
Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686 673

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Pre-training with asynchronous supervised learning for
reinforcement learning based autonomous driving∗

Yunpeng WANG†, Kunxian ZHENG†‡, Daxin TIAN†, Xuting DUAN†, Jianshan ZHOU
Beijing Advanced Innovation Center for Big Data and Brain Computing,

School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
†E-mail: ypwang@buaa.edu.cn; zhengkunxian@buaa.edu.cn; dtian@buaa.edu.cn; duanxuting@buaa.edu.cn

Received Nov. 20, 2019; Revision accepted Dec. 29, 2020; Crosschecked Feb. 3, 2021

Abstract: Rule-based autonomous driving systems may suffer from increased complexity with large-scale inter-
coupled rules, so many researchers are exploring learning-based approaches. Reinforcement learning (RL) has been
applied in designing autonomous driving systems because of its outstanding performance on a wide variety of
sequential control problems. However, poor initial performance is a major challenge to the practical implementation
of an RL-based autonomous driving system. RL training requires extensive training data before the model achieves
reasonable performance, making an RL-based model inapplicable in a real-world setting, particularly when data are
expensive. We propose an asynchronous supervised learning (ASL) method for the RL-based end-to-end autonomous
driving model to address the problem of poor initial performance before training this RL-based model in real-world
settings. Specifically, prior knowledge is introduced in the ASL pre-training stage by asynchronously executing
multiple supervised learning processes in parallel, on multiple driving demonstration data sets. After pre-training,
the model is deployed on a real vehicle to be further trained by RL to adapt to the real environment and continuously
break the performance limit. The presented pre-training method is evaluated on the race car simulator, TORCS (The
Open Racing Car Simulator), to verify that it can be sufficiently reliable in improving the initial performance and
convergence speed of an end-to-end autonomous driving model in the RL training stage. In addition, a real-vehicle
verification system is built to verify the feasibility of the proposed pre-training method in a real-vehicle deployment.
Simulations results show that using some demonstrations during a supervised pre-training stage allows significant
improvements in initial performance and convergence speed in the RL training stage.

Key words: Self-driving; Autonomous vehicles; Reinforcement learning; Supervised learning
https://doi.org/10.1631/FITEE.1900637 CLC number: TP181; U495

1 Introduction

As an important component of intelligent trans-
portation systems, autonomous driving has the po-
tential to increase the safety and efficiency of future
transportation systems. By carefully considering the

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61672082 and 61822101), the Beijing Munici-
pal Natural Science Foundation, China (No. 4181002), and the
Beihang University Innovation and Practice Fund for Graduate,
China (No. YCSJ-02-2018-05)

ORCID: Kunxian ZHENG, https://orcid.org/0000-0002-2887-
9294
c© Zhejiang University Press 2021

autonomous driving problem, it can be mathemati-
cally mapped into a sequential decision-making prob-
lem embedded in complicated time-varying environ-
ments. Hence, with the goal of solving this issue,
many researchers resort to the reinforcement learn-
ing (RL) based theory. As we can see, the emerg-
ing RL method shows great prospects in sequential
decision-making problems (Mnih et al., 2013, 2015,
2016; Li L et al., 2016; Silver et al., 2017; Wang et
al., 2020), and a variety of RL-based solutions have
been applied in dynamic control and other domains
(Mao et al., 2016; Liu et al., 2017; Xu et al., 2017;

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1900637&domain=pdf

674 Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686

He Y et al., 2018). The extensive success of deep RL
has generated many more applications using deep RL
for end-to-end autonomous driving model’s training
tasks (Sallab et al., 2017; Bai et al., 2019; Chen JY
et al., 2019). One of the most impressive accomplish-
ments of deep RL is its ability to learn directly from
raw images, and to achieve state-of-the-art results
with little prior human knowledge. However, exactly
because of this lack of prior knowledge, deep RL usu-
ally suffers from poor initial performance (Brys et al.,
2015; de la Cruz et al., 2019), so it requires exten-
sive training time (too many real-world experience
data) before being practically used in autonomous
driving tasks. This defect can be tolerated in a simu-
lation environment, such as when training the racing
game robots; however, outside the simulation envi-
ronment, things are not as simple. A long training
time means more human and financial investment,
and for autonomous driving, it also brings greater
risks.

Using humans for demonstrations is one method
of speeding up the training process of a deep RL-
based model. In this study, we introduce prior knowl-
edge into an end-to-end autonomous driving model
by supervised learning (SL) training to address the
problem of poor initial performance before RL train-
ing in real-world settings. There have been some
approaches proposed to combine deep RL with prior
knowledge, from reward shaping (Brys et al., 2015;
Nair et al., 2018) to feature extraction pre-training
(de la Cruz et al., 2019). The reward-shaping ap-
proach may not work well in the continuous reward
space and it still does not address the problem of
poor initial performance. The feature extraction pre-
training approach divides the deep RL-based model
into two parts, namely, the feature extractor and
the controller, and pre-trains only the convolutional
layers as a feature extractor. However, Nvidia’s re-
search (Bojarski et al., 2016) shows that it is not
possible to make a clean break between the part
of the end-to-end network that functions primar-
ily as a feature extractor and the part that serves
as a controller. Therefore, the feature extraction
pre-training approach may interfere with subsequent
RL training processes in real-world settings. In RL-
based end-to-end autonomous driving model’s pre-
training tasks, the pre-training algorithms should
consider the integrality of the model and the in-
creased cost with large-scale demonstrations. The

difficulty lies in accurately modeling this temporal
correlation characteristic and making better driving
decisions, to maximize system performance in a long-
term dynamic vehicle mobility environment period.
The limitation of existing works and the challenges
in RL-based model’s pre-training tasks as previously
mentioned, motivate us to explore a novel method-
ological framework.

The pre-training problem can be mathemati-
cally mapped into an imitation learning problem
embedded in a sequential decision-making process.
In this work, we propose an asynchronous super-
vised learning (ASL) method for pre-training the
end-to-end autonomous driving model, similar to the
Gorila framework (Nair et al., 2015) and the asyn-
chronous RL framework (Mnih et al., 2016); however,
instead of executing multiple RL processes, we asyn-
chronously execute multiple SL processes in parallel,
on multiple real-world training data sets. The aim
in designing this asynchronous method is to propose
an SL algorithm that can learn a sequential decision-
making policy reliably and without large resource
requirements. By running different SL processes in
different threads, the overall changes made to the
model parameters by multiple agents applying on-
line updates in parallel are likely to be less correlated
in time than a single agent applying online updates,
which stabilizes the SL process. After pre-training by
the ASL method, the autonomous driving model is
trained in real-world settings by RL. In fact, combin-
ing the proposed pre-training method with RL con-
stitutes a new joint training framework. Pre-training
introduces prior knowledge to address the problem of
poor initial performance; RL then breaks the perfor-
mance limit, and achieves performance beyond hu-
mans. To avoid collecting expensive human driving
demonstration data, a manually designed heuristic
driving policy (MDHDP) is used to generate high-
reward experiences as demonstrations.

