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Abstract: An artificial intelligence enhanced star identification algorithm is proposed for star trackers in lost-in-
space mode. A convolutional neural network model based on Vgg16 is used in the artificial intelligence algorithm to
classify star images. The training dataset is constructed to achieve the networks’ optimal performance. Simulation
results show that the proposed algorithm is highly robust to many kinds of noise, including position noise, magnitude
noise, false stars, and the tracker’s angular velocity. With a deep convolutional neural network, the identification
accuracy is maintained at 96% despite noise and interruptions, which is a significant improvement to traditional
pyramid and grid algorithms.

Key words: Star tracker; Lost-in-space; Star identification; Convolutional neural network
https://doi.org/10.1631/FITEE.1900590 CLC number: V447

1 Introduction

As a kind of high-precision attitude determina-
tion instrument, star trackers are widely used in both
orbiting and interplanetary spacecraft. Star trackers
perform attitude determination by identifying stars
in the field of view (FOV). Typically, a star tracker
has two working modes, i.e., lost-in-space (LIS) mode
and tracking mode. When prior knowledge of at-
titude information is unavailable, the star tracker
operates in the LIS mode. In this case, a full-sky
star identification algorithm (Spratling and Mortari,
2009) is required. Once the initial attitude has been
determined, the star tracker switches to the tracking
mode. In this case, the previously obtained infor-
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mation will be used to predict the current attitude
so that the identification process is much easier than
that in the LIS mode. Thus, a reliable LIS star iden-
tification algorithm becomes the major problem to
be solved to obtain attitude information from a star
tracker.

Many star identification algorithms have been
developed in the last 40 years to solve the
full-sky star identification problem. The exist-
ing full-sky autonomous star identification algo-
rithms can be divided roughly into two categories
(Padgett and Kreutz-Delgado, 1997). The first kind
tends to approach star identification as an instance
of subgraph isomorphism. In this case, features
used for star identification would be the angular
separations. The most representative algorithm is
the triangle algorithm (Liebe, 1992). The original
triangle algorithm is sensitive to focal plane noise
and false stars. To improve robustness and reduce

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1900590&domain=pdf


1662 Wang et al. / Front Inform Technol Electron Eng 2020 21(11):1661-1670

identification time, the pyramid algorithm has been
introduced (Mortari et al., 2004). This uses at least
four stars for pattern creation and the k-vector
search technique. However, focal plane noise still
affects the performance of the pyramid algorithm.
Another algorithm identifies stars by planar triangles
along with their area and polar moment to match a
catalog of triangles (Cole and Crassidis, 2006). This
approach has been expanded using polygons formed
by neighboring stars (Hernández et al., 2017). This
algorithm is highly robust to focal plane noise, but
is sensitive to false stars. Schiattarella et al. (2017)
designed a multi-pole algorithm to deal with false
objects. The results showed that the identification
accuracy can reach 100% considering a large number
of false objects. The multi-pole algorithm is robust
to moderate angular velocities. For most algorithms,
the validation step takes a lot of time because of the
need for many lookups, and may fail when the num-
ber of star points is not large enough. Focusing on
this problem, Wang et al. (2019) proposed a two-step
validation algorithm.

The second kind tends to treat star tracking
as a pattern identification problem. In this case,
each star is associated with a unique pattern deter-
mined by its neighboring stars. The initial algorithm
is the grid algorithm (Padgett and Kreutz-Delgado,
1997). Compared with triangle algorithms, the grid
algorithm is less sensitive to focal plane noise and
is less time consuming. Some modified grid al-
gorithms (Na et al., 2009; Aghaei and Moghaddam,
2016) have been developed to better mitigate star
position deviation and magnitude noise. However,
because of the need to find the reference star’s closest
neighboring star to generate a star pattern, magni-
tude noise and false stars may cause grid algorithms
to fail to identify the closest neighboring star. A
radial and cyclic algorithm (Zhang GJ et al., 2008)
has been developed to deal with false stars, but this
algorithm is sensitive to magnitude noise. A modi-
fied radial and cyclic algorithm (Wei et al., 2019) has
been proposed to solve this problem. Besides the
morphological feature, the singular value of star vec-
tors can be used as the unique feature. Juang et al.
(2003) proposed an original singular value decom-
position algorithm. However, this algorithm is also
sensitive to star magnitude. Sun et al. (2017) pro-
posed a modified algorithm based on the singular
value to solve this problem. To improve the per-

formance of the singular value decomposition algo-
rithm in dynamic conditions, Kim and Bang (2020)
proposed a new singular value algorithm. For day-
time star tracking, Roshanian et al. (2016) proposed
a robust star identification algorithm using a Eu-
clidean distance transform of images. Some algo-
rithms based on different star pattern identification
techniques have been proposed (Mehta et al., 2018;
Samirbhai et al., 2019).

