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Abstract: This paper presents a novel multiple-outlier-robust Kalman filter (MORKF) for linear stochastic discrete-
time systems. A new multiple statistical similarity measure is first proposed to evaluate the similarity between two
random vectors from dimension to dimension. Then, the proposed MORKF is derived via maximizing a multiple
statistical similarity measure based cost function. The MORKF guarantees the convergence of iterations in mild
conditions, and the boundedness of the approximation errors is analyzed theoretically. The selection strategy for
the similarity function and comparisons with existing robust methods are presented. Simulation results show the
advantages of the proposed filter.
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1 Introduction

The Kalman filter (KF) has played an important
role in many engineering fields such as navigation,
positioning, target tracking, control, and communi-
cations (Simon, 2006). The outlier interference prob-
lem often occurs in these applications because of un-
reliable sensor measurements, external disturbances,
and unknown modeling errors. In general, a linear
state-space model for such an outlier-corrupted state
estimate problem can be formulated as follows:{

xk = Fkxk−1 +wk, (state equation)
zk = Hkxk + vk, (measurement equation)

(1)
where k denotes the discrete time index, xk ∈ R

n

and zk ∈ R
m denote the state and measurement

vectors, respectively, Fk ∈ R
n×n and Hk ∈ R

m×n

represent the state transition and measurement ma-
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trices, respectively, and wk ∈ R
n and vk ∈ R

m

denote the outlier-contaminated state and measure-
ment noise vectors, respectively, both of which have
non-Gaussian heavy-tailed distributions. Unfortu-
nately, for an outlier-contaminated linear system,
the optimality of the classical KF is violated, and
its filtering performance degrades remarkably.

To solve this problem, many efforts have been
made to improve the robustness of the classical KF.
By using the influence function approach in the KF,
a series of M-estimators has been constructed by
minimizing the well-chosen robust cost function, in
which the Huber KF (HKF) serves as the best known
M-estimator (Huber, 2011). An alternative robust
M-estimate method, named the maximum corren-
tropy KF (MCKF), has also been proposed by max-
imizing the correntropy of the predictive error and
the residual error (Chen et al., 2017). To further
use the heavy-tailed features inherent in the outlier-
contaminated noise, many robust filters have been
proposed based on non-Gaussian distribution mod-
eling (Ting et al., 2007; Huang et al., 2016, 2019c;
Roth et al., 2017), in which the robust Student’s
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t based KF (RSTKF) (Piché et al., 2012; Huang
et al., 2017, 2019a, 2019b) acts as a typical exam-
ple. Recently, a novel statistical similarity mea-
sure based Kalman filtering (SSMKF) framework has
been proposed (Huang et al., 2020) which maximizes
a statistical similarity measure based cost function.
The SSMKF provides a general solution for outlier-
contaminated linear systems, and it includes the pop-
ular RSTKF as its special case when a logarithmic
similarity function is selected (Huang et al., 2020).

In a state-space model, the state and measure-
ment variables often vary from dimension to dimen-
sion. For example, in a target tracking problem, the
state variables of position and velocity have differ-
ent magnitudes and propagation features, and the
measurement variables suffer from different external
disturbances. Consequently, the outliers of differ-
ent state and measurement variables should indeed
be different in intensity and occurrence probability.
As a result, the outliers occurring in different state
and measurement dimensions may possess different
statistical properties in practical applications, and
are therefore named multiple outliers in this study.
The newly emerging SSMKF is incapable of address-
ing multiple outliers because it was designed based
on an assumption that the outliers occurring in dif-
ferent state and measurement dimensions have the
same statistical properties (Huang et al., 2020). To
some extent, the existing M-estimator can reduce
the effects of multiple outliers (Huber, 2011), but
the randomness inherent in the state vector is ne-
glected, which limits its estimation accuracy. The
main aspects of the methods mentioned above and
the proposed filter are summarized in Table 1.

In this paper, we present a novel multiple-

outlier-robust KF (MORKF) for linear stochastic
discrete-time systems. A new multiple statistical
similarity measure (MSSM) is first proposed to eval-
uate the similarity between two random vectors from
dimension to dimension. The MORKF is developed
by maximizing an MSSM-based cost function. Con-
vergence is guaranteed under mild conditions and the
rationality of assumptions is discussed. The similar-
ity function selections and comparisons with existing
robust KFs are also presented. Simulation results il-
lustrate that the developed MORKF has improved
estimation accuracy but with heavier computational
burden than the existing HKF, MCKF, and SSMKF.
Table 2 presents the acronyms and nomenclature
that are used in this paper.

2 Proposed multiple-outlier-robust
Kalman filter

2.1 Proposed multiple statistical similarity
measure

Different from Huang et al. (2020), in this study
we focus on evaluating the similarity between two
random vectors, denoted as α and β, from dimension
to dimension. Hence, a novel MSSM is proposed and
formulated as follows:

s(α,β) =

p∑
i=1

∫ ∫
f((αi − βi)

2)p(α,β)dαdβ, (2)

where α and β denote two p-dimensional random
vectors, and αi and βi are the ith elements of α and
β respectively. f(·) denotes the similarity function,
which satisfies the following conditions: (1) f(·) is
continuous and differentiable on [0,+∞); (2) ḟ(l) <
0 on [0,+∞); (3) f̈(l) ≥ 0 on [0,+∞).

Table 1 Summary of the main points of the existing methods and the proposed filter

Filter Core technique Optimization method Deficiency

HKF (Huber, 2011) Huber cost function Gauss–Newton Robust, but with poor accuracy
minimization

MCKF (Chen et al., 2017) Correntropy cost function Gauss–Newton Robust, but with poor accuracy
maximization

RSTKF (Huang et al., 2017) Student’s t distribution Variational Bayesian Incapable of addressing the
modeling approach multiple outliers

SSMKF (Huang et al., 2020) Statistical similarity Lower bound Incapable of addressing the
measure based cost function maximization multiple outliers

Proposed MORKF MSSM-based cost function Lower bound Minor increase of the
maximization computational burden

MSSM: multiple statistical similarity measure
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Table 2 Acronyms and nomenclature

Notation Definition

s(·, ·) Proposed MSSM
p(x,y) Joint PDF of x and y

f(·) Similarity function
ḟ(·) First-order derivative of f(·)
f̈(·) Second-order derivative of f(·)
E[·] Expectation operation
Var[·] Variance operation
Im Identity matrix of dimension m×m

N(·; x̄,C) Multivariate Gaussian PDF with mean
vector x̄ and covariance matrix C

‖ · ‖F Frobenius norm of a matrix
M∗ Optimal solution of variable M

MSSM: multiple statistical similarity measure; PDF: proba-
bility density function

It is obvious from Eq. (2) that the proposed
MSSM satisfies s(α,β) = s(β,α), which means that
the proposed MSSM is a symmetric measure for the
two evaluated random vectors α and β. The second
condition indicates that the MSSM s(α,β) increases
monotonously as the difference between the two eval-
uated random vectors α and β decreases, and vice
versa.
Proposition 1 The proposed MSSM achieves the
unique maximum point if and only if α = β.

The proof of Proposition 1 is given in Ap-
pendix A.

