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Abstract: Recently, graph neural networks (GNNs) have achieved remarkable performance in representation learning
on graph-structured data. However, as the number of network layers increases, GNNs based on the neighborhood
aggregation strategy deteriorate due to the problem of oversmoothing, which is the major bottleneck for applying
GNNs to real-world graphs. Many efforts have been made to improve the process of feature information aggregation
from directly connected nodes, i.e., breadth exploration. However, these models perform the best only in the case
of three or fewer layers, and the performance drops rapidly for deep layers. To alleviate oversmoothing, we propose
a nested graph attention network (NGAT), which can work in a semi-supervised manner. In addition to breadth
exploration, a k-layer NGAT uses a layer-wise aggregation strategy guided by the attention mechanism to selectively
leverage feature information from the kth-order neighborhood, i.e., depth exploration. Even with a 10-layer or deeper
architecture, NGAT can balance the need for preserving the locality (including root node features and the local
structure) and aggregating the information from a large neighborhood. In a number of experiments on standard
node classification tasks, NGAT outperforms other novel models and achieves state-of-the-art performance.
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1 Introduction

Recently, deep learning architectures such as
convolutional neural networks (CNNs) have been ap-
plied with great improvement in computer vision
tasks (Krizhevsky et al., 2012; Simonyan and Zisser-
man, 2014; He et al., 2016). However, unlike speech,
image, and video data that lie on the Euclidean do-
mains, many machine learning tasks involve data
that cannot be represented in a grid structure, e.g.,
social networks and biological networks, where the
entities are interdependent through multiple rela-
tionships. Such data are normally represented in
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the form of graphs, in which entities and relations
correspond to nodes and edges, respectively.

In recent years, researchers have become more
interested in applying deep learning architectures
to graph domains, such as Random Walks algo-
rithms (Perozzi et al., 2014; Grover and Leskovec,
2016; Ribeiro et al., 2017), which use the topology
of the graph to directly train the individual node
embedding, but discard node features and label in-
formation. Many other approaches extend the con-
volutional operator to graphs. For example, spec-
tral graph convolutional networks (Bruna et al.,
2014; Defferrard et al., 2016) design the convolu-
tional layer based on graph spectrum analysis, while
non-spectral networks (Niepert et al., 2016; Atwood
and Towsley, 2016; Hamilton et al., 2017; Kipf and
Welling, 2017) follow a feature passing scheme (or
neighborhood aggregation) and achieve state-of-the-
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art performance in many graph-structured tasks such
as node classification and link prediction.

Theoretically, a single graph convolutional layer
serves as a localized node feature aggregator in the
first-order neighborhood (Kipf and Welling, 2017).
Similar to CNNs, stacking multiple graph convolu-
tional layers can yield a larger receptive field. In
semi-supervised settings, as depicted in Fig. 1, where
the labeled nodes are very sparsely distributed, a
larger receptive field allows the unlabeled nodes to
benefit from the label information of further nodes.
However, current work (Li et al., 2018; Klicpera
et al., 2019) shows that neighborhood aggregation
is equivalent to Laplacian smoothing, and that ex-
cessively increasing the range of neighborhood ag-
gregation results in the problem of oversmoothing.
Oversmoothing causes each node in a connected com-
ponent to converge to a similar embedding, which
means that the features learned by the graph neural
networks (GNNs) become indistinguishable. In na-
ture, the learned node embedding is not suitable to
describe the node’s local information. Hence, with
deeper layers, graph convolutional networks (GCNs)
might show worse performance. The issue occurs in
many GNN models using such a neighborhood aggre-
gation strategy, and becomes the major bottleneck
for these models to be scalable to large graphs.

Fig. 1 The first- and second-order neighborhood of
the root node (drawn in blue) in an undirected label-
sparse graph. The unlabeled nodes are drawn in grey
and the labeled nodes are drawn in red

Since the neighbors of each node might not be
equally important, some interesting work (Veličković
et al., 2018; Lee et al., 2019) uses attention mech-
anisms to construct a dynamic neighborhood in
each layer to improve the breadth exploration (fea-
ture passing among neighboring nodes). Recently,
Knyazev et al. (2019) performed analysis on the in-

terpretability of GNN models that incorporate the
attention mechanism, and described how the atten-
tion works.