The main contributions of this paper are sum-
marized as follows:

1. Although the existing RL theory has achieved
some success in a variety of domains, its applica-
bility has previously been focused on gaming or
robotic control domains or on other domains in which
poor initial performance can be tolerated. Few ef-
forts have been made to explore the applicability of
SL theory in promoting initial performance of RL-
based models for practical applications in real-world

Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686 675

settings. We conduct some innovative work to
demonstrate the effectiveness and the potential of
the joint training framework of SL and RL in the
design of the pre-training method, for enhancement
of the initial performance of the RL-based model.

2. Moreover, while our study is based on the
existing RL theory, the methodological framework
proposed is not a direct application of existing RL
algorithms. To facilitate the practical application
of the RL-based autonomous driving model in real-
world settings, we propose a novel pre-training ap-
proach, in which two new components are designed
and combined to adapt to the environments and im-
prove the initial decision-making performance of RL
agents in autonomous driving problems: (1) an ASL
method based on the joint methodological frame-
work of RL and SL for the pre-training stage, and (2)
an MDHDP for automatic collection of pre-training
demonstration data.

3. It is challenging to implement visual analysis
for a neural network that outputs continuous actions.
We propose a visualization method based on the ba-
sic theory of single-variable analysis, to examine the
improvements in the RL-based autonomous driving
model after pre-training. The results of visualiza-
tion are presented in the form of heatmaps, which
directly show the specific areas that have important
impacts on decision making. This kind of analy-
sis can demonstrate the effectiveness of pre-training
from a detailed point of view, which is significant in
testing and validating end-to-end autonomous driv-
ing systems.

2 Related work

Conventional autonomous driving systems are
manually designed (González et al., 2016; Paden
et al., 2016; Hao et al., 2018; Schwarting et al., 2018),
and driving actions are determined according to the
rule base. However, this rule-based system struc-
ture is too bloated, so more and more researchers are
investing in the study of learning-based approaches
(Bojarski et al., 2016; Codevilla et al., 2018; Li LZ
et al., 2018). The RL-based end-to-end model is an
increasingly popular choice of autonomous driving.
Bai et al. (2019) used an improved deep Q-network
to learn high-level driving behavior policy from a
customized data format called the hyper-grid ma-
trix. However, the Q-learning-based model is not

sufficient to be an end-to-end autonomous driving
model, because Q-learning can output only discrete
actions. Chen JY et al. (2019) used a bird-view rep-
resentation as the input of a deep RL-based model,
and then trained and evaluated it in the CARLA sim-
ulator. Both the bird-view representation and the
hyper-grid matrix mentioned above have undergone
a series of processing steps, such as data extraction,
fusion, and transformation, which may cause a loss
of some crucial information. In this work, our end-
to-end autonomous driving model can directly take
the raw sensor data from a front-facing camera as
continuous driving action inputs and outputs, such
as the wheel steering angle.

To run in real-world settings, a learning-based
autonomous driving model has to be trained using
real-world experiences. We must realize that the
“trial-and-error course” used by the RL-based model
is very dangerous for training an autonomous driving
vehicle in real-world settings. Specifically, poor ini-
tial performance requires much more manual inter-
vention in the RL training process to avoid accidents.
Now there is some research into introducing prior
knowledge in the training of RL-based models in the
fields of games, robots, and so on. Brys et al. (2015)
modified the reward function to drive an RL-based
agent to explore states with high potential, but this
method still suffers from poor initial performance.
de la Cruz et al. (2019) pre-trained the convolutional
layers of a deep RL-based model to prevent wasting
time in learning feature extraction, but this method
undermines the model’s overall coordination. Zhang
and Ma (2018) used a trained RL-based model to
generate demonstration data to guide the training
process of an untrained model. However, this work
still does not address the problem of poor initial per-
formance. In this study, we combine SL with RL
to improve the initial performance of the RL-based
model. We use MDHDP to drive a vehicle and gen-
erate demonstrations to form SL training data sets.
Then, by the asynchronous multi-threading SL pro-
cess, our RL-based model learns prior knowledge be-
fore RL training in real-world settings.

To analyze the improvement due to pre-training,
we visualize the specific influences of different in-
put units in the neural network. Selvaraju et
al. (2019) proposed gradient-weighted class activa-
tion mapping (Grad-CAM) to visualize the feature
maps in the last convolutional layer to analyze the

676 Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686

influence of different input units on the classifica-
tion result. Compared to class activation mapping
(CAM) (Zhou et al., 2016), Grad-CAM has the ad-
vantage that it does not need any modification of
the network structure. The methods above are not
adopted in this study because they are applicable
only to models with discrete output, whereas our au-
tonomous driving model outputs continuous results.
Thus, we propose a visualization approach that is
applicable to models with continuous output.

At present, there are few research reports on
joint methodological framework based pre-training-
oriented solutions in real-world settings. The re-
search in this study fully demonstrates the effec-
tiveness and advantages of the joint methodological
framework of SL and RL in this field, and enriches
the intellectual system of RL-based autonomous
driving training tasks. This paper innovatively pro-
poses an ASL method based on the joint method-
ological framework, and an MDHDP for automatic
collection of demonstration data.

3 System model and problem formula-
tion

The pre-training system is defined by the five-
tuple array {S,A,L,P, γ}. In this array, S is a set of
states, A is a set of actions, L is the loss function, P is
the state transition probability, and γ ∈ [0, 1] is the
discount factor that is used to balance the weight
between real-time loss and long-term loss. When
γ = 0, the RL-based agent considers only real-time
loss, and γ = 1 means that the long-term loss and
the real-time loss are equally important. We map the
pre-training problem into the formulation as follows:

1. State
Let Si = {Si1,Si2, . . . ,SiN} be the set of states

that autonomous driving vehicle i can directly ob-
serve by its front-facing camera, where Sin (1 ≤ n ≤
N) represents the state of the nth experience in the
demonstration data set Ωi. Specifically, Sin consists
of four pre-processed front-facing camera images.

2. Action
Ain ∈ Ai = {Ai1,Ai2, . . . ,AiN}, where Ain ∈

[−1, 1] represents the steering of the nth experience,
“−1” for a full left turn and “1” for a full right turn.

3. Loss
We use Lin(Sin,Ain), Lin ∈ Li = {Li1, Li2,

. . . , LiN}, to denote the loss of the nth experience.