The proposed MSSM is a generalized form for
the existing similarity measures. For instance, the
proposed MSSM s(α,β) becomes the negative form
of the well-known mean squared error (MSE) mea-
sure when f(·) is selected as f(l) = −l. In addition,
the proposed MSSM s(α,β) is identical to the ex-
isting correntropy measure when f(·) is selected as
f(l) = σ2 exp( 1−l

2σ2 ) (Chen et al., 2017). The MSSM
can be diverse when various similarity functions are
selected, and thus different MORKFs can be con-
structed by maximizing the corresponding MSSM-
based cost function.
Remark 1 The statistical similarity measure pro-
posed in Huang et al. (2020) is used to evaluate the
overall similarity between two random vectors, which
makes it suitable for detecting the outliers with the
same statistical properties in different dimensions.
In contrast, the proposed MSSM in this study can
be employed to evaluate the separate similarity be-
tween two random vectors from dimension to dimen-
sion, and therefore it is more suitable for detecting
multiple outliers as compared with the previous sta-

tistical similarity measure in Huang et al. (2020).

2.2 Design of the proposed multiple-outlier-
robust Kalman filter

The core design of the proposed MORKF is to
look for an optimal posterior PDF q∗(xk) via maxi-
mizing the MSSM-based cost function as follows:

q∗(xk) = arg max
q(xk)

{
s
(
S−1
k|k−1xk,S

−1
k|k−1x̂k|k−1

)
+ s

(
S−1
Rk

zk,S
−1
Rk

Hkxk

)}
, (3)

where Sk|k−1 and SRk
are the square root matri-

ces of the nominal predictive error covariance matrix
(PECM) Pk|k−1 and the nominal measurement noise
covariance matrix (MNCM) Rk, respectively, i.e.,

Pk|k−1 = Sk|k−1S
T
k|k−1, Rk = SRk

ST
Rk

. (4)

The predictive mean vector x̂k|k−1 and the nominal
PECM are respectively given by

x̂k|k−1 = Fkx̂k−1|k−1, (5)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk, (6)

where x̂k−1|k−1 and Pk−1|k−1 are the posterior mean
vector and posterior covariance matrix at the previ-
ous time respectively, and Qk is the nominal state
noise covariance matrix (SNCM).

Because the predictive mean vector x̂k|k−1 can
be calculated using Eq. (5) and the measurement vec-
tor zk can be obtained from external sensors, these
two quantities x̂k|k−1 and zk are totally known in the
design of the proposed MORKF. As a result, the joint
PDFs in Eq. (3) are marginalized, and the MSSM-
based cost function can be rewritten as follows:

q∗(xk) = arg max
q(xk)

{
n∑

i=1

∫
fx([Tki(xk − x̂k|k−1)]

2)

· q(xk)dxk+
m∑
j=1

∫
fz([Ukj(zk−Hkxk)]

2)q(xk)dxk

}
,

(7)

where fx(·) and fz(·) are the similarity functions
with respect to state and measurement vectors re-
spectively, and Tki and Ukj are the column vectors
of the inverse square root matrices S−1

k|k−1 and S−1
Rk

respectively, which are formulated as follows:

S−1
k|k−1 =

[
TT
k1,T

T
k2, . . . ,T

T
kn

]T
, (8)

S−1
Rk

=
[
UT

k1,U
T
k2, . . . ,U

T
km

]T
. (9)
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Due to the non-Gaussianity of the posterior
PDF, it is not feasible to solve the maximization
problem (7) analytically. To overcome this difficulty
and obtain an approximate solution for Eq. (7), a
heuristic idea is to assume the posterior PDF as
Gaussian, namely, q(xk) ≈ N(xk;μk,Σk). Based
on this, the original MSSM-based cost function in
Eq. (7) can be solved analytically by maximizing
the lower bound. Employing Jensen’s inequality, the
right-hand terms of Eq. (7) have the following lower
bounds:∫

fx([Tki(xk − x̂k|k−1)]
2)q(xk)dxk

≥fx

(∫
[Tki(xk − x̂k|k−1)]

2q(xk)dxk

)
, (10)∫

fz([Ukj(zk −Hkxk)]
2)q(xk)dxk

≥fz

(∫
[Ukj(zk −Hkxk)]

2q(xk)dxk

)
. (11)

Using inequalities (10) and (11) in Eq. (7) and
the Gaussian assumption for the posterior PDF, the
maximization problem is further converted to

{μ∗
k,Σ

∗
k} ≈ arg max

{μk,Σk}
J(μk,Σk) s.t. Σk > 0,

(12)
where μ∗

k denotes the optimal posterior mean vec-
tor and Σ∗

k denotes the optimal posterior covariance
matrix. Rearranging the lower bounds of Eq. (7),
the approximated cost function J(μk,Σk) is given
by

J(μk,Σk)=

n∑
i=1

fx
(
TkiAkT

T
ki

)
+

m∑
j=1

fz
(
UkjBkU

T
kj

)
,

(13)
and the auxiliary matrices Ak and Bk are calculated
as

Ak = Σk + (μk − x̂k|k−1)(μk − x̂k|k−1)
T, (14)

Bk = (zk −Hkμk)(zk −Hkμk)
T +HkΣkH

T
k .

(15)

Before presenting the main results, to aid in the
development, a cluster of intermediate variables and
matrices are defined as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α∗
ki = −2ḟx(TkiA

∗
kT

T
ki),

β∗
kj = −2ḟz(UkjB

∗
kU

T
kj),

α̃∗
ki = 2f̈x(TkiA

∗
kT

T
ki),

β̃∗
kj = 2f̈z(UkjB

∗
kU

T
kj),

(16)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Λμk
(μk,Σk) =

∂J(μk,Σk)
∂μk

,

ΛΣk
(μk,Σk) =

∂J(μk,Σk)
∂Σk

,

Πμk
(μk,Σk) =

∂2J(μk,Σk)
∂μk∂μT

k

,

(17)

where Λμk
(μk,Σk) and ΛΣk

(μk,Σk) denote the
Jacobian matrices of the cost function J(μk,Σk)

with respect to the posterior mean vector μk and
the posterior covariance matrix Σk respectively, and
Πμk

(μk,Σk) denotes the Hessian matrix of the cost
function J(μk,Σk) with respect to μk.
Theorem 1 By solving the maximization prob-
lem (12), the optimal posterior mean vector μ∗

k can
be formulated as follows:

K̃∗
k = P̃ ∗

k|k−1H
T
k

(
HkP̃

∗
k|k−1H

T
k + R̃∗

k

)−1

, (18)

μ∗
k = x̂k|k−1 + K̃∗

k(zk −Hkx̂k|k−1), (19)

where the modified PECM P̃ ∗
k|k−1 and the modified

MNCM R̃∗
k are respectively given by

P̃ ∗
k|k−1 = Sk|k−1

(
Ψ∗

xk

)−1
ST
k|k−1, (20)

R̃∗
k = SRk

(
Ψ∗

zk

)−1
ST
Rk

. (21)

The weighted matrices Ψ∗
xk

and Ψ∗
zk

are formulated
as

Ψ∗
xk

=diag
(
−2ḟx(Tk1A

∗
kT

T
k1),−2ḟx(Tk2A

∗
kT

T
k2),

. . . ,−2ḟx(TknA
∗
kT

T
kn)
)
, (22)

Ψ∗
zk

=diag
(
−2ḟz(Uk1B

∗
kU

T
k1),−2ḟz(Uk2B

∗
kU

T
k2),

. . . ,−2ḟz(UkmB∗
kU

T
km)

)
. (23)

The auxiliary matrices are given by

A∗
k = Σ∗

k + (μ∗
k − x̂k|k−1)(μ

∗
k − x̂k|k−1)

T, (24)

B∗
k = (zk −Hkμ

∗
k)(zk −Hkμ

∗
k)

T +HkΣ
∗
kH

T
k .

