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Three-dimensional face point cloud hole-filling algorithm

based on binocular stereo matching and a B-spline*
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Abstract: When obtaining three-dimensional (3D) face point cloud data based on structured light, factors related to the
environment, occlusion, and illumination intensity lead to holes in the collected data, which affect subsequent recognition. In this
study, we propose a hole-filling method based on stereo-matching technology combined with a B-spline. The algorithm uses
phase information acquired during raster projection to locate holes in the point cloud, simultaneously extracting boundary point
cloud sets. By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster
projection method, some supplementary information points can be obtained at the holes. The shape of the B-spline curve can
then be roughly described by a few key points, and the control points are put into the hole area as key points for iterative
calculation of surface reconstruction. Simulations using smooth ceramic cups and human face models showed that our model can
accurately reproduce details and accurately restore complex shapes on the test surfaces. Simulation results indicated the
robustness of the method, which is able to fill holes on complex areas such as the inner side of the nose without a prior model.
This approach also effectively supplements the hole information, and the patched point cloud is closer to the original data. This
method could be used across a wide range of applications requiring accurate facial recognition.

Key words: Three-dimensional (3D) point cloud; Hole filling; Stereo matching; B-spline
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1 Introduction

Computer vision technology is one of the key

core technologies of artificial intelligence (Russell

et al., 2010). Meanwhile, visual knowledge (Pan,

2019) represents knowledge in a new form, which

can be applied in the fields of security, finance, hard‐

ware, marketing, automobile design, and medicine.

Within the field of computer vision, facial recogni‐
tion algorithms based on fundamental issues of visual
recognition (Pan, 2021) have received extensive atten‐
tion in recent years, and many two-dimensional (2D)
and three-dimensional (3D) facial recognition algo‐
rithms have been produced over a short period
(O’Toole et al., 2012; Black et al., 2016; Gilani and
Mian, 2016). At present, 2D facial recognition tech‐
nology is present in a large number of commercial
products. However, compared with 2D recognition,
3D facial recognition technology, which involves more
extracted information and higher accuracy, is still in
the research and development stage. Collection of data
and vulnerability to ambient light are two important
factors that constrain further development. Three-
dimensional face data can usually be acquired by laser
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3D measurement or raster projection measurement
(Schaffer et al., 2011; Liu K et al., 2014; Stone and
Skubic, 2015). However, if a recognition system uses
raster projection measurement for data collection,
holes in the cloud point data may appear on the inner
side of the nose and at the corners of the eyes in the
early stages of data storage. This is due to the need to
project auxiliary light during measurement, as well
as the degree of cooperation from the user. Holes
seriously affect automatic data storage and create
issues related to subsequent identification. Therefore,
filling point cloud holes is a crucial step in the pre-
processing of data.

There are two major difficulties related to filling
holes in point cloud data. The first is rapid location
and extraction of hole boundaries. Its accuracy directly
affects effective filling. Existing hole-boundary extrac‐
tion methods are based mainly on 3D data. These are
based on a point cloud grid (Orriols and Binefa, 2003;
Jun, 2005) or on the geometric features of boundary
points (Floater and Reimers, 2001; Kurlin, 2014; Nguyen
et al., 2015). The former method usually extracts
smoother point cloud boundaries, but requires a large
amount of computation. The latter is less computation‐
ally intensive, but is susceptible to noise and outliers.

The second difficulty, and also the more critical,
concerns producing fill-in data that is close to the
original data. It is well known that filling a hole in a
flat-panel point cloud data set is different from filling
a point cloud data set describing a table that contains
a bump (the hole is located at the bump). Existing
hole-filling algorithms directly employ information
related to the neighborhood around the hole, directly
using methods such as a spline curve (Chui and Lai,
2000; Bendels et al., 2006) or a neural network (Carr
et al., 2001) for interpolation. This type of algorithm
is simple, easy to use, and does not require any addi‐
tional information. However, for a hole area with large
curvature variation or complicated shape, the filling
may not be ideal because of excessive information
loss. Pernot et al. (2007) proposed a method of filling
holes that involved inserting a topological mesh, which
was then deformed. In this approach, the shape of the
inserted mesh is the result of minimizing the quadratic
function based on the linear mechanical model. This
model is used to approximate the curvature variation
between the inner mesh and surrounding mesh. It is

also possible to specify other geometric constraints
to further shape the inserted mesh. Another method
has been proposed based on moving least squares to
fill point cloud holes (Wang and Oliveira, 2007); it
can be used to adaptively interpolate geometric and
shadow information.