We formulate the loss Lin by

Lin(Sin,Ain) = ς − �‖Ain −A′
in‖1, (1)

where ς and � are variables that change with ‖Ain−
A′

in‖1. A′
in denotes the action taken by our end-to-

end autonomous driving model after inputting state
Sin, andAin denotes the demonstration action of the
nth experience in Ωi.

4. State transition probability
Given the current state Sit in the tth time slot,

the probability that Sit transits to the next time
slot state Si(t+1) after taking action A′

it is denoted
by pit(Si(t+1) | Sit,A′

it), where Si(t+1) ∈ S
′
i =

{S ′1,S ′2, . . . ,S ′U}, and S
′
i is the set of all possible

states in the (t+ 1)th time slot.
Given a stochastic policy πi(Sit) that outputs

the probability distribution of action A′
it based on

state Sit, we use the state value function to repre-
sent the total loss that can be obtained by executing
policy πi to the final state SiT from an initial state
Sit. We assume that the nth experience is collected
in the tth time slot, so Sit and Sin are equivalent.
Note that the state Si(n+1) of the (n + 1)th expe-
rience in Ωi is not the next time slot state Si(t+1)

transited by Sin after agent i performs action A′
in

(similarly, A′
in and A′

it are equivalent). In fact, af-
ter the demonstration data collection is completed,
the order of data will be shuffled and rearranged,
so Si(n+1) is just behind Sin, and there is no causal
relationship between it and Sin. We can do some
image processing on state Sin, such as zooming and
rotating, to obtain the next state Si(t+1) after action
A′

in is executed. The state value function V πi(Sit)
is as follows:

V πi(Sit) = EA′
it,...∼πi

ESi(t+1),...∼pi

{
T−t∑
τ=0

γτLi(t+τ)

}

= EA′
it∼πi

ESi(t+1)∼pi{Lit(Sit,A′
it) + γV πi(Si(t+1))}.

(2)

If the agent performs action A′′
it without the

policy πi in a certain state Sit, and then performs
actions in accordance with policy πi in subsequent
states, the expected total loss Lπi(Sit,A′′

it) obtained
by the agent is as follows:

Lπi(Sit,A′′
it)

=ESi(t+1),...∼piEA′
i(t+1)

,...∼πi

{
T−t∑
τ=0

γτLi(t+τ)

}

=ESi(t+1)∼pi{Lit(Sit,A′′
it) + γV πi(Si(t+1))}. (3)

Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686 677

Furthermore, the advantage function
Aπi(Sit,A′′

it) is as follows:

Aπi(Sit,A′′
it) = Lπi(Sit,A′′

it)− V πi(Sit), (4)

where Aπi(Sit,A′′
it) represents the advantage due to

selecting another action instead of the one deter-
mined by policy πi. Given the certain state Sit, our
target is to find the best policy π∗

i (Sit) to maximize
Eq. (2) by using Eq. (4). That is, π∗

i (Sit) satisfies
the following expression:

π∗
i (Sit) = arg max

πi∈Π
V πi(Sit), (5)

where Π is the set of stochastic policies.

4 Asynchronous supervised learning

4.1 Pre-training demonstration collection

The MDHDP π′
i(Sit) drives vehicles to auto-

matically collect real-world driving demonstrations,
which is based on a simplified look-ahead scheme:

1. Steering angle sit
Our data collection vehicle i determines the

wheel steering angle sit based on the current vehi-
cle speed vit and the position of the vehicle in front.
Specifically, a target F (x′

it, y
′
it) on the road’s middle

line is determined according to the following formula:

lEF = L+ vit · �t, (6)

where E(xit, yit) is the projection point of vehicle i’s
center on the road’s middle line, lEF is the length
of road between points F and E, L is the constant
look-ahead distance, and�t is the look-ahead factor.
Then the wheel steering angle toward target F is
computed as follows:

sit =<
−→
JF ,−→vit >, (7)

where J(xc
it, y

c
it) is the position of vehicle i’s cen-

ter. To avoid collision with the vehicle in front,
or vehicle j, sit is modified according to the angle
< −→vjt,−→vit > between vehicles j and i:

sit ← sit ·W + 2(1−W)· < −→vjt,−→vit >, (8)

where W = D/C is the weight, D is the lateral space
of vehicles j and i, and C is the side collision margin.

2. Break bit

The brake bit of vehicle i is determined accord-
ing to its vit, the speed limit v∗rt of current road sec-
tion rt, and the distance dijt between vehicles j and
i. The speed limit v∗rt is determined by the curvature
ρ of rt, because different combinations of curvature
and speed cause different centrifugal forces FN , and
FN should be kept within a reasonable range for driv-
ing safety. v∗rt is determined based on the relevant
theory of aerodynamics:

v∗rt =

√√√√ gμ(1/ρ)

1−min
(
1, (1/ρ)CAμ

M

) , (9)

where g is the gravitational acceleration, μ is the fric-
tion coefficient, CA is the downforce coefficient, and
M is the vehicle weight. If vit exceeds the speed limit
v∗rt or vehicle i is too close to vehicle j, vit needs to be
decelerated, and the MDHDP just returns bit = 1.

3. Throttle tit
The throttle tit of vehicle i is determined ac-

cording to v∗rt and vit. If vit is much less than v∗rt
and bit = 0, MDHDP just returns tit = 1.

In the TORCS (The Open Racing Car Simu-
lator) simulation environment, data collection vehi-
cles collect driving demonstrations online and per-
form the ASL pre-training process at the same time.
Therefore, in the simulation verification process, the
size of all thread-specific pre-training data sets is
the same as the number of pre-training steps Gpre,
so we collect Gpre demonstrations to pre-train our
end-to-end autonomous driving model. However, in
the engineering implementation process, due to the
limitation of the small indoor driving demonstration
scene, it is not possible to collect enough real-vehicle
demonstration data. Therefore, we first collect a
small batch of demonstration data, and then in the
pre-training stage, we meet the requirement of pre-
training steps by repeating a random sampling from
the demonstration data set. In the real-vehicle veri-
fication process, these pre-training data sets are col-
lected by the vehicle shown in Fig. 1.