However, attention-based GNNs still encounter
the problem of oversmoothing. Therefore, we try
to alleviate this model degradation, and propose
an adaptive neighborhood aggregation algorithm in-
spired by previous achievements. In addition to us-
ing the attention mechanism in breadth exploration,
we are more concerned about the information aggre-
gation in depth exploration. A k-layer GNN can ob-
tain the information in the kth-order neighborhood.
To efficiently leverage this information from differ-
ent depths, we collect the hidden embedding that is
learned by each intermediate layer and assign differ-
ent weights to the corresponding layers. Thus, each
node can enhance the attention bias against differ-
ent neighborhood depths, and fuse the features to
learn the depth-adaptive embedding. Evaluation of
the node classification benchmarks shows the repre-
sentation learning ability of our model. In summary,
the main contributions of this paper are as follows:

1. We propose an end-to-end deep architecture
for graph representation learning. It directly ac-
cepts graphs as inputs without any feature engineer-
ing, and provides high-quality node embedding as
outputs.

2. We propose a novel neighborhood aggregation
algorithm to alleviate the problem of oversmooth-
ing. As far as we know, this is the first attempt to
design a depth-wise feature aggregation scheme in
self-attention fashion.

3. The experimental results on a number of semi-
supervised node classification datasets show that our
nested graph attention network (NGAT) is highly
competitive compared to other novel models for node
classification.

2 Preliminaries

We begin by introducing our notations. For-
mally, let G = {V , E ,A} denote an undirected graph,
which consists of a finite set of nodes V with |V| = N ,
a set of edges E , and a symmetric adjacency matrix
A (its entry Ai,j represents the weight of an edge
e = (vi, vj) ∈ E connecting the nodes vi, vj ∈ V ;
when there is no edge between nodes i and j, Ai,j =

0). We use X ∈ R
N×di to represent the node fea-

ture matrix, and Xv represents the di-dimensional
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feature vector of node v. N (v) = {u ∈ V|(v, u) ∈ E}
denotes a neighborhood function that maps to the set
of neighboring nodes of v, and Ñ (v) = N (v) ∪ {v}
maps to the neighbors and node v itself.

2.1 Semi-supervised graph learning

Collecting labeled data is very time-consuming.
Semi-supervised learning methods address this prob-
lem by maximizing the use of unlabeled data, to-
gether with the labeled data, to build a robust model.
In graph domains, we use XL and YL to represent
the feature matrix and labels, respectively, for la-
beled nodes. A commonly applied semi-supervised
loss function with an explicit graph-based regular-
ization is as follows:

L(X, YL) = Lsup(XL, YL) + λLreg(X).

Here, Lsup denotes a supervised loss function, λ

is a weighing factor, and Lreg is a regularization
term. Label information is smoothed over the graph
via some form of graph-based regularization, e.g.,
the graph Laplacian regularization: Lreg(X) =

fT(X)Δf(X), where f(·) can be a differentiable
embedding function, Δ = D − A is the unnormal-
ized graph Laplacian matrix, and D is a diagonal
degree matrix with entry Di,i =

∑
j Ai,j . There

are many pioneer algorithms based on graph Lapla-
cian regularization such as label propagation (Zhu
et al., 2003), where the node’s label propagates to
neighboring nodes according to their proximity us-
ing the graph Laplacian matrix. Manifold regulariza-
tion (Belkin et al., 2006) combines a support vector
machine (SVM) classifier and Laplacian regularized
least squares to compute the supervised loss. Other
standard approaches that use graph regularization
in semi-supervised graph learning have been sum-
marized in Chapelle et al. (2009).

2.2 Graph neural networks

GNNs are deep architectures applied to graph
domains, and have been widely used in many graph-
data tasks. For the node classification task which
aims to predict the node’s label using the node fea-
tures and graph structure, GNNs are designed to
learn an embedding function f : V → R

dh to gener-
ate a dh-dimensional node embedding Zv. Then, a
classifier accepts Zv as the input to predict the corre-
sponding label yv of node v (∀v ∈ V). Modern GNNs

follow a neighborhood aggregation strategy, where
they iteratively update the embedding of a node by
aggregating the embeddings of its neighbors. After
k iterations of aggregation, the final embedding of a
node captures the features of neighboring nodes and
structural information within the kth-order neigh-
borhood. For a k-layer GNN, we use h

(l)
v to indicate

the embedding of node v learned by the lth hidden
layer, and commonly, the embedding h

(k)
v of the last

layer is used as Zv for downstream tasks.