(25)

The proof of Theorem 1 is given in Appendix B.
Theorem 1 indicates that the optimal posterior

mean vector μ∗
k is indeed a modified Kalman filter-

ing estimate, achieved by using the modified PECM
P̃ ∗

k|k−1 and the modified MNCM R̃∗
k in Eqs. (20)

and (21). Also, it is observed from Theorem 1 that
the optimal posterior mean vector μ∗

k depends on
the optimal posterior covariance matrix Σ∗

k . Similar
to our previous work (Huang et al., 2020), we can
obtain the following two propositions:
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Proposition 2 The result of μ∗
k given in Eq. (19)

is a global optimal solution when and only when the
following inequalities hold:{

(α∗
ki)

2 − 2α̃∗
ki > 0,

(β∗
kj)

2 − 2β̃∗
kj > 0.

(26)

The proof of Proposition 2 is given in Ap-
pendix C.
Proposition 3 The approximated cost function
J(μk,Σk) is monotonically decreasing with respect
to Σk.

The proof of Proposition 3 is given in Ap-
pendix D.

Proposition 2 provides a sufficient condition to
guarantee that the result μ∗

k in Eq. (19) is a global
optimal solution. Proposition 3 implies that the op-
timal solution of the posterior covariance matrix Σ∗

k

should be selected as the lower bound of Σk. There-
fore, to guarantee the filtering consistency, the opti-
mal posterior covariance matrix Σ∗

k is given by

Σ∗
k =

(
S−T
k|k−1Ψ

∗
xk
S−1
k|k−1 +HT

k S
−T
Rk

Ψ∗
zk
S−1
Rk

Hk

)−1

.

(27)
Substituting Eqs. (20) and (21) into Eq. (27)

and using the well-known matrix inversion lemma
yield

Σ∗
k = P̃ ∗

k|k−1 − K̃∗
kHkP̃

∗
k|k−1. (28)

It can be observed from Theorem 1 and Eq. (28)
that the optimal posterior mean vector μ∗

k and the
optimal posterior covariance matrix Σ∗

k are inter-
coupled. Then, the fixed-point iteration method is
employed to solve μ∗

k and Σ∗
k approximately, from

which the proposed MORKF can be implemented,
as summarized in Algorithm 1, where ε denotes the
iteration threshold and Nv denotes the maximum
number of iterations.

Next, the convergence conditions of the fixed-
point iteration will be provided.
Proposition 4 If the iterative initial value μ

(0)
k

and the optimal solution μ∗
k are close enough and

the following inequalities hold ∀l ≥ 0, the fixed-point
iteration approach will converge locally:{

0 ≤ f̈x(l
2)l ≤ θ1,

0 ≤ f̈z(l
2)l ≤ θ2,

(29)

where θ1 and θ2 are arbitrary positive finite real
numbers.

The proof of Proposition 4 is given in Ap-
pendix E.

Algorithm 1 Implementation of the multiple-
outlier-robust Kalman filter (MORKF)
Input: x̂k−1|k−1, Pk−1|k−1, Fk, Hk, zk, Qk, Rk, fx(·),

fz(·), m, n, ε, Nv

Output: x̂k|k and Pk|k
// Time-update

1: x̂k|k−1 = Fkx̂k−1|k−1

2: Pk|k−1 = FkPk−1|k−1F
T
k +Qk

// Measurement-update
3: Initialization: Ψ

(0)
xk

= In, Ψ (0)
zk

= Im,{
Tki = S−1

k|k−1
(i, :)

}n

i=1
,
{
Ukj = S−1

Rk
(j, :)

}m

j=1

4: for i = 0 : Nv − 1 do
// Calculate P̃

(i+1)
k|k−1 and R̃

(i+1)
k

5: P̃
(i+1)

k|k−1 = Sk|k−1

(
Ψ

(i)
xk

)−1

ST
k|k−1

6: R̃
(i+1)
k = SRk

(
Ψ

(i)
zk

)−1

ST
Rk

// Calculate μ
(i+1)
k and Σ

(i+1)
k

7: K̃
(i+1)
k = P̃

(i+1)

k|k−1H
T
k

(
HkP̃

(i+1)

k|k−1H
T
k + R̃

(i+1)
k

)−1

8: μ
(i+1)
k = x̂k|k−1 + K̃

(i+1)
k (zk −Hkx̂k|k−1)

9: Σ
(i+1)
k = P̃

(i+1)
k|k−1 − K̃

(i+1)
k HkP̃

(i+1)
k|k−1

// Compare μ
(i+1)
k and μ

(i)
k

10: if
∥∥∥μ(i+1)

k − μ
(i)
k

∥∥∥
/∥∥∥μ(i)

k

∥∥∥ ≤ ε then
11: Terminate the iteration
12: end if

// Calculate A
(i+1)
k and B

(i+1)
k

13: A
(i+1)
k = Σ

(i+1)
k +

(
μ

(i+1)
k − x̂k|k−1

)

·
(
μ

(i+1)
k − x̂k|k−1

)T

14: B
(i+1)
k =

(
zk −Hkμ

(i+1)
k

)(
zk −Hkμ

(i+1)
k

)T

+HkΣ
(i+1)
k HT

k

// Calculate Ψ
(i+1)
xk

and Ψ
(i+1)
zk

15: Ψ
(i+1)
xk

= diag
(
−2ḟx(Tk1A

(i+1)
k TT

k1),

−2ḟx(Tk2A
(i+1)
k TT

k2), . . . ,−2ḟx(TknA
(i+1)
k TT

kn)
)

16: Ψ
(i+1)
zk

= diag
(
−2ḟz(Uk1B

(i+1)
k UT

k1),

−2ḟz(Uk2B
(i+1)
k UT

k2), . . . ,−2ḟz(UkmB
(i+1)
k UT

km)
)

17: end for
18: x̂k|k = μ

(i+1)
k , Pk|k = Σ

(i+1)
k

2.3 Analysis and discussion

2.3.1 Computational complexity analysis

Next, we analyze and compare the computa-
tional complexities of the proposed MORKF and the
existing SSMKF by calculating the number of float-
ing point operations (NoFPO). Taking the square-
root similarity functions as an example, the NoFPOs
of some main equations are listed in Table 3.

The fixed-point iteration method is employed
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Table 3 NoFPOs of some main equations

Equation NoFPOA NoFPOB

(5) 2n2 − n 0

(6) 4n3 − n2 0

(18) 4n2m+ 4nm2 − 3nm O(m3)

(19) 4nm 0

(20) 2n3 n+O(n3)

(21) 2m3 m+ O(m3)

(22) n 2n

(23) m 2m

(24) 2n2 + 2n 0

(25) 2n2m+ 2m2n+ 3mn 0

(28) 2n3 + 2n2m− n2 0

NoFPOA denotes the NoFPO of addition/subtraction and
multiplication operations; NoFPOB denotes the NoFPO
of division, matrix inversion, Cholesky decomposition, and
square-root operations

to implement the proposed MORKF. Assuming that
the average fixed-point iteration number is Nm, the
NoFPO of the proposed MORKF can be calculated
according to Table 3:

NoFPOMORKF =

(4Nm + 4)n3 + 2Nmm
3 + 8Nmn

2m+ 6Nmnm
2

+ (Nm + 1)n2 + 4Nmnm+ (6Nm − 1)n+ 4Nmm

+NmO(n3) + 2NmO(m3). (30)

Similarly, the NoFPO of the existing SSMKF
(Huang et al., 2020) can be calculated as follows:

NoFPOSSMKF =

(4Nm + 4)n3 + 2Nmm
3 + 8Nmn

2m+ 6Nmnm
2

+ (Nm + 1)n2 + 4Nmnm+ (3Nm − 1)n+Nmm

+ 2Nm +NmO(n3) + 2NmO(m3). (31)

Comparing Eqs. (30) and (31), we find that the
computational complexity of the proposed MORKF
is moderately greater than that of the existing
SSMKF because of the different adjustment styles
when facing the outliers. However, note that the
weighted matrices Ψ∗

xk
and Ψ∗

zk
in Eqs. (20) and

(21) are diagonal matrices, so it is easy to obtain
their inverse matrices. Considering the improved
performance in addressing the multiple outliers, the
increased computational complexity of the proposed
MORKF is acceptable.