4.2 Asynchronous supervised learning frame-
work

We combine SL with the theory of RL to solve
problem (5). We refer to an actor-critic network as
a nonlinear function approximator to estimate the
stochastic action policy A′

in ∼ πi(Sin; θ) and the
value function V πi(Sin; θv), where θ and θv are the

678 Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686

Camera Serial
Interface (CSI)

camera

Ackermann
steering

Dual motor
electronic differential

a Serial
ce (CSI)
mera

Ackerma
steerin

Dual motor
electronic diffff erent

UWB
location tag

Fig. 1 The robot car used to collect demonstrations

parameters of actor and critic neural networks, re-
spectively. We use Eq. (4) to update both θ and θv.
Our ASL framework relies on parallel actor-learners
and accumulated updates for improving training sta-
bility. The update performed by multiple agents ex-
ecuting in parallel and asynchronously on multiple
threads is as follows:{

dθ ← dθ +	θ′ logπi(A′′
in|Sin; θ′)Aπi(Sin,A′′

in),

dθv ← dθv + ∂(Aπi(Sin,A′′
in))

2/∂θ′
v,

(10)
where θ′ and θ′

v are thread-specific parameter vec-
tors, and θ and θv are global shared parameter vec-
tors. logπi(A′′

in|Sin; θ′) denotes the “surprise” that
policy πi selects action A′′

in. The smaller the prob-
ability that policy πi selects A′′

in is, the greater
the “surprise” becomes. If the action with a low
probability selected by policy πi has a great advan-
tage Aπi(Sin,A′′

in), the actor network’s parameters
θ will be more likely updated in this direction. The
critic network updates its parameters θv to minimize
Aπi(Sin,A′′

in) all the time, to improve the prediction
of the state value function V πi(Sin).

Fig. 2 shows the end-to-end autonomous driving
model that we used, which takes four pre-processed
images closest to the current moment as its inputs.
Note that the parameters θ of the stochastic action
policy and θv of the value function share some of
the parameters in practice. This autonomous driv-
ing model uses a convolutional neural network that
has two linear outputs for the mean and variance
of the steering’s normal probability distribution and
one linear output for the value function V πi(Sin; θv),
with all non-output layers shared. Fig. 3 shows
our methodological framework of ASL, and the pre-

training process in real-world settings is given in Al-
gorithm 1.

Our ASL-based pre-training method follows an
offline multi-process implementation in real-world
settings. That is, multiple SL training processes can
be executed in a parallel and asynchronous offline
manner, on multiple real-world driving demonstra-
tion data sets. After pre-training, we perform online
RL training processes in real-world settings.

4.3 Complexity analysis

The pre-training algorithm includes significant
image preprocessing, loss calculations, replay buffers,
and actor-critic network approximators with six neu-
ral networks. Next, we analyze the time complex-
ity (computations) and space complexity (memory)
of the ASL-based pre-training process, wherein the
time complexity is represented by the number of
floating-point operations per second (FLOPS).

Algorithm 1 Pre-training with ASL in real-world
settings
1: Initialize the number of pre-training steps Gpre, θ,

and θv with random weights, and the batching tuple
size N

2: Initialize the thread-specific step counter n← 1

3: Initialize the global step counter G← 1

// Training
4: repeat
5: Set n← 1

6: repeat
7: Obtain tuple (Sik,Aik) from the SL training

data set Ω by random sampling
8: Input state Sik, and perform action A′′

ik

9: Calculate and store loss Lik (Eq. (1))
10: Store Lik together with Sik and A′′

ik as the nth

tuple (Sin,A′′
in, Lin) in the sampling batch

11: n← n+ 1

12: G← G+ 1

13: until n == N

14: for n=1 to N do
15: Accumulate gradients θ′: dθ ← dθ +

�θ′ logπi(A′′
in|Sin; θ′)Aπi(Sin,A′′

in)

16: Accumulate gradients θ′
v: dθv ← dθv +

∂(Aπi(Sin,A′′
in))

2/∂θ′
v

17: end for
18: Perform asynchronous update of θ using dθ and

of θv using dθv, and then zero dθ and dθv

19: Synchronize thread-specific parameters θ′ = θ

and θ′
v = θv

20: until G > Gpre

Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686 679

Since the sampled driving demonstration tuple
changes constantly, the image preprocessing has to
be conducted at all steps during the pre-training
stage. The time complexity of image preprocess-
ing is N(Sin) × m, where N(Sin) is the number of
pixels of state Sin and m is the number of parallel
actor-learners. To avoid repeated calculations, the

algorithm has to record the means and standard de-
viations of the state variables, so the space complex-
ity of image preprocessing is 2N(Sin) ×m. The ex-
perience replay buffer in ASL occupies some space to
store Sin; hence, the space complexity is all threads’
batching tuple size N ×m.

For neural networks, the computation of the

t

Input
4×84×84

Convolutions ConvolutionsConvolutions
Full connection

Full connection

C1
32×20×20

C2
32×9×9

C3
32×9×9

F1
layer 256

Output 1
mean of normal action
probability distribution

Output 1
variance of normal
action probability
distribution

Output 1
value function

Four raw sensor
images of front camera

One channel

Fig. 2 Architecture of the end-to-end autonomous driving model

t

In
pu
t

4×
84
×8
4

C
on
vo
lu
tio
ns C
on
vo
lu
tio
ns
C
on
vo
lu
tio
ns

Fu
ll
co
nn
ec
tio
n

Fu
ll

co
nn
ec
tio
n

C
3

32
×9
×9
F1
la
ye
r

25
6

O
ut
pu
t1
m
ea
n
of

no
rm
al
ac
tio
n

pr
ob
ab
ilit
y
di
st
rib
ut
io
n

O
ut
pu
t1
va
ria
nc
e
of
no
rm
al

ac
tio
n
pr
ob
ab
ilit
y
di
st
rib
ut
io
n

O
ut
pu
t1

va
lu
e
fu
nc
tio
n

Fo
ur
ra
w
se
ns
or
im
ag
es

of
fro
nt
ca
m
er
a

O
ne
ch
an
ne
l

C
2

32
×9
×9

C
1

32
×2
0×
20

Training data set 2

Li12 LiN2

Training data set 1

Li11 LiN1

Training data set m

Li1m LiNm Experiences

Experiences

Experiences

Agent 1

t

Input
4×84×84

Convolutions
Convolutions

Convolutions

Full
connection

Full connection

C1
32×20×20

C2
32×9×9

C3
32×9×9

F1
layer 256

Output 1
mean of normal action
probability distribution

Output 1
variance of normal action
probability distribution

Output 1
value function

Four raw sensor
images of front camera

One channel

Agent 2

t

Input
4×84×84

Convolutions
Convolutions

Convolutions

Full
connection

Full connection

C1
32×20×20

C2
32×9×9

C3
32×9×9

F1
layer 256

Output 1
mean of normal action
probability distribution

Output 1
variance of normal action
probability distribution

Output 1
value function

Four raw sensor
images of front camera

One channel

Agent m

t

Input
4×84×84

Convolutions
Convolutions

Convolutions

Full
connection

Full connection

C1
32×20×20

C2
32×9×9

C3
32×9×9

F1
layer 256

Output 1
mean of normal action
probability distribution

Output 1
variance of normal action
probability distribution

Output 1
value function

Four raw sensor
images of front camera

One channel

θ a
nd

θv

Global network

dθ
1 and

dθv
1

θ and θv

dθ2 and dθv2

θ and θvdθ mand dθv m

Lin1

Lin2

Linm

Batching

Batching

Batching

n

n

n

N N

N N

NN

, , , , ,

, , , , ,

, , , , ,

m

Fig. 3 Methodological framework of ASL: the presented pre-training method asynchronously executes multiple
SL processes in parallel on multiple driving demonstration data sets