In recent years, Liu YJ et al. (2016) proposed a
classification and repairing strategy based on a fuzzy
inference system. This approach involves an algorithm
that divides holes into five types, each with correspond‐
ing filling strategies. It also considers the recovery of
sharp features of the model, based on different hole
types. At the same time, researchers have suggested
that data can be processed in combination with addi‐
tional information and surrounding structures. Quin‐
sat and Lartigue (2015) proposed a digital hole-filling
method based on mesh deformation. This method relies
on a numerical model as a priori knowledge of the
nominal mesh. It uses an a priori computer aided design
(CAD) model and the continuity of the neighborhood
around the hole as a constraint for recovering data. Pan‐
chetti et al. (2010) used 2D information related to the
corresponding picture and the curvature of the point
cloud mesh to repair holes. The employed algorithm
relates the position of the mesh vertices to the light inten‐
sity of the image pixels. The objective function based
on a mechanical model of a bar network is used to sim‐
ulate the evolution of curvature over the mesh. These
methods can satisfactorily fill complex areas. However,
no matter whether these establish an a priori CAD
model or provide registration between 2D pixels and
3D point clouds, the overall complexity of these algo‐
rithms is high. Moreover, the conditions for obtaining
the prior model are demanding and not universal.

Based on the above reasons and methodological
extension, and considering the measurement principle
of a raster projection measurement system, in this
study we propose a 3D face point cloud hole-filling
algorithm, using binocular stereo matching and a B-
spline. The cross-source point cloud data is obtained
using the structure from motion (SFM) algorithm of
stereo matching technology (Jeong et al., 2011; Chen
et al., 2016). The supplementary information points
in the hole area are extracted to assist surface iterative
computation of the B-spline curve. Pure SFM data
cannot be compared with raster data in accuracy, but
when the missing information is too much, certain
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known information is definitely better than the repair
of completely unknown information. Combining spline
iteration by extracting observation points, our final
repair data can be close to the data of pure raster pro‐
jection. Experimental findings indicate high reliability
and potential for practical applications of our approach.

2 Method

The setup of the proposed facial recognition system
is shown in Fig. 1.

While acquiring point cloud data using a monoc‐
ular measurement system consisting of a digital light
projector (DLP) and charged-coupled device (CCD),
two wide dynamic 2D cameras are added for ranging.
Simultaneous collection and backup of the 2D picture
information can also be achieved. Since the person
who is being photographed is required to turn his or
her head slightly to the left and right during acquisi‐
tion, sufficient 2D picture information can be obtained.

A flow chart describing the facial recognition
algorithm proposed in this study is shown in Fig. 2.

The algorithm described in Fig. 2 may appear
rather complicated because it converts the point cloud
data back and forth between 2D and 3D representa‐
tions. However, for the repair of data related to a
complex facet without a priori models, this step can‐
not be avoided. The 3D face data is quickly recon‐
structed using a standard SFM algorithm and regis‐
tered with the measured data. The 2D phase informa‐
tion is then used to extract the boundary point sets on
the hole areas of the point cloud. The required sup‐
plementary information points are extracted accord‐
ing to the boundary information of the registration re‐
sults. Finally, the hole is repaired using a B-spline on
the boundary point data sets with added supplemen‐
tary points.

The SFM data sets are obtained using the Visual-
SFM (Zheng and Wu, 2015) toolkit. There are two
main advantages in employing this toolkit. First, it
uses the patch-based multi-view stereo (PMVS)
(Furukawa and Ponce, 2010) algorithm for dense
reconstruction. A point cloud that has been densely
reconstructed by PMVS has a relatively high reconstruc‐
tion accuracy and integrity on the test site (Goesele
et al., 2006). Some results are even comparable to
laser-scanned data (Shi et al., 2011). In previous exper‐
imental findings, the reconstruction integrity of the
method was above 90%. The second advantage of using
this toolkit is that the reconstruction efficiency is high,
and the time complexity of the main algorithm scales
as O(n).