2.3.2 Approximation error analysis

Three assumptions are presented to facilitate
the derivation of the proposed MORKF:

Assumption 1 The optimal posterior PDF q∗(xk)

is assumed to be Gaussian.
Assumption 2 The lower bound of the original
MSSM-based cost function is maximized.
Assumption 3 The lower bound of the posterior
covariance matrix Σk is assumed as the estimation
error covariance matrix of the modified Kalman filter
with modified PECM P̃ ∗

k|k−1 and modified MNCM
R̃∗

k.
As for Assumption 1, in Bayesian filtering, it

is always difficult to analytically formulate the non-
Gaussian posterior PDF that is caused by the state
and measurement outliers (Roth et al., 2017). In
this study, to overcome this difficulty, the widely
accepted Gaussian assumption is employed to look
for an analytical presentation of the posterior PDF,
thereby reaching a compromise between filtering ac-
curacy and computational burden. Although such
Gaussian assumption may introduce approximation
errors into the posterior PDF to some extent, it
exhibits satisfactory filtering accuracy with tolera-
ble computational burden in engineering practice,
as shown in later simulation study. Therefore, the
Gaussian assumption for the non-Gaussian posterior
PDF is reasonable.

Next, we analyze the influence of Assumption 2.
For the sake of descriptions, a cluster of variables are
defined as{

Li
1k =

[
Tki(xk − x̂k|k−1)

]2
, Li∗

1k = TkiA
∗
kT

T
ki,

Lj
2k = [Ukj(zk −Hkxk)]

2 , Lj∗
2k = UkjB

∗
kU

T
kj ,

(32)
where i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and Li∗

1k and
Lj∗
2k denote the expectations of Li

1k and Lj
2k with

respect to the optimal posterior PDF q∗(xk). The
first-order Taylor series expansions are performed on
fx(l) and fz(l) at l = Li∗

1k and l = Li∗
2k, respectively,

which yields{
fx(l) = fx(L

i∗
1k) + ḟx(L

i∗
1k)(l − Li∗

1k) + o(l − Li∗
1k),

fz(l) = fz(L
j∗
2k) + ḟz(L

j∗
2k)(l − Lj∗

2k) + o(l − Lj∗
2k),

(33)
where o(·) denotes the high-order terms of the Tay-
lor series expansions. Dropping the high-order
terms yields the following first-order linearization
approximations:{

fx(L
i
1k) ≈ fx(L

i∗
1k) + ḟx(L

i∗
1k)(L

i
1k − Li∗

1k),

fz(L
j
2k) ≈ fz(L

j∗
2k) + ḟz(L

j∗
2k)(L

j
2k − Lj∗

2k).

(34)
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By employing methods similar to that in Huang
et al. (2020), we obtain the following propositions:
Proposition 5 Using the first-order linearization
approximations (Eq. (33)) and the Gaussian assump-
tion to the posterior PDF in Eq. (7), the original
maximization problem (7) becomes the approximate
maximization problem (12).

The proof of Proposition 5 is given in Ap-
pendix F.
Proposition 6 The variances of auxiliary variables
Li
1k and Lj

2k are upper-bounded, and can be formu-
lated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Var

[
n∑

i=1

Li
1k

]
≤ n

(
n2 + 2n

) n∑
i=1

(
TkiΣkT

T
ki

)2
+n

n∑
i=1

[Tki(μk− x̂k|k−1)
]2

TkiΣkT
T
ki,

Var

[
m∑
j=1

Lj
2k

]

≤ m
(
n2 + 2n− 1

) m∑
j=1

(
UkjHkΣkH

T
k U

T
kj

)2
+4m

m∑
j=1

[Ukj(zk−Hkμk)]
2
UkjHkΣkH

T
k U

T
kj .

(35)
The proof of Proposition 6 is given in Ap-

pendix G.
Proposition 5 means that the approximation er-

rors of Assumption 2 are dominated mainly by the
second-order moments of Li

1k and Lj
2k. Meanwhile,

the boundedness of the second-order moments of Li
1k

and Lj
2k, which is given in Proposition 6, guaran-

tees that the approximation errors of Assumption 2
are bounded. As shown in inequality (35), these
two upper bounds depend critically on the poste-
rior covariance matrix Σk and the state dimension.
The larger the posterior covariance matrix Σk or
the state dimension n, the larger approximation er-
rors will be induced. Because the posterior covari-
ance matrix will decrease with the convergence of
the filter, the approximation errors induced by As-
sumption 2 can be limited. Moreover, the exemplary
similarity functions provided in this study possess
much smaller high-order derivatives than the first-
order derivatives, which helps Assumption 2 be more
reasonable.

As for Assumption 3, the outlier-robust Kalman
filters tend to generate a lager posterior covariance
matrix Σk than the classical Kalman filter with the
modified PECM P̃ ∗

k|k−1 and the modified MNCM

R̃∗
k. Such a constraint is often beneficial in guaran-

teeing filtering consistency and stability.

3 Selection strategy for similarity func-
tions and comparisons with existing
RKFs

3.1 Selection strategy for similarity functions

The selection strategy for similarity functions
fx(·) and fz(·) will be discussed in this subsec-
tion to facilitate the implementation of the pro-
posed MORKF. First, the optimality of the proposed
MORKF should be guaranteed when the state and
measurement noises are Gaussian-distributed. Ac-
cording to Huang et al. (2020), the auxiliary matri-
ces A∗

k and B∗
k can be approximated as the nomi-

nal one-step PECM Pk|k−1 and MNCM Rk respec-
tively when the state and measurement noises are
Gaussian-distributed, i.e.,

A∗
k ≈ Pk|k−1, B

∗
k ≈ Rk. (36)

According to Eqs. (8), (9), and (36), we have⎡
⎢⎢⎢⎣

Tk1

Tk2

...
Tkn

⎤
⎥⎥⎥⎦A∗

k

[
TT
k1,T

T
k2, . . . ,T

T
kn

]

≈S−1
k|k−1Pk|k−1S

−T
k|k−1 = In, (37)

⎡
⎢⎢⎢⎣

Uk1

Uk2

...
Ukm

⎤
⎥⎥⎥⎦B∗

k

[
UT

k1,U
T
k2, . . . ,U

T
km

]

≈S−1
Rk

RkS
−T
Rk

= Im. (38)

Exploiting Eqs. (37) and (38) yields{
TkiA

∗
kT

T
ki = 1, i = 1, 2, . . . , n,

UkjB
∗
kU

T
kj = 1, j = 1, 2, . . . ,m.

(39)

Substituting Eq. (39) into Eqs. (22) and (23),
the diagonal weighted matrices can be rewritten as
follows:

Ψ∗
xk

= diag
(
−2ḟx(1),−2ḟx(1), . . . ,−2ḟx(1)

)
,

(40)
Ψ∗

zk
= diag

(
−2ḟz(1),−2ḟz(1), . . . ,−2ḟz(1)

)
.