3 Related work

We have presented several traditional ap-
proaches on semi-supervised graph representation
learning in Section 2. In this section, we provide
a brief overview of the recent advancements in using
deep neural networks that are related to our work.

3.1 Graph convolutional network

GCN (Kipf and Welling, 2017) is a powerful
neural network that achieves state-of-the-art per-
formance in semi-supervised node classification on
graph-structured data. A typical case of GCN stacks
two graph convolutional layers as follows:

Z = softmax
(
Â σ

(
ÂXW (0)

)
W (1)

)
,

where W (0) and W (1) are learnable weight matrices
trained over all labeled nodes. σ(·) is a non-linear
activation function such as ReLU(x) = max(0, x),
applied in an entry-wise manner. The softmax func-
tion is defined as softmax(xi) = 1

Z exp (xi) with
Z =

∑
i exp (xi). Furthermore, Â denotes the nor-

malized symmetric adjacency matrix:

Â = D̃−1/2ÃD̃−1/2,

where Ã = A + IN and D̃i,i =
∑

j Ãi,j with added
self-loops. In detail, the neighborhood aggregation
strategy for each node is motivated via a first-order
approximation of the local spectral filters:

h(l+1)
v =σ

⎛

⎝
∑

u∈Ñ (v)

1
√
(d(v)+1)(d(u)+1)

h(l)
u W (l)

⎞

⎠ ,

where d(v) measures the degree of node v (∀v ∈ V).

3.2 Graph attention network

GCN-like architectures use a fixed adjacency
matrix Â in every graph convolutional layer, and
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ignore the difference between different neighboring
nodes. Veličković et al. (2018) believed that design-
ing an aggregation strategy that is aware of this im-
balance can make GNNs more powerful, and that
building a dynamic adjacency matrix also alleviates
the problem of oversmoothing.

Graph attention network (GAT) designs a feed-
forward network to compute the attention value ev,u
between nodes v and u:

ev,u = LeakyReLU
((

h(l)
v W (l)‖h(l)

u W (l)
)
Wa

)
,

where Wa is a weight vector that is shared over all
nodes. The attention value ev,u is regarded as the
edge weight between nodes v and u, and it is recom-
puted in each layer; therefore, the adjacency matrix
is dynamic.

Almost at the same time of the publication of
GAT, there is a similar work, attention-based graph
neural network (Thekumparampil et al., 2018), that
uses a simpler attention mechanism but matches the
state-of-the-art performance in some node classifica-
tion benchmarks.

3.3 Other GNNs

Besides the two kinds of neural networks men-
tioned above, many other GNNs have been proposed
recently. FastGCN (Chen et al., 2018) samples the

nodes in each layer according to the importance dis-
tribution. GIN (Xu et al., 2019) uses a sum ag-
gregator over neighboring nodes and a multi-layer
perceptron after aggregating node features. SGC
(Wu F et al., 2019) removes the non-linear activa-
tion between consecutive layers and collapses the
weight matrices. LanczosNet (Liao et al., 2019)
leverages the Lanczos algorithm to approximate the
graph Laplacian to collect multi-scale information
from graph convolutions. The thorough survey of
graph neural networks can be found elsewhere (Zhou
et al., 2018; Wu ZH et al., 2019).

4 Proposed method

In this section, we present the architecture of
the NGAT, which deploys the node-wise and layer-
wise attention mechanisms. The schematic layout
of NGAT is shown in Fig. 2. Algorithm 1 presents
the process for generating the node embedding using
the NGAT that has already been trained, and the
parameters are fixed.

4.1 Node-wise attention

We start with an embedding layer to map node
features into a low-dimensional vector space, so that
the inherent features of the nodes are visible in

Multi-head attention

Concatenation

Embedding layer #1

Layer(-wise) attention layer

Node attention layer #2

Node attention layer #K

Xv

hvhv hv

Zv

...

(1) (2) (K)

...

...