3 Data preprocessing

3.1 Acquisition of phase information

We use a raster projection measurement method
based on light mechanism. It processes the collected
sinusoidal phase shift fringe image sequence to calcu‐
late the wrapped phase. We assume that the gray values
of the four phase shift images are as follows:
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I1 (u,v ) = I′ + I″cos [ θ (u,v ) ] ,

I2 (u,v ) = I′ + I″cos [ θ (u,v ) + π/2 ] ,

I3 (u,v ) = I′ + I″cos [ θ (u,v ) + π ] ,

I4 (u,v ) = I′ + I″cos [ θ (u,v ) + 3π/2 ] ,

(1)

where Ii(u, v) is the gray value of the ith image, I' is
the background value of the fringe light intensity, I"
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Fig. 2 Flow diagram describing the proposed algorithm
for facial recognition
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Fig. 1 Hardware setup for the facial recognition system
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is the modulation intensity, and θ is the phase field to

be obtained. The wrap phase value is

φ (u,v ) = arctan ( I4 − I2

I1 − I3 ) . (2)

The value range of the wrapped phase φ(u, v) is
[−π, π], as shown in Fig. 3. The true phase value

should be

θ (u,v ) = φ (u,v ) + 2k (u,v )π. (3)

In Eq. (3), k(u, v) is an integer, representing the
number of fringe cycles where the image point (u, v)
is located. We determine the value of k and expand the
wrapped phase into a continuously distributed abso‐
lute phase, called the unwrapped phase. The gray code

pattern is a set of binary fringe pattern sequences with

the number of cycles multiplied, and the maximum

number of cycles is consistent with the sinusoidal fringe

pattern. We arrange the acquired gray code fringe images

in time series, decode the pixel points according to the

gray value to obtain a binary number, and uniquely

determine the cycle number k. The gray code encoding

principle is shown in Fig. 4.

The above calculation process of obtaining the
absolute phase is independent of the processing of
different pixels, and only the phase value of the key
point can be calculated, reducing the time consumed
by the algorithm. We take a set of horizontally coded
fringe images of Venus’ head, and obtain the phase
field results as Fig. 5.

3.2 Hole boundary extraction of the point cloud

In order for point cloud data to be repaired, the
2D phase information obtained is used to extract the
hole boundary. Our method uses mainly the feature that
hole boundary points are easy to identify and extract in
a 2D phase map.

For non-closed point cloud data, the boundary
points are composed of outer contour points and inner
hole area boundary points. In a 2D phase diagram, the
point cloud boundary points appear as phase jumps.
To eliminate the influence of noise points and remove
outliers, the boundary points of the point cloud are
defined as phase jumps. The phase of the point itself is
not 0, and the phases of the points in the neighborhood
are also not equal to 0. In the experiment, the number
of neighborhood points is set to eight.

Let the size of the 2D phase map be M×N, and
p[m][n] is a point on the phase map. The set of all
boundary points of the point cloud is B. The set of
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outer contour points is BE. The set of boundary points
in the inner hole area is Hp. When p[m][n] satisfies
Eq. (4), p[m][n]∈B:
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|| p [ m ] [ n ] ‒ p [ m ± 1] [ n ± 1] > ∂,

p [ m ] [ n ] ≠ 0,

∑
i = 1

8

p [ m ± 1] [ n ± 1] ≠ 0,

∏p [ m ± 1] [ n ± 1] = 0,

(4)

where ∂ is the threshold for a phase jump, set to 5 in
the experiment.

After extracting all the boundary points, further
processing of the data is needed. On a 2D phase image,
the outer contour points are characterized by the initial
and final non-zero points of each row in the point
cloud boundary point set B. When p[m][n] satisfies
Eq. (5), p[m][n]∈BE:









∑

j = 0

m − 1

p [ m ] [ j ] = 0 ∑
j = m + 1

N

p [ m ] [ j ] = 0, (5)

where m=1, 2, … , M, and hole boundary points Hp=
{p[m][n]|p[m][n]∈B−BE}, || is the logical judgement
for or. It can be seen from Shi et al. (2011) that the
3D coordinates [XW, YW, ZW]T of the point cloud data
measured using raster projection have the following
relationship with corresponding point p[m][n] = θ on
the phase map:

θ =
a1 XW + a2YW + a3 ZW + a4

a5 XW + a6YW + a7 ZW + a8

, (6)
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where θ is the phase value, a1–a8 are system parame‐
ters, ρ is the scale factor, and Ac is the internal param‐
eter matrix of the 3×3 camera. a1‒a8 and Ac can be
obtained through the calibration of the system.