(41)
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Algorithm 1 indicates that the proposed
MORKF degrades into the classical KF when the
weighted matrices satisfy Ψ

(i)
xk = In and Ψ

(i)
zk = Im.

To meet such conditions, according to Eqs. (40) and
(41), the similarity functions fx(·) and fz(·) should
satisfy

ḟx(1) = −0.5, ḟz(1) = −0.5. (42)

Next, we need to guarantee the robustness of
the proposed MORKF. If the state and measurement
noises are contaminated by outliers, the auxiliary
matrices A∗

k and B∗
k satisfy the following inequalities

(Huang et al., 2020):

A∗
k ≥ Pk|k−1, B

∗
k ≥ Rk. (43)

Using the above inequalities, we can obtain the
following theorem:
Theorem 2 For a linear system, the proposed
MORKF exhibits robustness if the similarity func-
tions fx(·) and fz(·) are chosen such that{

ḟx(l) < 0, f̈x(l) ≥ 0, ḟx(1) = −0.5, l ∈ [0,+∞),

ḟz(l) < 0, f̈z(l) ≥ 0, ḟz(1) = −0.5, l ∈ [0,+∞),

(44)
and then the diagonal weighted matrices satisfy{

0 < Ψ∗
xk

≤ In,

0 < Ψ∗
zk

≤ Im.
(45)

The proof of Theorem 2 is given in Appendix H.
Employing inequality (45) in Eqs. (20) and (21)

yields

P̃ ∗
k|k−1 − Pk|k−1 ≥ 0, R̃∗

k −Rk ≥ 0. (46)

Inequality (46) indicates that the modified
PECM and the modified MNCM are not less than
the nominal PECM and the nominal MNCM, re-
spectively. Furthermore, according to the second
and third conditions of similarity function f(·) and
Eqs. (20) and (23), violent outliers may result in
small diagonal elements of Ψ∗

xk
and Ψ∗

zk
, and then

a significantly modified PECM and MNCM will be
obtained. Consequently, the modified PECM and
MNCM can be adaptively adjusted along with the
intensity and occurrence probability of outliers.

Several similarity functions are recommended
and listed in Table 4, from which several exemplary
MORKFs can be obtained, where σ denotes the ker-
nel size, and ν and ω denote the degree-of-freedom
(DOF) parameters. It is easy to demonstrate that all

Table 4 Recommended similarity functions f(·) and
their first- and second-order derivatives

f(l) ḟ(l) f̈(l)

−0.5l −0.5 0

σ2 exp
(

1−l
2σ2

)
−0.5 exp

(
1−l
2σ2

)
1

4σ2 exp
(

1−l
2σ2

)

−0.5(ν + 1) log(1 + l
ν
) −0.5 ν+1

ν+l
0.5 ν+1

(ν+l)2

−√
(ω + 1)(ω + l) −0.5

√
ω+1
ω+l

0.25
√

ω+1
3√ω+l

σ: kernel size; ν and ω: degree-of-freedom (DOF) parameters

the similarity functions listed in Table 4 satisfy the
conditions of Proposition 2. To meet the constraints
of Propositions 2 and 4, the recommended similarity
functions need to satisfy the following corollaries:
Corollary 1 For the recommended similarity func-
tions listed in Table 4, inequality (26) in Proposi-
tion 2 holds only when the following conditions are
satisfied: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ2 exp

(
1− Li∗

1k

2σ2

)
> 1,

σ2 exp

(
1− Lj∗

2k

2σ2

)
> 1,

ν > 1,

(47)

where Li∗
1k and Lj∗

2k are as given in Eq. (32).
The proof of Corollary 1 is given in Appendix I.

Corollary 2 The positive finite real numbers θ1
and θ2 in Proposition 4 exist only when σ � 0,
ν � 0, and ω � 0.

The proof of Corollary 2 is given in Appendix J.
Remark 2 It is observed that all the first-order
derivatives of the recommended similarity functions
in Table 4 are −0.5 when σ, ν, and ω tend to infin-
ity, i.e., {σ, ν, ω} → +∞. Therefore, the resultant
exemplary MORKFs will degrade into the classical
KF when {σ, ν, ω} → +∞.

3.2 Comparisons with existing RKFs

The M-estimator is a generalized maximum like-
lihood estimator that provides a robust state esti-
mate by solving the following minimization problem
(Huber, 2011):

x̂k|k = argmin
xk

ρ(xk), (48)

where the cost function ρ(xk) can be formulated as

ρ(xk) =
n∑

i=1

ρx(Tki(xk − x̂k|k−1))

+
m∑
j=1

ρz(Ukj(zk −Hkxk)),
(49)
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where ρx(·) and ρz(·) are the robust cost functions
that are applied to the predictive errors and residual
errors, respectively.

It is observed from Eqs. (12), (13), (48), and
(49) that the cost function of the proposed MORKF
has a form similar to that of the M-estimator. The
M-estimator optimizes only the state vector, whereas
the proposed MORKF optimizes the state vector
and the covariance matrix simultaneously. The
M-estimator takes the stochastic state as a deter-
ministic quantity and updates the covariance matrix
independent of the optimization of the cost function
ρ(xk). The proposed MORKF exploits the random-
ness of the stochastic state by updating the state and
the covariance matrix alternately, which benefits the
performance of the proposed MORKF.
Remark 3 The existing SSMKF (Huang et al.,
2020) was derived based on an assumption that the
outliers occurring in different state and measure-
ment dimensions have the same statistical proper-
ties, which may not be suitable in the scenarios with
multiple outliers. By constructing a new MSSM-
based cost function which imposes separate con-
straints on each state and measurement dimension,
the proposed MORKF produces a couple of diagonal
weighted matrices Ψ∗

xk
and Ψ∗

zk
to adaptively adjust

the nominal PECM and MNCM, respectively, rather
than two scalar-scale factors in the SSMKF.

4 Simulation study

The performance of the proposed MORKF is
validated in a two-dimensional (2D) maneuvering
target tracking example, where the positions are ob-
served in a noisy scenario, and the positions and
velocities are estimated simultaneously. The state
transition matrix and measurement matrix are Fk =[

I2 TI2
0 I2

]
and Hk =

[
I2 0

]
respectively,

where T = 1 s. The state and measurement noises
can be formulated as wk = [w1,k, w2,k, w3,k, w4,k]

T

and vk = [v1,k, v2,k]
T respectively, whose nom-

inal noise covariance matrices are given by Q =[
T 3

3 I2
T 2

2 I2
T 2

2 I2 TI2

]
and R = rI2 (r denotes a scale

factor), respectively.
The superiority of the proposed MORKF is eval-

uated through comparisons with the classical KF
with nominal noise covariance matrices (KFNNCM),

the existing HKF (Huber, 2011), MCKF (Chen et al.,
2017), and SSMKF (Huang et al., 2020). As dis-
cussed in our previous work (Huang et al., 2020),
SSMKF can achieve the best estimation accuracy
when the similarity function is selected as the square-
root function, and the resultant SSMKF has better
estimation performance than the existing RSTKF
(Huang et al., 2017). To better show the advantages
of the proposed method, the square-root similarity
functions are used to implement the existing SSMKF
and the proposed MORKF; then two algorithms that
are abbreviated as SSMKF-sqrt and MORKF-sqrt
respectively can be obtained. The parameter set-
tings for all algorithms are listed in Table 5. The
iteration threshold is set as ε = 10−16 and the max-
imum number of iterations is set as Nm = 50. The
simulation time is 1000 s, and 1000 Monte-Carlo runs
are executed. All the algorithms are coded with
MATLAB and executed on a computer with Intel
Core i3-3110M CPU @2.40 GHz.