Researchers have proposed some other meth-
ods, such as the multi-purpose panoramic camera
based algorithm (Opromolla et al., 2017), adaptive
ant colony algorithm (Quan and Fang, 2010), and ar-
tificial intelligence algorithm (Hong and Dickerson,
2000; Roberts and Walker, 2005; Jing and Liang,
2012), to deal with star tracking issues. A neu-
ral network and fuzzy logic have been proposed to
identify stars in Hong and Dickerson (2000). They
used a reference star and its two brightest neighbors
to form a triplet, ordered the triplet based on star
brightness, and fed it into a neural network. Simula-
tion results were obtained with the star identification
accuracy higher than 95%, even when the magnitude
error was as high as 0.5 arc-seconds and the angular
separation error as high as 121.4 arc-seconds. How-
ever, this method does not take false stars into ac-
count, and this can cause the triplet to be changed.
A method based on the counter propagation neural
network (Roberts and Walker, 2005) has been pro-
posed. Test results showed that the identification
accuracy achieved was over 97% when the star posi-
tion error in the ascension and declination was up to
0.025◦. However, this method does not consider the
influence of the magnitude error and false stars. A
neural network has been used to improve the identifi-
cation accuracy in Jing and Liang (2012). It had an
identification accuracy over 95% when the position
deviation was one pixel. However, false stars are not
taken into consideration either.

Generally, in these traditional neural network
methods, the star tracking problem is treated as a
pattern identification problem. The distance vec-
tors or angular separation between reference stars
and their neighbor stars are used to identify refer-
ence stars. This means that patterns must be made
beforehand. In general, the more the patterns, the
higher the accuracy. Unfortunately, too many pat-
terns can lead to a large computational load in net-
work training. Thus, these methods may not be
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applicable to a practical mission. Furthermore, it is
difficult for these approaches to achieve good iden-
tification when there are false stars, because false
stars will change the distance vectors or angular
separation with the reference stars. Recent ad-
vances in convolution neural networks (CNNs) pro-
vide an alternative approach (Cheng et al.,, 2018;
Zhang QS and Zhu, 2018). It has been shown that
CNN performs much better than other neural net-
works in machine vision circumstances. CNNs have
brought a revolution in computer vision, and become
the dominant approach for almost all recognition and
detection tasks (LeCun et al., 2015). Considering
that star tracking identification can be treated as a
machine vision problem, CNN is used to solve the
star identification problem. With the help of deep
learning, the neuron number and computational cost
in network training are reduced dramatically. This
means that this method could be used for practi-
cal space missions. The key to star identification is
to extract informative features or patterns from the
noisy background.

In this study, a new LIS star identification algo-
rithm based on deep convolutional neural networks
(DCNNs) is proposed. The main idea is to use a
DCNN to classify the chosen reference stars in the
star image. To make the network robust to magni-
tude uncertainty, false stars, and position deviation,
a training dataset is constructed through several
ways of data augmentation. Simulation results are
presented to show the advantages of this approach.

2 Star identification algorithm based
on deep convolution neural networks

The star identification algorithm is composed of
a training dataset and a DCNN. The training dataset
must be constructed beforehand to make any identi-
fication possible.

2.1 Generation of the training dataset

2.1.1 Guide star catalog

The Smithsonian Astrophysical Observatory
(SAO) star catalog is chosen as the basic star cat-
alog. FOV of the camera is set to 12◦ × 12◦, and the
highest visual magnitude detected by the star tracker
is set to 6.0 Mv. Guide stars are selected according
to the following rules:

1. The magnitude of the guide star should be
less than 6.0 Mv.

2. The guide star should have at least five
neighboring stars to ensure high precision for star
tracking.

3. At least one of the five closest neighboring
stars should be brighter than 5.7 Mv.

Based on these rules, a guide star catalog con-
taining 4897 stars is obtained. The star distribution
of the catalog is shown in Fig. 1. Then, a training
dataset is constructed.
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Fig. 1 Distribution of guide stars

2.1.2 Training dataset

The key to constructing a training dataset is
to make sure that the distributions of the training
dataset and real dataset are as similar as possible.
The training dataset contains image samples and the
corresponding guide star’s ID. The grid algorithm
(Padgett and Kreutz-Delgado, 1997) is used in the
construction of the training dataset.