Therefore, the 2D phase coordinates of the
boundary points of the hole are substituted. The cor‐
responding 3D coordinate point H={hi|i=1, 2, … , k}
of the hole boundary can then be calculated using
Eqs. (6) and (7).

Fig. 6 is a schematic describing the extraction of

hole boundary points in a face point cloud. The green
points are the extracted boundary points. Fig. 6a
shows the original face point cloud map, Fig. 6b is
the schematic of the boundary points, and Fig. 6c is
the schematic after the removal of outer boundary
points.

3.3 Point cloud registration

To obtain the supplementary points for the point
cloud data set acquired using SFM in the hole area, it
is necessary to register point cloud sets acquired by
raster projection and SFM. In this paper, the initial reg‐
istration is achieved using random sample consensus
(RANSAC) (Buchin et al., 2009) based on a coplanar
four-point set. The improved iterative closest point
(ICP) provided in our previous work (Huang Y et al.,
2015; Huang Y and Da, 2019) is then employed to
accurately register the point cloud. For two cross-
source point clouds (Huang XS et al., 2017) of the
same object, the data can be converted using
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where R is the rotation matrix and the orthogonal unit
matrix is a 3×3 one, T=[TX, TY, TZ]

T is the 3D translation
vector, s is the scaling factor, [XW, YW, ZW] is a point in
the data set PW obtained by raster projection, [XN, YN,
ZN] is a point in the data set PN obtained by SFM, and
M is a 4×4 matrix. In the initial registration, the cor‐
responding regions with distinct features are first
marked in PW and PN, respectively, to increase the
registration efficiency. The RANSAC method is used
to randomly select four points of any non-collinear

(a) (b) (c)

Fig. 6 Hole boundary extraction in a face point cloud:
(a) initial point cloud; (b) boundary points (green); (c) point
cloud without the outer boundary points
References to color refer to the online version of this figure
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line, find the corresponding points in PN, and calculate
the corresponding transformation matrix M. After r it‐
erations, a transformation matrix M that minimizes the
matching errors between the two point clouds is se‐
lected, and M is used to obtain the initial matching re‐
sult. In the experiment, r=10. In precise registration,
first we find the four points closest to the Euclidean
distance PN, for each point p in PW. Next, we find the
center of gravity of the smallest neighborhood formed
by these four points, thus forming pairs of points.
The parameters R and T are then calculated using the
least squares method. The final result is applied to PN

to obtain the point cloud set PN'. After obtaining PN',
the supplementary information points of the hole ar‐
ea required by the algorithm can be extracted to
guide the repair of the point cloud hole. The method of
screening supplementary information points is as fol‐
lows: H={hi|i=1, 2, …, k} are the hole boundary points
of the point cloud. For each point PN in PN', it must be
determined whether it is in the bounding box of H. If
so, p∈PI; otherwise, p is not an element of PI, where PI

is a set of supplementary information points. At this
point, the point cloud set Ps=PW∪PI to which supple‐
mentary information points are added can be obtained.

4 Point cloud hole filling

After obtaining point set Ps consisting of hole
boundary points and supplementary information points,
a B-spline surface is employed to initialize hole filling.

4.1 B-spline surface

The number of control vertices bij (i=0, 1, …, m;
j=0, 1, …, n) is set to (m+1)(n+1), while the values of
the two columns of surface nodes u and v satisfy u0≤
u1≤…≤um+k+1 and v0≤v1≤…≤vm+l+1. A k×lth-order B-
spline surface is then defined using Eq. (9):

S (u,v ) =∑
i = 0

m ∑
j = 0

n

Nik (u ) Njl (v )bij, (9)

where
u ∈ [ uk,um + 1 ] ,v ∈ [ vl,vn + 1 ] ,

Nik (u ) =
u‒ui

ui + k‒1‒ui

Ni, k‒1 (u )

+
ui + k‒u

ui + k‒ui + 1

Ni + 1, k‒1 (u ) ,

(10)

Njl (v ) =
v‒vj

vj + l‒1 ‒ vi

Nj, l‒1 (v )

+
vj + l ‒ v

vj + l ‒ vj + 1

Nj + 1,l‒1 (v ) ,

(11)

Nik(u) =
ì
í
î

1, k = 1,ui ≤ u ≤ ui + 1,

0, k = 1,ui ∉ [ ui,ui + 1 ] ,

Njl(v ) =
ì
í
î

1, l = 1,vj ≤ v ≤ vj + 1,

0, l = 1,vj ∉ [ vj,vj + 1 ] .