The initial state estimate x̂0|0 is randomly
extracted from a Gaussian PDF N(x̂0|0;x0,P0),
where the true initial state vector is set as x0 =

[0, 0, 10, 10]T, and the initial estimation error vari-
ance is set as P0 = diag(10 000, 10 000, 100, 100).
The whole simulation is divided into two stages: a
scenario with outliers having identical properties is
simulated in the first stage (1–500 s), and a sce-
nario with multiple outliers with different properties
is simulated in the later stage (501–1000 s). The root
mean square errors (RMSEs) and averaged RMSEs
(ARMSEs) of position and velocity are taken as the
performance metrics, both of which were defined in
Huang et al. (2017). For a better presentation, the
RMSEs are all smoothed by a moving window with
a span of 50 s.

Case 1: We consider the case where both state
and measurement noises are Gaussian-mixture. Par-
ticularly, in the first stage, the identical outlier-
contaminated state and measurement noises are pro-
duced as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
wk ∼

{
N(0,Q), w.p. 0.97,

N(0, U1Q), w.p. 0.03,

vk ∼
{

N(0,R), w.p. 0.97,

N(0, U3R), w.p. 0.03,

(50)

where “w.p.” is short for “with probability.”
In the second stage, the noise covariance ma-

trices for [w1,k, w3,k]
T and [w2,k, w4,k]

T can be
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Table 5 Parameter settings for compared algorithms

Filter Parameter setting

HKF Tuning parameter γ = 1.345

MCKF Kernel size σ = 15

SSMKF-sqrt DOF parameter ν = 5

MORKF-sqrt DOF parameter ν = 5

DOF: degree-of-freedom

defined as Q1 = Q2 =

[
T 3

3
T 2

2
T 2

2 T

]
, respectively.

The multiple outlier-contaminated state and mea-
surement noises are produced as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[w1,k, w3,k]
T ∼

{
N(0,Q1), w.p. 0.97,

N(0, U1Q1), w.p. 0.03,

[w2,k, w4,k]
T ∼

{
N(0,Q2), w.p. 0.90,

N(0, U2Q2), w.p. 0.10,

v1,k ∼
{

N(0, r), w.p. 0.97,

N(0, U3r), w.p. 0.03,

v2,k ∼
{

N(0, r), w.p. 0.90,

N(0, U4r), w.p. 0.10,

(51)
where the coefficients are U1 = U4 = 300, U2 = 400,
U3 = 500, and r = 100.

Figs. 1 and 2 illustrate the RMSEs of position
and velocity from all compared filters. We can ob-
serve that the proposed MORKF-sqrt has similar
performance to the existing SSMKF-sqrt in the first
stage but exhibits the smallest RMSEs in the sec-
ond stage. In the first stage, both the proposed
MORKF and the existing SSMKF outperform the
HKF and MCKF because the randomness inherent
in the stochastic state vector has been extensively
exploited by using the posterior covariance matrix
during the fixed-point iteration. However, in the
second stage, SSMKF is inferior to the proposed
MORKF because SSMKF is constructed based on
an assumption that the outliers occurring in differ-
ent dimensions possess the same statistical proper-
ties. The steady-state ARMSEs during the second
stage (600–1000 s) and the runtime in a single step
are summarized in Table 6. It can be seen from
Table 6 that in the scenario with multiple outlier
corrupted state and measurement noises, the pro-
posed MORKF-sqrt has smaller steady-state ARM-
SEs than existing filters in position and velocity but
greater runtime is required. As compared with the
ARMSEpos and ARMSEvel from MCKF, the steady-
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Fig. 1 Root mean square errors (RMSEs) of position
from all filters in case 1 (References to color refer to
the online version of this figure)
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Fig. 2 Root mean square errors (RMSEs) of velocity
from all filters in case 1 (References to color refer to
the online version of this figure)

Table 6 Steady-state ARMSEs during 600–1000 s and
runtime in a single step in case 1

Filter
ARMSEpos ARMSEvel Time

(m) (m/s) (ms)

KFNNCM 41.61 14.13 0.049

HKF 34.80 14.15 1.397

MCKF 30.52 13.03 1.185

SSMKF-sqrt 28.21 13.94 1.819

MORKF-sqrt 22.72 12.43 2.023

ARMSE: average root mean square error

state ARMSEs of the proposed MORKF-sqrt have
been reduced by 25.55% and 4.60% in position and
velocity, respectively.

Next, we describe why the proposed MORKF
outperforms the existing SSMKF for multiple out-
liers. The diagonal elements of the weighted diag-
onal matrices Ψxk

and Ψzk
from MORKF as well



432 Huang et al. / Front Inform Technol Electron Eng 2022 23(3):422-437

as the scalar-scale factors ξk and λk from SSMKF
are collected and averaged during 1000 Monte-Carlo
runs, and are depicted in Figs. 3 and 4, respec-
tively. In the first stage, the diagonal elements of
the weighted matrix Ψxk

and the scalar-scale factor
ξk are of similar magnitude, so are matrix Ψzk

and
scalar λk, which results in similar performance for
MORKF and SSMKF in the scenario with the same
form of outliers. However, in the second stage, the
scalar factors ξk and λk and the diagonal elements
Ψxk

(2, 2), Ψxk
(4, 4), and Ψzk(2, 2) are reduced to ac-

commodate the suddenly increased state outliers in
the second and fourth dimensions and the suddenly
increased measurement outliers in the second dimen-
sion as described in Eq. (51), which results in the var-
ious enlargements of PECM and MNCM from dimen-
sion to dimension in the proposed MORKF, rather
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Fig. 3 Comparisons of scalar-scale factor ξk from
SSMKF and diagonal elements of Ψxk from MORKF
in case 1 (References to color refer to the online ver-
sion of this figure)
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Fig. 4 Comparisons of scalar-scale factor λk from
SSMKF and diagonal elements of Ψzk from MORKF
in case 1 (References to color refer to the online ver-
sion of this figure)

than the scalar enlargements of PECM and MNCM
in SSMKF. Therefore, the proposed MORKF pro-
duces a couple of diagonal weighted matrices Ψxk

and Ψzk
to adaptively adjust the nominal PECM

and MNCM, respectively, rather than two scalar-
scale factors ξk and λk as in the SSMKF, which leads
to better estimation accuracy compared with the ex-
isting cutting-edge SSMKF for addressing multiple
outliers.

Case 2: In this case, the identical outlier-
contaminated state and measurement noises in the
first stage are generated in the same way as in case 1.
However, in the second stage, the state and measure-
ment noises are produced by mixing the Gaussian
distribution and uniform distribution in some dimen-
sions. The specific formulations of noise generation
are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[w1,k, w3,k]
T ∼

{
N(0,Q1), w.p. 0.97,

N(0, U1Q1), w.p. 0.03,

[w2,k, w4,k]
T∼

⎧⎪⎨
⎪⎩
N(0,Q2), w.p. 0.90,

U(w2,k;−100, 100), w.p. 0.10,

U(w4,k;−200, 200), w.p. 0.10,

v1,k ∼
{
N(0, r), w.p. 0.97,

N(0, U3r), w.p. 0.03,

v2,k ∼
{
N(0, r), w.p. 0.90,

U(v2,k;−600, 600), w.p. 0.10,

(52)
where U(σ; a, b) denotes that variable σ is randomly
extracted from a uniform distribution upon [a, b].