680 Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686

activation layers needs to be analyzed. When calcu-
lating FLOPS, addition, subtraction, multiplication,
division, exponentiation, square root, and so on are
usually counted as a single FLOPS. When there are
X inputs for activation layers, the computational
complexities of rectified linear unit (ReLU) layers,
sigmoid layers, and tanh layers are X , 4X , and 6X ,
respectively (Qiu et al., 2019).

The input Sin is an image. Hence, there are
convolutional layers in each actor-critic network. As-
sume that each actor-critic network has C(Q) convo-
lutional layers and N(Q) fully connected layers. For
convolutional layers, the total time complexity of all
convolutional layers is (He KM and Sun, 2015)

O

⎛
⎝C(Q)∑

n=1

Cn · Cn−1 ·M2
n ·K2

n

⎞
⎠ , (11)

where n is the index of a convolutional layer, Cn

is the number of filters (also known as “width”) in
the nth convolutional layer, Cn−1 is also known as
the number of input channels of the nth layer, Kn is
the spatial size (length) of the filter, and Mn is the
spatial size of the output feature map.

For fully connected layers, considering the
adding of bias, the time complexity can be calcu-
lated as follows:

m

⎛
⎝vact ·

N(Q)−2∑
k=1

N(Q)k+

N(Q)−1∑
k=0

N(Q)k ·N(Q)k+1

⎞
⎠

= O

⎛
⎝N(Q)−1∑

k=0

N(Q)k ·N(Q)k+1

⎞
⎠ ,

(12)

where N(Q)k represents the unit number in the kth

fully connected layer, N(Q)0 equals the output size
of the C(Q)th convolutional layer, and vact indicates
the corresponding parameter determined by the type
of the activation layer.

For a convolutional layer, there is a Cn×Cn−1×
K2

n weight matrix and a Cn bias vector. In addition,
there is a Cn ×M2

n output feature map. Hence, the
memory of one convolutional layer is Cn(M

2
n+Cn−1 ·

K2
n). Because the activation does not need to save

weights, the space complexity of all convolutional

layers is formulated as follows:

m

C(Q)∑
n=1

Cn(M
2
n + Cn−1 ·K2

n)

=O

⎛
⎝C(Q)∑

n=1

Cn(M
2
n + Cn−1 ·K2

n)

⎞
⎠ . (13)

For a fully connected layer, there is an N(Q)k×
N(Q)k+1 weight matrix and anN(Q)k+1 bias vector.
Hence, the memory of one fully connected layer is
(N(Q)k + 1)N(Q)k+1. The space complexity of all
fully connected layers is formulated as follows:

m

N(Q)−1∑
k=0

(N(Q)k + 1)N(Q)k+1

=O

⎛
⎝N(Q)−1∑

k=0

N(Q)k ·N(Q)k+1

⎞
⎠ . (14)

For each training step, the computation of SL
loss is all threads’ batching tuple size N ×m. There-
fore, the overall time complexity of our training al-
gorithm is represented as follows:

O

⎛
⎝C(Q)∑

n=1

Cn · Cn−1 ·M2
n ·K2

n

⎞
⎠

+O

⎛
⎝N(Q)−1∑

k=0

N(Q)k ·N(Q)k+1

⎞
⎠

+O(N(Sit)) +O(N), (15)

and the overall space complexity of our training al-
gorithm is as follows:

O

⎛
⎝C(Q)∑

n=1

Cn(M
2
n + Cn−1 ·K2

n)

⎞
⎠

+O

⎛
⎝N(Q)−1∑

k=0

N(Q)k ·N(Q)k+1

⎞
⎠

+O(N(Sit)) +O(N). (16)

4.4 Visualization analysis

What knowledge does our end-to-end au-
tonomous driving model learn from the MDHDP
through pre-training? Which part of the input image
plays a key role in the final output? What changes
have taken place in the network’s focus after pre-
training? Visualization analysis for the specific in-
fluences of the input units in the neural network is

Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686 681

necessary to analyze the reason for performance im-
provement after pre-training. However, it is chal-
lenging to implement visual analysis for a neural
network that outputs continuous results. In this
subsection, motivated by Li LZ et al. (2018), we pro-
pose a visualization method based on the basic the-
ory of single-variable analysis to analyze the changes
of our neural network after pre-training. The re-
sults of visualization are presented in the form of
heatmaps, which directly show the specific areas that
have important impacts on results. By comparing
the heatmaps before and after pre-training, we can
intuitively find the improvements of the neural net-
work brought about by pre-training.

Based on the basic theory of single-variable
analysis, we change the gray value of pixel o while
keeping other pixels unchanged. The change in pixel
o is �o, and the influence on layer ϕ’s outputs in
network θ is as follows:

Iθϕ(�o) = wϕIϕ−1(�o) + bϕ, (17)

where ϕ ≥ 2, and if ϕ = 1, Iϕ−1(�o) = �o. For
a target network θ, its weights {w1, w2, . . . , wf} and
biases {b1, b2, . . . , bf} are fixed (f is the number of
neurons), so Iθϕ(�o) depends only on �o. In actual
operations, the influence of each pixel is calculated
by Algorithm 2.

Algorithm 2 Visualization analysis process
1: Initialize the pixel matrix of input image IM[L,W]

2: Initialize influence matrix IV = zeros(L,W)

3: for o ∈ IM do
4: Iθϕ(�o) = Iθϕ(o+�o)− Iθϕ(o)

5: IV← Iθϕ(�o)

6: end for
7: IV→ heatmap

5 Simulation and experimental results

5.1 Simulation setting

In TORCS (Chen CY et al., 2015), our RL-based
autonomous vehicle i is added to the simulation en-
vironment. This environment, which is based on an
end-to-end autonomous driving model like Fig. 2,
uses a convolutional layer with 32 filters of size 8× 8

with stride 4, followed by a convolutional layer with
32 filters of size 4×4 with stride 2, followed by a con-
volutional layer with 32 filters of size 3×3 with stride

1, and followed by a fully connected layer with 256
hidden units. All four hidden layers are followed by
ReLUs. This network has two sets of outputs: two
linear outputs for the mean and variance of A′

in’s
normal probability distribution and one linear out-
put for the value function V πi(Sin; θv). We compare
our method with four other methods as follows:

1. Typical SL (TSL)
To demonstrate the superiority of our proposed

ASL method to other SL methods, it is compared
with an SL method that has been widely used in
imitation learning tasks (Bojarski et al., 2016).