Step 1: Select a guide star as the reference star
S. Then, a small region is defined by circles with
radii pr and br around the reference star. This region
is denoted by sky(br, pr).

Step 2: Five closest stars from S inside sky(br,
pr) are considered as adjacent stars Ai (i =

1, 2, . . . , 5). For most stars, the magnitude devia-
tion is always lower than 0.3 Mv (Kruzhilov, 2012).
Thus, there will be at least one adjacent star for ev-
ery guide star chosen according to the third guide
star selection rule.

Step 3: Each adjacent star is chosen as the orien-
tation star, and the image is rotated until the orien-
tation star lies on the horizontal axis (Fig. 2). Curves
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with arrow in Fig. 2 denote the directions of rotation.
Then, a basic dataset that contains five images for
each guide star is obtained. This basic dataset is
denoted by T1. Fig. 2a shows a non-rotating image,
and Figs. 2b, 2c, and 2d show the rotated images
in T1 when A1, A2, and A3 are chosen as orientation
stars, respectively.
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Fig. 2 Construction of the basic dataset: (a) origi-
nal image; rotated images when A1 (b), A2 (c), and
A3 (d) are orientation stars

Step 4: To reduce overfitting and enhance
the generalization power of the network, the basic
dataset T1 is enlarged using several ways of data
augmentation as described below:

(1) Stars at pr pixels or farther away from the
reference star are discarded to improve robustness.

(2) A random magnitude deviation varying from
−0.3 to 0.3 Mv is added to each star.

(3) Add 1–5 false stars with random positions
and magnitudes.

(4) Add white noise to each image. The
mean and variance of noise are determined by
the noise level of the complementary metal-oxide-
semiconductor (CMOS) sensor used.

Step 5: Resize the image to 224× 224. A func-
tion named “imresize” in Matlab is used to resize
images. The parameter is set to be “bilinear,” which
means that the output pixel value is a weighted av-
erage of pixels in the nearest 2× 2 neighborhood.

After these steps, a training dataset T2 contain-
ing 734 550 images is constructed. If a false star is
chosen accidentally as the reference star or orienta-
tion star, fatal errors would occur. Thus, an extra

class, i.e., the false star class, is constructed to cope
with this situation. A negative sample set is built
accordingly. There are one million images generated
with a Monte-Carlo method to compose the negative
sample set. A false star is chosen as the reference star
in half of these images, while the orientation star is
a false star in the remaining images. During training
process, the number of false star class samples used
is three times that of each positive class to balance
the data. There are 4897 positive samples and three
negative samples in each training course, which are
chosen randomly from the positive sample set and
negative sample set (Liu et al., 2003), respectively.

2.2 Star identification algorithm

The star identification algorithm based on
DCNN is shown in Fig. 3.
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Fig. 3 Flowchart of the star identification algorithm

There are six steps in performing identification:
Step 1: image preprocessing. Im denotes the

image. All stars, whose number is n, are extracted
from their backgrounds. Their coordinates set is Cn.
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Step 2: reference star and orientation star de-
termination. The nearest star to the center of the
image is taken as the reference star S. Its coordi-
nates are defined as Ci. The five closest stars near S
inside a region, defined by circles of radii pr and br,
are taken as adjacent stars Ai (i = 1, 2, . . . , 5). The
nearest one of Ai (i = 1, 2, . . . , 5) will be chosen as
the orientation star. Its coordinates are Cja.

Step 3: image standardization. Move the im-
age to relocate the reference star to the center of
the image, rotate the image to make the orientation
star on the positive horizontal axis, and then resize
the image to 224 × 224. This step is fulfilled by
three functions, called shift, rotate, and resize in the
pseudo code.