The simulation results are given in Figs. 5 and
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from all filters in case 2 (References to color refer to
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6, and the ARMSEs are summarized in Table 7.
Similar to case 1, the proposed MORKF-sqrt has
similar performance to the existing SSMKF-sqrt in
the first stage. However, the proposed MORKF-sqrt
presents the best performance in the second stage,
because the multiple outliers can be addressed from
dimension to dimension by optimizing the proposed
MSSM-based cost function.

5 Conclusions

In this paper, we have presented a novel
MORKF for linear stochastic discrete-time systems.
To evaluate the similarity between two random vec-
tors from dimension to dimension, a new MSSM
was first introduced. The MORKF was derived by
maximizing an MSSM-based cost function. To il-
lustrate the effectiveness and superiority of the pro-
posed MORKF, theoretical analysis and discussion
have been provided, and the similarity function selec-
tions and comparisons with existing robust methods
have also been presented. Simulation results demon-
strated that the developed MORKF outperforms the
existing cutting-edge robust KFs in terms of esti-
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Fig. 6 Root mean square errors (RMSEs) of velocity
from all filters in case 2 (References to color refer to
the online version of this figure)

Table 7 Steady-state ARMSEs during 600–1000 s in
case 2

Filter ARMSEpos (m) ARMSEvel (m/s)

KFNNCM 125.12 70.50

HKF 102.36 66.27

MCKF 183.59 78.74

SSMKF-sqrt 81.11 67.90

MORKF-sqrt 71.73 61.14

ARMSE: average root mean square error

mation accuracy for linear systems when the state
and measurement noises are corrupted by multiple
outliers.
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Appendix A: Proof of Proposition 1

Since ḟ(l) < 0 and (αi − βi)
2 ≥ 0, we have

f((αi − βi)
2) ≤ f(0). (A1)

Using inequality (A1) in Eq. (2), we obtain

s(α,β) =

p∑
i=1

∫ ∫
f((αi − βi)

2)p(α,β)dαdβ

≤
p∑

i=1

∫ ∫
f(0)p(α,β)dαdβ

= pf(0). (A2)

Hence, the maximum point pf(0) is reached only
when α = β.

Appendix B: Proof of Theorem 1

The Jacobian matrix of J(μk,Σk) with respect
to μk can be formulated as follows:

Λμk
(μk,Σk)

=2

n∑
i=1

ḟx(TkiAkT
T
ki)T

T
kiTki(μk − x̂k|k−1)

− 2
m∑
j=1

ḟz(UkjBkU
T
kj)H

T
k U

T
kjUkj(zk −Hkμk).

(B1)

Define a couple of diagonal weighted matrices:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ψxk
= diag

(
−2ḟx(Tk1AkT

T
k1),

−2ḟx(Tk2AkT
T
k2), . . . ,−2ḟx(TknAkT

T
kn)
)
,

Ψzk
= diag

(
−2ḟz(Uk1BkU

T
k1),

−2ḟz(Uk2BkU
T
k2), . . . ,−2ḟz(UkmBkU

T
km)

)
,

(B2)
and then the Jacobian matrix in Eq. (B1) can be
rewritten as follows:

Λμk
(μk,Σk) =− S−T

k|k−1Ψxk
S−1
k|k−1(μk − x̂k|k−1)

+HT
k S

−T
Rk

Ψzk
S−1
Rk

(zk −Hkμk).

(B3)

According to the maximum point criterion, ex-
ploiting Λ∗

μk
(μ∗

k,Σ
∗
k) = 0 yields

− S−T
k|k−1Ψ

∗
xk
S−1
k|k−1(μ

∗
k − x̂k|k−1)

+HT
k S

−T
Rk

Ψ∗
zk
S−1
Rk

(zk −Hkμ
∗
k) = 0. (B4)

Substituting Eqs. (20) and (21) into Eq. (B3)
and using the matrix inversion lemma in Simon
(2006) yield the results in Theorem 1.
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Appendix C: Proof of Proposition 2

Using Eqs. (13) and (16), the Hessian matrix of
J(μk,Σk) with respect to μk can be given by

Π∗
μk

(μ∗
k,Σ

∗
k)

=−
n∑

i=1

α∗
kiT

T
kiTki−

m∑
j=1

β∗
kjH

T
k U

T
kjUkjHk +O∗

μk
,

(C1)

where the quadratic term O∗
μk

is given by

O∗
μk

=

m∑
j=1

2β̃∗
kjH

T
k U

T
kjFkjUkjHk

+

n∑
i=1

2α̃∗
kiT

T
kiDkiTki, (C2)

and the auxiliary matrices Dki and Fkj satisfy
(Huang et al., 2020)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dki = Tki(μk − x̂k|k−1)(μk − x̂k|k−1)
TTT

ki

< TkiP̃
∗
k|k−1T

T
ki,

Fkj = Ukj(zk −Hkμk)(zk −Hkμk)
TUT

kj

< UkjR̃
∗
kU

T
kj .

(C3)
Exploiting Eqs. (16) and (20)–(23) in inequal-

ity (C3) yields

Dki < 1/α∗
ki, Fkj < 1/β∗

kj. (C4)

Substituting inequality (C4) into Eq. (C2), the
Hessian matrix satisfies

Π∗
μk

(μ∗
k,Σ

∗
k) <

n∑
i=1

(−α∗
ki + 2α̃∗

ki/α
∗
ki)T

T
kiTki

+

m∑
j=1

(−β∗
kj + 2β̃∗

kjβ
∗
kj)H

T
k U

T
kjUkjHk. (C5)

The Hessian matrix is negative definite if the
conditions in Proposition 2 hold.

Appendix D: Proof of Proposition 3

Using Eqs. (14) and (15) in Eq. (13) and cal-
culating the derivative of the resultant cost function

J(μk,Σk) with respect to Σk, the Jacobian matrix
ΛΣk

(μk,Σk) can be formulated as follows:

ΛΣk
(μk,Σk) =− 0.5S−T

k|k−1Ψxk
S−1
k|k−1

− 0.5HT
k S

−T
Rk

Ψzk
S−1
Rk

Hk. (D1)

According to the second condition of f(·), we
know that both Ψxk

and Ψzk
are positive defi-

nite. Therefore, the Jacobian matrix ΛΣk
(μk,Σk)

in Eq. (D1) is negative definite.

Appendix E: Proof of Proposition 4

Dropping the quadratic term in Eq. (C1) and
taking the Frobenius norm of the derivative of the
modified Hessian matrix Π̃μk

(μk,Σk) yield

∥∥∥∥∥∂Π̃μk
(μk,Σk)

∂μk

∥∥∥∥∥
F
=

n∑
i=1

2α̃kiη1

√
Tki(μ− x̂k|k−1)

+

m∑
j=1

2β̃kjη2

√
Ukj(zk −Hkμ),

(E1)

where⎧⎨
⎩

η1 = ‖Tki‖F‖TT
kiTki‖F ,

η2 = ‖HT
k U

T
kj‖F‖HT

k U
T
kjHkUkj‖F .

(E2)

According to Eqs. (14) and (15), we obtain

⎧⎪⎨
⎪⎩
√
Tki(μ− x̂k|k−1) ≤

√
TkiAkTT

ki,√
Ukj(zk −Hkμ) ≤

√
UkjBkUT

kj .