(12)

Here Nik(u) and Njl(v) are B-spline basis functions of
the kth-order and lth-order B-spline surfaces, defined
by two columns of nodes u and v, respectively. The
polyhedron composed of (m+1)(n+1) control vertices
bij is usually referred to as the control mesh of the B-
spline surface, or the control polyhedron. The shape
of the control polyhedron generally reflects the shape
of the B-spline surface.

4.2 Parameterization of the point set

In the process of B-spline surface fitting for the
selected scattered point set Ps, the parameterization
of scattered points is indispensable. Commonly used
parameterization methods are uniform parameteriza‐
tion, centripetal parameterization, and cumulative chord
length parameterization. However, these methods are
employed mainly for data points in an array of topo‐
logical matrices. The base surface projection method
is used mainly for the parameterization of scattered
points.

A 3D point cloud contains information in three
spatial directions: X, Y, and Z. However, in research
and practical applications, we find that X and Y often
carry more detailed information because of the way
in which subjects are used to having facial images
taken. Therefore, for the point cloud data set Ps, the
four extreme points (Xmin, Ymin), (Xmin, Ymax), (Xmax,
Ymin), and (Xmax, Ymax) of the 2D (X, Y) coordinates are
separately selected to form a quadrilateral plane. The
basic surface is then constructed using this as a plane.
However, since a small number of data points may
fall outside the plane after projection, it is necessary
to adaptively enlarge the area of the quadrilateral
ABCD to ensure that all points of the point set Ps can
fall in the plane after being projected. The basic
curved surface Bs required for the parameterization
process is constructed, as shown in Fig. 7.
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The parameterized coordinates (us, vs) of Ps can
be obtained through iteration using the base projection
method. Adding Ps into Eq. (9), we obtain

∑
i = 0

m ∑
j = 0

n

Nik (u ) Njl (v )bij = Ps. (13)

Finally, the least squares method is used to solve
the over-constrained equations. The control vertices of
the surface are determined to obtain surface Bs of the
preliminary fitting.

However, after initial fitting, the distance error
between point set Ps and surface Bs is still relatively
large. Therefore, it is necessary to further modify the
control vertices, change the shape of the control poly‐
hedron, and change the shape of the surface so that
surface Bs approaches point set Ps. An iterative
approximation algorithm based on the Newton iteration
method used to improve the fitting accuracy is
described in Section 4.3.

4.3 Iterative approximation to fitting surfaces

Given a surface C(u, v) and a point F of an arbi‐
trary parameter, the distance vector between any
point on surface C(u, v) and point F can be expressed
as a function, with (u, v) as a parameter, as shown in
Eq. (14):

V (u,v ) = C (u,v ) ‒F. (14)

To determine parameter (u0, v0) when the value
of ||V(u, v)|| is the lowest, we may set the line where
the vector V(u, v) is located to be l. If line l intersects
with surface C(u, v) at point C(u0, v0), the vector
V(u0, v0) needs to be perpendicular to the tangent

plane of the surface C(u, v) tangent to the point C(u0,
v0), as shown in Fig. 8.

Then V(u0, v0) must be perpendicular to the partial
differentials Cu(u0, v0) and Cv(u0, v0) of surface C(u, v)
at (u0, v0) in each direction:

ì
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V (u0,v0 ) ⋅ Cu (u0,v0 ) = 0,

V (u0,v0 ) ⋅ Cv (u0,v0 ) = 0.
(15)

The point selected in the point cloud to fit the
surface is Ps , and the initially fitted surface is S(u, v).
The distance vector of any point on Ps and S(u, v) can
be expressed as a function with (u, v) as a parameter:

d (u,v ) = S (u,v ) ‒ Ps, (16)

and

ì
í
î

f (u,v ) = d (u,v ) ⋅ Su (u,v ) = 0,

g (u,v ) = d (u,v ) ⋅ Sv (u,v ) = 0.
(17)