Step 4: image classification. The pre-processed
image is sent to the trained Vgg16 network. Ac-
cording to the output of Vgg16, the ID of the refer-
ence star and the corresponding probability p are
obtained. This procedure is denoted as function
Vgg16_Classify in the pseudo code.

Step 5: reference star validation. To prevent
spurious classifications, the identification is consid-
ered successful if p ≥ pmin and the reference star is
not recognized as a false star. Otherwise, another
orientation star is chosen from the rest of Ai; this
means going back to step 3. If all adjacent stars are
used and the identification still fails, then switch to
another reference star and repeat step 2.

Step 6: star identification. Identify the remain-
ing stars in the image by their angular distances from
the reference star. This is the function called Angu-
larMatch in the pseudo code.

The pseudo code is listed as follows:

begin

[n, Cn] = Preprocess(Im)

for (i = 1; i <= n; i++){
for (j = 1; j <= 5; j ++){

Im = Shift(Im, Ci)

Im = Rotate(Im, Cja)

Im = Resize(Im)

[id, p] = Vgg16_Classify(Im)

if (id! = false_star_class && p > pmin){
ID = AngularMatch(id, Cn)

return ID

}
}

}
end

There are several well-known CNNs, such
as GoogLeNet (Szegedy et al., 2015), Vgg16
(Simonyan and Zisserman, 2015), and AlexNet
(Krizhevsky et al., 2017). GoogLeNet and Vgg16
have achieved great success in the 2014 ImageNet
competition for classification and detection chal-
lenges. In this framework, Vgg16 has been adopted
as the base network structure. The architecture of
the network is described in detail in the following:

1. CONV layer. This layer is used to filter the
input signal in the space domain and produce a two-
dimensional feature map. There are 16 CONV layers
with 3 × 3 convolution kernels in the network. The
CONV layer is represented as follows:

ykm,n = f

⎛
⎝

2∑
j=0

2∑
i=0

xm+i,n+jw
k
i,j + bk

⎞
⎠ , (1)

where xm,n is the input value at position (m,n) (0 ≤
m ≤ M, 0 ≤ n ≤ N , and M × N is the size of
the feature map), wk and bk the weight and bias of
the kth kernel, respectively, and f(·) the activation
function.

2. Activation function. A leaky rectified linear
unit (ReLU) function is used in the network:

f(x) =

{
x, x > 0,

αx, x ≤ 0,
(2)

where α is set to 0.05.
3. Pooling layer. Spatial pooling is carried out

by five max-pooling layers, which follow some of the
CONV layers. Max-pooling is performed over 2 × 2

windows with stride 2.
4. Fully connected (FC) layer. After several

CONV and pooling layers, a set of feature maps has
been obtained. Then, three FC layers are used to
combine these features for classifying the input im-
ages. The first two FC layers are composed of 500
neurons. The last FC layer serves as the output layer
with 4898 neurons, which represent the 4897 classes
of the problem and one false star class. In this layer,
the softmax function is used to calculate the proba-
bility of each class. The FC layer can be represented
as follows:

yyy = f(WWWTx+ bbb), (3)

where x is the set of feature maps, yyy the vector of
output, WWW the weight matrix, and bbb the bias vector.
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The softmax function is defined as

pn = ezn
/ N∑

k=1

ezk , n ∈ [1, N ], (4)

where pn is the probability of the nth class and zn the
output score of the nth class from the FC layer. The
original network is modified in three aspects: the
size of the input layer is changed to 224 × 224 × 1,
the activation function is changed to leaky ReLU,
and the number of neurons of the first two FC lay-
ers is changed to 500. The architecture of Vgg16 is
demonstrated in Fig. 4.

3 Simulation results and analysis

Simulations are presented to show the perfor-
mance of the proposed algorithm. Fig. 5a shows the

Convolution+leaky ReLU
Max-pooling

Fully connected
Softmax

Fig. 4 Architecture of Vgg16

random star image to be identified. Star 127 934 and
a false star are chosen as the reference star and orien-
tation star, respectively. Then, the image is shifted
and rotated (Fig. 5b), and the directions of rotation
are denoted by arrow-headed curves. After the image
classification step, the output ID of the reference star
is No. 11 983 with an associated probability of 12%.
Thus, another orientation star is chosen. In Fig. 5c,
Star 127 894 is chosen as the orientation star, and
the original image is pre-processed again. Fig. 5c is
classified, and the output ID of the reference star is
No. 127 934 with an associated probability of 93%.