2. Asynchronous advantage actor-critic (A3C)
To demonstrate the effectiveness of our pre-

training method, it is compared with a recently de-
veloped deep RL algorithm without pre-training, the
A3C (Mnih et al., 2016).

3. A3C with pre-trained convolutional layers
(A3C-PCL)

To demonstrate the superiority of our pre-
training method ASL to other pre-training algo-
rithms, we compare it with a recently developed
pre-training algorithm, i.e., the convolutional layer
pre-training method (de la Cruz et al., 2019).

4. Look-ahead scheme (LAS)
To prove that our RL-based model has bet-

ter performance than the existing traditional au-
tonomous driving schemes, the LAS is compared
with our end-to-end autonomous driving model.

In the RL training stage, we consider vehicle
damage, stuck, tangential velocity along the lane,
and distance from the lane centerline, to formulate
the RL reward by the following expression:

Rit =

⎧⎪⎪⎨
⎪⎪⎩
c, get damaged or stuck,

z, e ≤ z1 or d ≥ z2,

λe − βd, otherwise,

(18)

where λ and β are two positive weights, e denotes
the tangential velocity in the tth time slot, d denotes
the distance from lane centerline, and c and z are
two negative constants. We report the initial perfor-
mance, convergence step, and the best performance
of the RL-based agent and also measure the perfor-
mance improvement using two metrics adapted from
Taylor and Stone (2009) and de la Cruz et al. (2019):

(1) Initial performance: the average reward ob-
tained for the first time by the agent in the RL train-
ing stage.

682 Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686

(2) Convergence step: when the average re-
ward’s standard deviation obtained by the agent in
the RL training stage for 5×106 consecutive training
steps does not exceed 500, it can be considered that
this model has converged, and the initial step of this
convergence interval is the convergence step.

(3) Best performance: the highest average re-
ward obtained by the agent in the RL training stage.

(4) Final performance: the final learned perfor-
mance of the agent in the RL training stage. We use
the reward obtained at step 2× 107 as the value for
the final performance.

(5) Total performance: the total reward
accumulated (i.e., the area under the learning
curve (AUC)) by the agent. We approximate
the AUC using the trapezoidal rule: AUC ≈∑S

s=1
f(xs−1)+f(xs)

2 � xs, where f(xs) is the reward
value at step s and�xs = xs−xs−1 = 1× 103 is the
evaluation frequency.

The parameter settings are given in Table 1.

5.2 Performance in the pre-training stage

In this subsection, the focus is on the perfor-
mance of our proposed ASL method in the pre-
training stage. First, we analyze the change of the
relationship between the output result and model in-
put, to demonstrate the effectiveness of pre-training
from the detailed point of view. The visualization
results before and after pre-training are shown in
Fig. 4, in which white indicates pixels that are im-
portant for current decision making, while black in-
dicates unimportant pixels. The top row shows the
raw inputs; the second row shows the visualization
results of our RL-based agent before pre-training;
the bottom row shows the visualization results of
the agent after pre-training. It can be seen that the

focus of the agent before pre-training is meaning-
less from the second row of Fig. 4. In particular,
when the agent is initialized, it is interested in all
elements of the raw input (top row of Fig. 4). After
pre-training, the agent’s focus is meaningful from
the bottom row of Fig. 4. It can be seen that the
pre-trained agent pays more attention to the factors
that affect driving decision making such as the road
(red-orange) than to some irrelevant factors (black).
The proposed visualization method helps us better
understand the internal mechanism of deep RL de-
cision making from the detailed point of view, and
demonstrates the effectiveness of pre-training in im-
proving the performance of a deep RL-based model.

We then analyze the convergence performance
of ASL and another SL method in the pre-training
stage. Fig. 5 shows the loss curves of our model
trained by ASL and TSL, respectively. For the ASL
method, it can be seen that the loss can converge

Raw input

 Before
pre-training

 After
pre-training

Focus on task-related areas

meaningless

Fig. 4 Visualization results: the top row shows the
raw inputs of our RL-based model; the second and
bottom rows show the visualization results of our
agent before and after pre-training, respectively (Ref-
erences to color refer to the online version of this
figure)

Table 1 Simulation parameters

Parameter Value

Discount factor γ 0.99
Learning rate α 0.000 45
Batching tuple size N 10
Number of pre-training steps Gpre 2× 107

Loss parameters ς, � (‖Ain −A′
in‖1 > 1.5) 0, 0.02

Loss parameters ς, � (1.5 ≥ ‖Ain −A′
in‖1 > 1.0) 0, 0.01

Loss parameters ς, � (1.0 ≥ ‖Ain −A′
in‖1 > 0.5) 0.02, 0.02

Loss parameters ς, � (0.5 ≥ ‖Ain −A′
in‖1) 0.0225, 0.015

Reward parameters c, z, z1, z2, λ, β −0.03, −0.02, 2.5, 1.8, 0.006, 0.0018
Number of parallel actor-learners m 4

Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686 683

TSL diverges

ASL converges

2.0

1.5

1.0

0.5

0

Av
er

ag
e

lo
ss

0 0.5 1.0 1.5 2.0
Number of steps (×107)

ASL
TSL

Fig. 5 Convergence performance in the pre-training
stage, showing the superiority of our proposed
ASL method compared with another SL method in
convergence

to a steady state (about 0.1) after about 1 × 107

steps, which proves that our proposed ASL method
can make the RL-based model effectively learn the
prior knowledge from the training data set. For the
TSL method, it remains in a high loss state. TSL
cannot adapt to the high-dimensional input or con-
tinuous output of the autonomous driving scenario,
and therefore loses the ability to converge. This ver-
ifies the superiority of our proposed ASL method
in imitation learning of autonomous driving model’s
pre-training tasks.

