QD algorithm was slightly 
smaller than that of the Hilbert algorithm at low flow 
rates, but the indication error of the Hilbert algorithm 
was smaller than that of the QD algorithm at the 
highest flow rate. A high-performance low-pass filter 
has been designed to improve the accuracy of the QD 
algorithm. The traditional DFT algorithm has been 
improved to greatly reduce the computational 
requirements and algorithm redundancy. The 
improved Hilbert algorithm reduced the influence of 
the endpoint effect of the algorithm, and the 
performances (accuracy and repeatability) were 
greatly improved compared with the unimproved 
algorithm. 

Further research on signal processing methods is 
needed to provide diagnostic information to guarantee 
high accuracy of Coriolis mass flowmeters under 
complex field conditions. For example, an additional 
frequency can be excited to provide useful diagnostic 
parameters. 

Table 10  Hilbert algorithm experimental calibration results 

Flow point (kg/h) 
Indication error (%) Repeatability (%) 

Unimproved Hilbert Improved Hilbert Unimproved Hilbert Improved Hilbert 
160 0.950 0.302 0.666 0.130 
250 –0.045 –0.138 0.810 0.180 
420 0.177 –0.085 0.370 0.085 
600 –1.364 –0.080 0.082 0.023 

 
Table 11  Experimental calibration results under the single-phase flow condition 

Flow point (kg/h) 
Indication error (%) Repeatability (%) 

QD Hilbert QD Hilbert 
160 0.111 0.302 0.049 0.130 
250 –0.031 –0.138 0.139 0.180 
420 –0.015 –0.085 0.066 0.085 
600 –0.065 –0.080 0.038 0.023 

 
Table 12  Experimental calibration results under the two-phase flow condition 

Flow point (kg/h) GVF (%) 
Indication error (%) Repeatability (%) 

QD Hilbert QD Hilbert 
160 22.5 –6.228 –6.418 0.110 1.436 
250 14.4 –3.917 –5.046 0.523 0.723 
420 8.6 –2.102 –2.128 0.230 1.355 
600 6.0 –1.820 –0.827 0.840 0.549 

GVF: gas volume fraction 
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