Here Su(u, v) and Sv(u, v) are the first-order partial
derivatives of surface S(u, v) for u and v, respectively.
The barycentric coordinates (us, vs) of Ps are calculated
and used as the initial estimate. Eq. (17) is solved
according to the Newton iteration method:

HσT = k T, (18)

where
σ = (δu, δv ) , (19)

k = ‒ ( f (us, vs ), g (us, vs ) ) , (20)
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C(u,v)

CuCv

V(u0,v0)
F

l

C(u0,v0)

Fig. 8 The condition for the shortest distance between
point F and arbitrary parameter surface C(u, v)

                              (a) (b)

AA'

B'

B

C'

D'

A'

D'

C'

B'

O C

D

Bs(u,v)

Ps

Fig. 7 Construction process for a basic curved surface Bs:
(a) the quadrilateral plane is enlarged to ensure that all
data points can fall within the plane; (b) the curved sur‐
face is constructed
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where δu and δv are the iterative steps in both direc‐
tions, d=d(us, vs), fu, fv, gu, and gv represent the first-
order partial derivatives of the corresponding vector
pair u and v at point (us, vs), and Suu, Suv, Svv, and Svu

represent the second-order partial derivatives of surface
S(u, v) at point (us, vs) for u and v.

According to Eq. (18), we obtain
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After solving Eq. (22), iterative step lengths δu
and δv can be determined, and the new parameter (us+
δu, vs+ δv) is substituted into Eq. (13) to obtain the
surface control point, and the parameters of the surface
are re-determined. The final value is set to γ>0 (accord‐
ing to the needs of the given system), and Eq. (22) is

iteratively solved until [ t∑s = 0

t d (us + δu,vs + δv ) ‒

]d (us,vs )
‒1 ≤ γ, and surface S′(u, v) is determined.

To fill the holes in the final fitted B-spline surface
S′ (u, v), we consider a line on surface S′ (u, v), and
then points on the line (Fig. 9).

In a point cloud, curvature changes are usually
relatively great when the point cloud density is higher.
Therefore, the hole can be filled smoothly by selecting
points based on such a parameter as curvature. In the
process of obtaining the curvature, the original point
cloud is first divided into grids, and then the kn neigh‐
boring points of a particular point are obtained.
Based on the relationship between each point and its
kn neighboring points, the average curvature ρ̄0 and

the average point distance d̄ of the original point
cloud are then obtained. The average curvature ρ̄s of

Ps (s=0, 1, …, t) is similarly obtained, and the interval
between collected points is set to Δω = ρ̄0 d̄ ρ̄s. When

collecting points on the B-spline surface S′ (u, v), the
equal-parameter curve is obtained at an equal inter‐
val of Δω in the direction of u on the surface. Points
are then collected at an equal interval in the direction of
v on each equal-parameter curve, to obtain discrete
points for filling the holes.

5 Simulation results

To verify the effectiveness of the proposed al‐
gorithm, simulations were conducted on two mod‐
els: a smooth ceramic cup and a human face. The
simulations were performed on a computer with
Core i5, 4 GB memory, and the Windows 10 operat‐
ing system. Matlab 2015b was used as the software
environment.

First, the algorithm was tested on ordinary smooth
surface objects. Fig. 10a shows the ceramic cup point
cloud data obtained by raster projection measurement.
It can be seen that since the reflectivity of the ceramic
cup was too high, a hole was formed in the middle of
the point cloud. Fig. 10b shows the point cloud data
measured using VisualSFM. Since the smooth ceramic
cup itself lacked texture, speckle information was pro‐
jected to improve the reconstruction accuracy when
acquiring point cloud data. Fig. 10c shows the point
cloud map after the holes were repaired by the pro‐
posed algorithm. The data set generated by VisualSFM
provided 96 supplementary information points for hole
repair, and the number of added patch points was 404.
During ceramic cup hole repairing, when the B-spline
curve was used to compute the surface equation of the
corresponding points, the supplementary points extract‐
ed from the point cloud data obtained by VisualSFM
will provide this process with additional information.

S' (u,v)

v

u

Fig. 9 Point collection on a surface based on its curvature

(a) (b) (c)

Fig. 10 Point cloud of a ceramic cup repaired using raster
projection (a), VisualSFM (b), and the proposed algo‐
rithm (c)
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As a result, the surface equations more closely
matched the original data, and the hole repair results
were more accurate.