(E3)

Using inequality (29) and Eq. (C2) in Eq. (B4)
yields

∥∥∥∥∥∂Π̃μk
(μk,Σk)

∂μk

∥∥∥∥∥
F
≤ 4nθ1η1 + 4mθ2η2. (E4)

Similar to our previous work (Huang et al.,
2020), using inequality (C3), we can prove that the
modified Hessian matrix Π̃μk

(μk,Σk) satisfies the
Lipschitz condition, from which the results in Propo-
sition 4 hold.



436 Huang et al. / Front Inform Technol Electron Eng 2022 23(3):422-437

Appendix F: Proof of Proposition 5

Substituting Eq. (34) into Eq. (7) yields

J̃(μk,Σk) ≈
n∑

i=1

∫
ḟx(L

i∗
1k)L

i
1kq(xk)dxk

+

m∑
j=1

∫
ḟz(L

j∗
2k)L

j
2kq(xk)dxk + c{μk,Σk}

=

n∑
i=1

ḟx(L
i∗
1k)TkiAkT

T
ki

+

m∑
j=1

ḟz(L
j∗
2k)UkjBkT

T
kj + c{μk,Σk},

(F1)

where c{μk,Σk} denotes a constant with no respect
to μk and Σk.

Making derivative operations on J̃(μk,Σk)

yields

∂J̃(μk,Σk)

∂μk
= Λμk

(μk,Σk), (F2)

∂J̃(μk,Σk)

∂Σk
= ΛΣk

(μk,Σk), (F3)

∂2J̃(μk,Σk)

∂μk∂μT
k

= Πμk
(μk,Σk)−O(μk,Σk), (F4)

where O(μk,Σk) represents the quadratic term of
the Hessian matrix of the original cost function
J(μk,Σk) with respect to μk, and is given by

O(μk,Σk) =

n∑
i=1

4f̈x(TkiAkT
T
ki)T

T
kiTki(μk

− x̂k|k−1)(μk − x̂k|k−1)
TTT

kiTki+
m∑
j=1

4f̈z(UkjBkU
T
kj)

·HT
k U

T
kjUkj(zk −Hkμk)(zk −Hkμk)

TUT
kjUkjHk.

(F5)

The cost functions J̃(μk,Σk) and J(μk,Σk)

have the same Jacobin matrices, and the Hessian
matrix ∂2J̃(μk,Σk)

∂μk∂μT
k

is negative definite. Therefore,

the cost functions J̃(μk,Σk) and J(μk,Σk) have the
same optimal solutions.

Appendix G: Proof of Proposition 6

The variable in Eq. (32) can be rewritten as
follows:

Li
1k =

[
Tki(xk − μk) + Tki(μk − x̂k|k−1)

]2

= [Tki(xk − μk)]
2
+2Tki(xk − μk)(μk − x̂k|k−1)

T

· TT
ki +

[
Tki(μk − x̂k|k−1)

]2
. (G1)

By introducing the posterior covariance matrix
Σk, the formulation in Eq. (G1) can be further
rewritten as

[Tki(xk − μk)]
2
+ 2Tki(xk − μk)(μk − x̂k|k−1)

T

· TT
ki +

[
Tki(μk − x̂k|k−1)

]2
=
[
TkiΣ

1
2

k Σ
− 1

2

k (xk − μk)
]2

+ 2TkiΣ
1
2

k Σ
− 1

2

k

· (xk−μk)(μk−x̂k|k−1)
TTT

ki+
[
Tki(μk−x̂k|k−1)

]2
=TkiΣ

1
2

k exe
T
xΣ

T
2

k TT
ki + 2TkiΣ

1
2

k ex(μk − x̂k|k−1)
T

· TT
ki +

[
Tki(μk − x̂k|k−1)

]2
, (G2)

where ex = Σ
− 1

2

k (xk − μk). The random vector
ex satisfies a standard normal distribution, namely,
ex ∼ N(ex;0, Im).

The variance of Li
1k can be formulated as

Var
[
Li
1k

]
=Var

[
TkiΣ

1
2

k exe
T
xΣ

T
2

k TT
ki

]
+ 4Var

[
TkiΣ

1
2

k ex(μk − x̂k|k−1)
TTT

ki

]
,

(G3)

where the terms in Eq. (G3) can be given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Var
[
TkiΣ

1
2

k exe
T
xΣ

T
2

k TT
ki

]

= E

[(
TkiΣ

1
2

k ex

)4]
− (TkiΣkT

T
ki

)2
,

Var
[
TkiΣ

1
2

k ex(μk − x̂k|k−1)
TTT

ki

]
= [Tki(μk− x̂k|k−1)

]2
TkiΣkT

T
ki.

(G4)

Due to
(
TkiΣ

1
2

k ex

)2
≤
∥∥∥TkiΣ

1
2

k

∥∥∥2
F
γx, we can

easily obtain
(
TkiΣ

1
2

k ex

)4
≤
∥∥∥TkiΣ

1
2

k

∥∥∥4
F
γ2
x, (G5)

where γx = ‖ex‖2 satisfies a chi-square distribution
with DOF parameter n, namely, γx ∼ χ2(n). Ac-
cording to the property of the chi-square distribu-
tion, the mean of the random variable γx is n and
the variance is 2n.
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Making an expectation operation on both sides
of inequality (G5), we obtain

E

[(
TkiΣ

1
2

k ex

)4]
≤ (n2 + 2n

) (
TkiΣkT

T
ki

)2
. (G6)

Then we have

Var
[
Li
1k

] ≤ (n2 + 2n
) (

TkiΣkT
T
ki

)2
+ [Tki(μk− x̂k|k−1)

]2
TkiΣkT

T
ki.

(G7)

Using similar means, we can obtain the following
result:

Var
[
Lj
2k

]
≤ (n2 + 2n− 1

) (
UkjHkΣkH

T
k U

T
kj

)2
+ 4 [Ukj(zk −Hkμk)]

2
UkjHkΣkH

T
k U

T
kj . (G8)

Assuming that Li
1k and Lj

2k are independent of
each other, we obtain inequality (35).

Appendix H: Proof of Theorem 2

Using Eq. (4) and inequality (43) yields{
TkiA

∗
kT

T
ki ≥ TkiPk|k−1T

T
ki = 1,

UkjB
∗
kU

T
kj ≥ UkjRkU

T
kj = 1.

(H1)

According to condition (44), we have{ −0.5 ≤ ḟx(TkiA
∗
kT

T
ki) < 0,

−0.5 ≤ ḟz(UkjB
∗
kU

T
kj) < 0.

(H2)

Substituting inequality (C5) into Eqs. (22) and
(23) yields the results given in Theorem 2.

Appendix I: Proof of Corollary 1

Substituting Eq. (32) into Eq. (16), inequal-
ity (26) can be reformulated as follows:⎧⎪⎨

⎪⎩
[
ḟx(L

i∗
1k)
]2

> f̈x(L
i∗
1k),[

ḟz(L
j∗
2k)
]2

> f̈z(L
j∗
2k).

(I1)

Using the exemplary similarity functions given
in Table 4 seriatim in inequality (I1), we obtain the
results in inequality (47).

Appendix J: Proof of Corollary 2

For the case of exponential similarity function,
constructing an auxiliary function h(l) = f̈(l2)l and
making a derivative operation on it yield

ḣ(l) =
1

4σ2
exp

(
1− l2

2σ2

)(
1− l2

σ2

)
. (J1)

It is obvious that h(l) has a unique maximum

value h(σ) =
1

4σ
exp

(
1

2σ2
− 1

2

)
, which is positively

bounded when σ � 0.
Using similar means, the logarithmic and

square-root similarity functions can be verified to
satisfy the inequalities given in inequality (29) when
ν � 0 and ω � 0.
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