5.3 Performance in the RL training stage

In this subsection, the focus is on the perfor-
mance of the pre-trained autonomous driving model
in the RL training stage. We analyze the effective-
ness of our pre-training method in improving subse-
quent RL training in real-world settings (simulated
by TORCS). From Fig. 6, it can be seen that the
autonomous driving model pre-trained by our ASL
method with 1.0 × 107 pre-training steps converges
faster in the RL training process than the A3C and
A3C-PCL methods. More importantly, it does not
have to suffer from poor initial performance. The
red horizontal line shows the average LAS reward,
which proves that our RL-based model performs bet-
ter than the typical autonomous driving method.
Interestingly, the performance of A3C-PCL is even
worse than that of the A3C without pre-training.
The A3C-PCL method divides the autonomous driv-
ing model into two parts, namely, the feature ex-

3500

3000

2500

2000

1500

1000

500

0

Av
er

ag
e

sc
or

e

0 0.5 1.0 1.5 2.0
Number of steps (×107)

A3C
ASL
A3C-PCL
LAS

Fig. 6 Simulation results for different methods in the
RL training stage, showing the reward against the
total RL training step (References to color refer to
the online version of this figure)

tractor and the controller, and pre-trains only the
convolutional layers as a feature extractor. As de-
scribed in the previous section, it is not possible to
make a clean break between the part of the end-to-
end network that functions primarily as a feature
extractor and the part that serves as a controller.
The simulation results show that training the con-
volutional layers alone, instead of training the entire
network, destroys the integrity of the autonomous
driving model, and causes its performance in the RL
training stage to be inferior to that of the model
without pre-training.

Table 2 shows the quantitative performance im-
provements of our pre-training ASL method over
the baseline A3C and another pre-training method,
A3C-PCL. The ASL method achieves the best per-
formance in the RL training process with a remark-
able total performance improvement of 36.07% over
the A3C method. The convergence step of our
proposed method is reduced by 51.43% compared
to that of the A3C method. Compared with the
A3C method, the total performance of the A3C-PCL
method decreases by 39.34%. In addition, the A3C-
PCL method has different effects on neural networks
of different structures, so it is difficult to use it as
a general methodological framework for autonomous
driving model’s pre-training tasks. The quantita-
tive results verify the effectiveness of our proposed
ASL method in improving the autonomous driving
model performance in the RL training stage, and
prove the superiority of our proposed joint method-
ological framework of RL and SL.

684 Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686

5.4 Real test

To prove the feasibility of our proposed pre-
training method in real-world settings, we built a
real-vehicle verification system (shown in Fig. 7)
and tested it with three electrical robot cars (shown
in Fig. 1) equipped with a Camera Serial Interface
(CSI) camera. Note that to obtain accurate RL re-
ward values (Eq. (18)), we used an ultra wide band
(UWB) system to measure the state values of each
vehicle. Fig. 8 shows the loss curve of the ASL
method in the pre-training stage. It can be seen that

the loss can converge to a steady state (about 0.05)
after about 4×107 steps. After pre-training, the RL-
based model learned prior knowledge of driving in
real-world settings before RL training, which would
improve the convergence speed of RL training. Then
we can import the pre-trained model parameters into
the end-to-end autonomous driving models of these
vehicles in the real-vehicle verification system. The
training system would asynchronously execute mul-
tiple RL processes with three vehicles in parallel,
on multiple tracks (different driving environments).
Like our proposed ASL method, this asynchronous

Table 2 Quantitative evaluations of different methods using five metrics: initial performance, convergence
step, best performance, final performance, and total performance

Performance metric ASL A3C A3C-PCL LAS

Initial performance 715.83 ± 0.00 −0.13± 0.05 −0.15± 0.02 728.16

Convergence step (×107) 0.51± 0.30 1.05± 0.99 0.18± 0.32 −
Best performance (×103) 2.89± 0.01 2.92± 0.00 2.38± 0.20 0.73

Final performance (×103) 1.98± 0.74 1.47± 1.44 0.14± 0.24 0.73

Total performance (×1010) 4.98± 0.14 3.66± 0.11 2.22± 0.21 0.29

Results for ASL, A3C, and A3C-PCL are represented as mean±standard deviation

(a)

ROS-based
electrical robot car

UWB location
anchor

Distance 1

Strategy
learning
scenarios

Distance 2

Distance 3Distance 4 Strategy
learning
scenarios

Strategy
validation
scenarios

(b)

UWB location console
UWB location anchor

UWB

ROS master

ROS slave
WIFI

Fig. 7 The real-vehicle verification system: (a) the schematic diagram of real-vehicle scenarios; (b) the physical
picture of real-vehicle scenarios

Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686 685

training method can stabilize the training process
and accelerate convergence.

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

Av
er

ag
e

lo
ss

0 1 2 3 4 5 6 7 8
Number of steps (×107)

ASL (real-vehicle data)

Fig. 8 Test result with real-world driving demonstra-
tion data

6 Conclusions

Although many advanced RL algorithms have
been developed for autonomous driving, such as A3C
and DDPG, they all suffer from poor initial perfor-
mance. We have proposed an ASL method to im-
prove the convergence speed of the autonomous driv-
ing model in an RL training process, and our trained
model can achieve better performance than the typ-
ical autonomous driving methods. We have found
a feasible and effective visualization method to an-
alyze the improvement due to pre-training from the
detailed point of view, which uses heatmaps to visu-
alize the specific influences of the input units in the
neural network. The visualization results are mean-
ingful and explicable, which helps us determine if the
pre-trained model has learned prior knowledge. Sim-
ulation and experimental results have demonstrated
the feasibility, effectiveness, and superiority of our
method from both the microscopic and macroscopic
points of view.

We will explore more different RL theories to
improve the performance of our proposed joint RL
and SL methodological framework. The next big step
is to train the end-to-end autonomous driving model
in real urban traffic situations, such as intersections
and T junctions. Additional future work is, if legal
issues are resolved, to verify our RL-based system on
public highways without driver intervention.

Contributors
Yunpeng WANG designed the research. Kunxian

ZHENG processed the data. Daxin TIAN drafted the

manuscript. Xuting DUAN helped organize the manuscript.

Kunxian ZHENG and Jianshan ZHOU revised and finalized

the paper.

Compliance with ethics guidelines
Yunpeng WANG, Kunxian ZHENG, Daxin TIAN, Xu-

ting DUAN, and Jianshan ZHOU declare that they have no

conflict of interest.

References
Bai ZW, Shangguan W, Cai BG, et al., 2019. Deep re-

inforcement learning based high-level driving behavior
decision-making model in heterogeneous traffic. Proc
Chinese Control Conf, p.8600-8605.
https://doi.org/10.23919/ChiCC.2019.8866005

Bojarski M, Del Testa D, Dworakowski D, et al., 2016. End
to end learning for self-driving cars.
https://arxiv.org/abs/1604.07316

Brys T, Harutyunyan A, Suay HB, et al., 2015. Reinforce-
ment learning from demonstration through shaping.
Proc 24th Int Conf on Artificial Intelligence, p.3352-
3358.