3.1 Network training

Network is trained with the Caffe framework
(Jia et al., 2014). A stochastic gradient descent
method with a batch size of 128 examples is em-
ployed. Momentum and weight_decay, two impor-
tant parameters of Caffe framework, are set to 0.9

and 0.0005, respectively. Plots of loss/accuracy vs.
the number of iterations are shown in Fig. 6.

3.2 Comparison and analysis

Several simulations are conducted to evaluate
the performance of the new algorithm. Parameters

Star (No.127 934)

Star (No.127 894)

False star

(a) (b) (c)

Fig. 5 Examples of the identification: (a) random star image; (b) image after the first classification; (c) image
after the second classification
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of the star tracker for the simulations are shown in
Table 1. The full well charge is denoted by a gray
value of 1024 because the output is a 10-bit analog-
to-digital converter (ADC), and the exposure time
tint is set to 0.1 s. According to Zhang GJ (2017)
and Hancock et al. (2020), the variance of noise is
calculated as

δsensor =(δ2Dark_noise + δ2Temporal_noise

+ δ2FPN + δ2Dark_signal)
1/2, (5)

where δTemporal_noise is the temporal noise,
δDark_noise the dark noise, δFPN the fixed-pattern
noise, and δDark_signal the dark signal, while the
mean noise is determined by the actual astronomical
background light. For photo electrons correspond-
ing to a 10-Mv star, the value of background noise is
73e−, and the mean noise and variance of noise are
calculated as 1.196 and 24.812, respectively.

Table 1 Parameters for simulations

Parameter Value

Resolution of CMOS 1024× 1024

Size of one pixel 6.7 µm × 6.7 µm
Focal length 35 mm
Highest visual magnitude 6.0 Mv
Full well charge 62 500e−

Temporal noise δTemporal_noise = 2.5 LSB
Dark noise δDark_noise = 21e−

Fixed-pattern noise δFPN = 4.5 LSB
Dark signal δDark_signal = 4.5 (LSB/s) · tint
Exposure time tint 0.1 s
Astronomical background 10 Mv

noise

LSB: least significant bit

The performance of the proposed algorithm is
compared with those of the grid, pyramid, and mod-
ified radial and cyclic algorithms. All these algo-
rithms except the modified radial and cyclic algo-
rithm are performed with 4000 images, which are
generated by Matlab based on the SAO star catalog.
According to Kumar et al. (2010), the pyramid al-
gorithm is more suitable for identifying a measured
star pattern with four or more stars. Thus, images
containing at least four stars are tested. These al-
gorithms are evaluated under three noise conditions,
i.e., position deviation, false stars, and magnitude
uncertainty.

3.2.1 Robustness to star position noise

Each star has position noise, which is random
Gaussian noise with a zero mean and a certain vari-
ance. The standard deviation is set from zero to one
pixel with a increment of 0.2 pixels during the simu-
lations. In accordance with the state of star extrac-
tion, the largest deviation of a star is set to one pixel
in the simulations. In Fig. 7, with increasing position
deviation, the identification accuracy of the pyramid
algorithm drops from 97% to 92.5%. The pyramid
algorithm uses the angular distance as a key feature,
so the position noise will possibly cause a match-
ing failure during identification. The other three
algorithms are insensitive to position noise. They
maintain a level of identification accuracy over 97%.

3.2.2 Robustness to false stars

According to Schiattarella et al. (2017), various
phenomena may lead to false stars, such as single
event upset, sensor aging, and thermal drift. Fig. 8
shows the false stars’ influence on the identification
accuracy for different algorithms. The number of
false stars increases from zero to five, and the posi-
tion and magnitude of the false stars are randomly
added in the simulations. It can be seen that the
DCNN algorithm is robust and maintains its accu-
racy over 97%. While the accuracy of the modified
radial and cyclic algorithm decreases slightly from
98.8% to 95.3% when the number of false stars in-
creases from zero to four, the grid algorithm’s iden-
tification accuracy drops from 99.3% to 76.5%. As
mentioned in Section 1, the key to generating a grid
pattern is to find the correct closest neighbor star.
Thus, false stars may be selected as the closest neigh-
bor stars, which causes a failure.
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Fig. 8 Identification accuracy vs. the number of false
stars