For the more complex human face, the human
face point cloud data measured by raster projection
is shown in Fig. 11a. The eye and eyebrow areas
contained holes due to low reflectance. There were
also holes in the nose area due to its own occlusion.
The point cloud data of the face measured by Visu‐
alSFM is shown in Fig. 11b, and the point cloud
map after the holes were repaired by the proposed
algorithm is shown in Fig. 11c. It can be seen that
the repairing result of a complex area, such as the
nose and eyes, accurately reflected the shape of its
original form.

To further verify the effectiveness of the method,
two facial areas where there were typically data
holes were selected for further analysis (Fig. 12).
The hole shown in Fig. 12b is near one side of the
nose. The hole in Fig. 12c is between the eyebrows.

Fig. 13a shows the complete point cloud data,
while Figs. 13b and 13c are point cloud maps repaired
by the point cloud hole repairing algorithm, based on
the hole in Fig. 12b. The green part is a fixed point
cloud with a total of 1612 points. A graph obtained
using ICP to register added points after repairing and
the original hole area points is shown in Fig. 13d. It
can be seen that for a large hole with a large variation

in shape, the point cloud data obtained by the algo‐
rithm fitted the original shape completely. The original
facial details were accurately described.

Fig. 14a shows the complete point cloud data
for the space between the eyebrows on the test face,
Figs. 14b and 14c show the patched point clouds, and
Fig. 14d shows the result after registration with the
complete point cloud. It can be seen that the added
point cloud was consistent with the original point cloud
in terms of curvature variation. The repaired points
clearly described the detailed shape between the eye‐
brows. These results indicated that the proposed algo‐
rithm can effectively repair holes in areas with complex
shapes.

Table 1 is a comparison between the implemented
and initial points for the holes shown in Figs. 12b
and 12c. The number of ICP iterations was 10. The

(a) (b) (c)

Fig. 11 Point cloud of a human face repaired using raster
projection (a), VisualSFM (b), and the proposed algo-
rithm (c)

(a) (b) (c)

Fig. 12 Positions of point cloud holes: (a) complete point
cloud; (b) hole near one side of the nose; (c) hole between
the eyebrows

(a) (b) (c)

(d)

Fig. 13 Simulation results of point cloud hole repairing in
cheek: (a) complete point cloud; (b) left-hand view of the
repaired point cloud; (c) a top view of the repaired point
cloud; (d) registration of the repaired point cloud
References to color refer to the online version of this figure

(a) (b)

(d)

(c)

Fig. 14 Simulation results of point cloud hole repairing in
wing of nose: (a) complete point cloud; (b) left-hand view of
the repaired point cloud; (c) a top view of the repaired
point cloud; (d) registration of the repaired point cloud
References to color refer to the online version of this figure
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root mean square errors (RMSE) of the point cloud
registrations in Figs. 13d and 14d were 0.019 and
0.072, respectively. The implemented and initial
points were consistent in terms of both their numeri‐
cal values and curvature variation, both in large areas
and in areas where the curvature varied greatly. For
objects with complex shapes, the proposed algorithm
can effectively restore the original shape. It should
be mentioned that due to the large number of steps in
the overall algorithm, it took a little more time to re‐
pair a hole alone, which is a problem to be solved in
the future.

6 Conclusions

In practical 3D face recognition systems, the
stored point cloud data often contains holes. In this
paper, a hole-filling algorithm based on stereo match‐
ing and a B-spline is proposed, using a laboratory-
developed identification system combined with a
consideration of measurement principles. The algo‐
rithm first extracts a hole boundary using features of
the 3D hole boundary points in the 2D phase. The
SFM data set and the raster point cloud data set are
then registered, and the supplementary information
points are extracted. Finally, the B-spline curve sur‐
face is used to further repair the holes, making the re‐
paired point cloud be more consistent with the origi‐
nal data. Simulations on a smooth ceramic cup and a
human face show that the proposed algorithm can
effectively reproduce surface details and accurately
restore complex surface shapes. Since the algorithm
requires a high-precision SFM data set, although
the accuracy and completeness of the VisualSFM-
reconstructed point cloud is high for most objects,
this method is not particularly effective for objects
that lack texture. In this case, how to improve the
reconstruction accuracy is an issue to be addressed.
In addition, we will explore adaptive data repairing

of complex objects without a priori models to develop
the proposed algorithm for use across a wide range
of facial recognition applications.
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