Chen CY, Seff A, Kornhauser A, et al., 2015. DeepDriving:
learning affordance for direct perception in autonomous
driving. Proc IEEE Int Conf on Computer Vision,
p.2722-2730. https://doi.org/10.1109/ICCV.2015.312

Chen JY, Yuan BD, Tomizuka M, 2019. Model-free deep
reinforcement learning for urban autonomous driving.
Proc IEEE Intelligent Transportation Systems Conf,
p.2765-2771.
https://doi.org/10.1109/ITSC.2019.8917306

Codevilla F, Müller M, López A, et al., 2018. End-to-end
driving via conditional imitation learning. Proc IEEE
Int Conf on Robotics and Automation, p.4693-4700.
https://doi.org/10.1109/ICRA.2018.8460487

de la Cruz GVJr, Du YS, Taylor ME, 2019. Pre-training
with non-expert human demonstration for deep rein-
forcement learning. Knowl Eng Rev, 34:e10.
https://doi.org/10.1017/S0269888919000055

González D, Pérez J, Milanés V, et al., 2016. A review
of motion planning techniques for automated vehicles.
IEEE Trans Intell Transp Syst, 17(4):1135-1145.
https://doi.org/10.1109/TITS.2015.2498841

Hao W, Lin YJ, Cheng Y, et al., 2018. Signal progression
model for long arterial: intersection grouping and coor-
dination. IEEE Access, 6:30128-30136.
https://doi.org/10.1109/ACCESS.2018.2843324

He KM, Sun J, 2015. Convolutional neural networks at
constrained time cost. Proc IEEE Conf on Computer
Vision and Pattern Recognition, p.5353-5360.
https://doi.org/10.1109/CVPR.2015.7299173

He Y, Zhao N, Yin HX, 2018. Integrated networking, caching,
and computing for connected vehicles: a deep reinforce-
ment learning approach. IEEE Trans Veh Technol,
67(1):44-55.
https://doi.org/10.1109/TVT.2017.2760281

686 Wang et al. / Front Inform Technol Electron Eng 2021 22(5):673-686

Li L, Lv YS, Wang FY, 2016. Traffic signal timing via
deep reinforcement learning. IEEE/CAA J Autom Sin,
3(3):247-254.
https://doi.org/10.1109/JAS.2016.7508798

Li LZ, Ota K, Dong MX, 2018. Humanlike driving: empirical
decision-making system for autonomous vehicles. IEEE
Trans Veh Technol, 67(8):6814-6823.
https://doi.org/10.1109/TVT.2018.2822762

Liu N, Li Z, Xu JL, et al., 2017. A hierarchical framework
of cloud resource allocation and power management us-
ing deep reinforcement learning. Proc IEEE 37th Int
Conf on Distributed Computing Systems, p.372-382.
https://doi.org/10.1109/ICDCS.2017.123

Mao HZ, Alizadeh M, Menache I, et al., 2016. Resource
management with deep reinforcement learning. Proc
15th ACM Workshop on Hot Topics in Networks, p.50-
56. https://doi.org/10.1145/3005745.3005750

Mnih V, Kavukcuoglu K, Silver D, et al., 2013. Playing Atari
with deep reinforcement learning.
https://arxiv.org/abs/1312.5602

Mnih V, Kavukcuoglu K, Silver D, et al., 2015. Human-level
control through deep reinforcement learning. Nature,
518(7540):529-533.
https://doi.org/10.1038/nature14236

Mnih V, Badia AP, Mirza M, et al., 2016. Asynchronous
methods for deep reinforcement learning. Proc 33rd Int
Conf on Machine Learning, p.1928-1937.

Nair A, Srinivasan P, Blackwell S, et al., 2015. Massively
parallel methods for deep reinforcement learning.
https://arxiv.org/abs/1507.04296

Nair A, McGrew B, Andrychowicz M, et al., 2018. Overcom-
ing exploration in reinforcement learning with demon-
strations. https://arxiv.org/abs/1709.10089

Paden B, Čáp M, Yong SZ, et al., 2016. A survey of motion
planning and control techniques for self-driving urban
vehicles. IEEE Trans Intell Veh, 1(1):33-55.
https://doi.org/10.1109/TIV.2016.2578706

Qiu CR, Hu Y, Chen Y, et al., 2019. Deep deterministic pol-
icy gradient (DDPG)-based energy harvesting wireless
communications. IEEE Int Things J, 6(5):8577-8588.
https://doi.org/10.1109/JIOT.2019.2921159

Sallab AE, Abdou M, Perot E, et al., 2017. Deep
reinforcement learning framework for autonomous
driving. Electron Imag, 2017(19):70-76.
https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-
023

Schwarting W, Alonso-Mora J, Rus D, 2018. Planning and
decision-making for autonomous vehicles. Ann Rev
Contr Robot Auton Syst, 1:187-210.
https://doi.org/10.1146/annurev-control-060117-105157

Selvaraju RR, Cogswell M, Das A, et al., 2019. Grad-CAM:
visual explanations from deep networks via gradient-
based localization. Int J Comput Vis, 128(8):336-359.
https://doi.org/10.1007/s11263-019-01228-7

Silver D, Schrittwieser J, Simonyan K, et al., 2017. Mastering
the game of Go without human knowledge. Nature,
550(7676):354-359.
https://doi.org/10.1038/nature24270

Taylor ME, Stone P, 2009. Transfer learning for reinforce-
ment learning domains: a survey. J Mach Learn Res,
10:1633-1685.

Wang YP, Zheng KX, Tian DX, et al., 2020. Cooperative
channel assignment for VANETs based on multiagent
reinforcement learning. Front Inform Technol Electron
Eng, 21(7):1047-1058.
https://doi.org/10.1631/FITEE.1900308

Xu ZY, Wang YZ, Tang J, et al., 2017. A deep reinforcement
learning based framework for power-efficient resource
allocation in cloud RANs. Proc IEEE Int Conf on
Communications, p.1-6.
https://doi.org/10.1109/ICC.2017.7997286

Zhang XQ, Ma HM, 2018. Pretraining deep actor-critic
reinforcement learning algorithms with expert demon-
strations. https://arxiv.org/abs/1801.10459

Zhou BL, Khosla A, Lapedriza A, et al., 2016. Learning deep
features for discriminative localization. Proc IEEE Conf
on Computer Vision and Pattern Recognition, p.2921-
2929. https://doi.org/10.1109/CVPR.2016.319

	Introduction
	Related work
	System model and problem formulation
	Asynchronous supervised learning
	Pre-training demonstration collection
	Asynchronous supervised learning framework
	Complexity analysis
	Visualization analysis

	Simulation and experimental results
	Simulation setting
	Performance in the pre-training stage
	Performance in the RL training stage
	Real test

	Conclusions