3.2.3 Robustness to magnitude noise

For each star, the magnitude noise is set from
0.05 to 0.30 pixels with an increment of 0.05
pixels during simulations. The maximum magni-
tude deviation is assigned 0.3 Mv for each star. Per-
formances of these algorithms are shown in Fig. 9.
The identification accuracies of the proposed algo-
rithm and the modified radial and cyclic algorithm
both remain over 97% when the magnitude noise in-
creases, while the identification accuracy of the grid
algorithm drops from 99.3% to 83.5%. The identifi-
ciation accuracy of the pyramid algorithm decreases
slightly from 97% to 92%.
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Fig. 9 Identification accuracy vs. magnitude noise

3.2.4 Robustness to angular velocity

Under dynamic conditions, the star-spots on the
image sensor move across multiple pixels during the
exposure time and form streaks. The coordinates
(x(t), y(t)) of the star-spot center at time t can be

approximately calculated as
⎧⎪⎪⎨
⎪⎪⎩

x(t) ≈ x0 +
fωt cos θ

μ
,

y(t) ≈ y0 +
fωt sin θ

μ
,

where (x0, y0) are the star-spot center coordinates at
t = 0, f the focal length, ω the angular velocity, θ the
angle between the streak and the x axis, and μ the
pixel size. During the simulations, ω is set from 1◦/s
to 3◦/s and θ is set randomly from −π to π. Table 2
shows the performance of the proposed algorithm.
As can be seen, the identification accuracy decreases
from 96.95% to 96.23%.

Table 2 Identification accuracy under different angu-
lar velocities

Angular velocity (◦/s) Identification accuracy (%)

1 96.95

2 96.65

3 96.23

3.2.5 Analysis of star identification errors

There are 114 identification errors in the 4000
identifications during simulations. Among them, the
reference star is identified to a star nearby in 96 im-
ages. Star 28 737, the reference star in Fig. 10a,
is identified as star 28 738 because they are too
close to identify. Fig. 10b is one training image of
star 28 738. The remaining 18 images are caused
by false stars and the magnitude error. For ex-
ample, star 81 727 is identified as star 14 908.
Star 81 727 is chosen as the reference star in Fig. 10c,
while star 14 908 is the true reference star in Fig. 10d.
These two images are similar after false star inclu-
sion. The false stars are circled in Fig. 10c. This
error is inevitable because false stars are added ran-
domly. The algorithm would return failure only if all
the stars have been selected as reference stars and
none of them are identified successfully. In our 4000
simulations, no failure case occurs. There may be
two reasons for this: First, the number of guide stars
is sufficient for identification because every disposed
image contains at least three guide stars, which is the
requirement for attitude determination; Secondly,
the parameter pmin is set as 50%. This threshold
is relatively low, so it is easy for the selected refer-
ence star to find a corresponding star in the catalog.
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(a) (b)

(c) (d)

Fig. 10 Examples of identification errors: (a) testing
image; (b) training image of star 28 738; (c) testing
image with labeled false stars; (d) training image of
star 14 908

3.2.6 Time and memory performance

The network is trained and tested on NVIDIA
TITAN X. The average identification time is 4 ms.
According to Qiu et al. (2016), the implementation
of Vgg16-SVD on Xilinx Zynq achieves a frame rate
of 4.45 frames/s. The pyramid and grid algorithms
are implemented on TMS320C6747 DSP. The av-
erage identification time of the grid algorithm is
268 ms, and the identification time of the pyramid
algorithm increases from 349 to 1592 ms as the false
star count increases from zero to five. The number
of parameters of the network is about 14.7 million
and the memory requirement is 14 MB when eight
quantization values are used.

4 Conclusions

A convolution neural network (CNN) model
based on Vgg16 has been applied to classify star im-
ages, and a training dataset has been constructed
accordingly. A star identification algorithm based
on a deep convolution neural network for the lost-in-
space mode achieved good performance for realistic
star tracker scenarios. Simulation results demon-
strated that this algorithm is highly robust to various
kinds of noise, including position noise and magni-
tude noise, false stars, and angular velocity of the
trackers. This work showed that CNN is highly ef-

fective for star identification. Future work will focus
on reducing memory consumption and validating the
proposed algorithm in a real star tracker.
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