Fig. 2 Schematic layout of a K-layer nested graph attention network (NGAT) for graph representation learning.
The architecture consists of three parts: (1) the embedding layer does a linear transformation with non-linear
activation; (2) the node attention layer aggregates the feature information from neighbors in attention fashion;
(3) the layer(-wise) attention layer selectively aggregates the feature information from different depths, and
outputs the final embedding Zv
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Algorithm 1 Embedding algorithm of NGAT
Input: graph G, node features Xv, neighborhood func-

tion with self-loops Ñ (v),∀v ∈ V
Model information: depth K, parameter W , node-

wise aggregation function N-ATTN(·), and layer-
wise L-ATTN(·)

Output: node embedding Zv

1: h
(1)
v ← σ

(
XvW

(0)
)
,∀v ∈ V

2: for l = 1, 2, . . . , K − 1 do
3: for v ∈ V do
4: h

(l+1)
v ← N-ATTN

({
h
(l)
u ,∀u ∈ Ñ (v)

})

5: end for
6: end for
7: h

(K+1)
v ← L-ATTN

(
h
(1)
v , h

(2)
v , . . . , h

(K)
v

)

8: Zv ← h
(K+1)
v ,∀v ∈ V

layer-wise attention, as will be introduced in Sec-
tion 4.2. It can be expressed over all nodes as a
simple matrix multiplication:

H(1) = σ
(
XW (0)

)
, (1)

where X ∈ R
N×di is the node feature matrix, the

weight matrix W (0) ∈ R
di×dh is trainable as a part

of the whole model, and dh is the number of hidden
units.

A node-wise attention layer aims to improve the
breadth exploration. It proceeds along lines 3–5 in
Algorithm 1. The node attention mechanism is de-
noted by the placeholder N-ATTN. In each layer,
node embeddings are updated in two stages: atten-
tion coefficient calculation and feature passing. We
describe each stage in detail.

1. Attention coefficient calculation
We draw inspiration from Thekumparampil

et al. (2018), which used cosine similarity to measure
the correlation between different nodes. A learnable
linear transformation is applied to improve the ex-
pressivity, as follows:

e(l)v,u =
h
(l)
v W (l) · h(l)

u W (l)

‖h(l)
v W (l)‖‖h(l)

u W (l)‖
, (2)

where W (l) ∈ R
dh×dh is a trainable weight matrix.

Compared to GAT which uses multi-layer percep-
tion (MLP) to calculate the attention value, cosine
similarity is more economic, resulting in substantial
savings in the gradient computation, as it does not
need new parameters. To normalize these coefficients
across all choices of different nodes, we use a softmax

function that maps these coefficients into the proba-
bility distribution:

a(l)v,u = softmax
(
e(l)v,u

)
=

exp
(
e
(l)
v,u

)

∑
k∈Ñ (v) exp

(
e
(l)
v,k

) . (3)

In each layer, the attention coefficients are cal-
culated only in the first-order neighborhood of node v
(∀v ∈ V), denoted as Ñ (v).

2. Feature passing
Feature passing is the key step of feature ag-

gregation over the graph. The attention-guided
neighborhood aggregation can be summarized as a
weighted linear combination across all choices of
neighboring nodes and the node itself, as follows:

h(l+1)
v = σ

⎛

⎝
∑

u∈Ñ (v)

a(l)v,uh
(l)
u W (l)

⎞

⎠ . (4)

More compactly, in matrix form, an attention
layer with a propagation matrix P ∈ R

N×N is de-
fined as

H(l+1) = σ

(

P (l)H(l)W (l)

)

. (5)

Similar to the adjacency matrix A, the entry
P

(l)
v,u equals to the positive attention coefficient only

when node u is directly connected to node v, i.e.,
P

(l)
v,u = a

(l)
v,u if (v, u) ∈ E ; otherwise, P (l)

v,u = 0. The
feature passing is dynamic because the propagation
matrix may change over the layers. Moreover, using
softmax normalization, each row of P (l) sums to one,
which ensures that the hidden state of the node will
not be scaled after feature passing in the attention
layer.

4.2 Layer-wise attention

For node classification, many other GNNs use
the node embedding h

(K)
v of the last iteration to pre-

dict labels. Yet the features of beginning iterations
may preserve locality (close to the root node), and
they are better for prediction. Thus, after executing
K iterations of layer transformations that include
the first embedding layer and the subsequent node-
wise attention layers, the input to the layer-wise
attention layer is a finite set of all hidden embed-
dings {h(1)

v , h
(2)
v , . . . , h

(K)
v } for node v. To consider

an efficient depth exploration, we provide two at-
tention mechanisms that are operated on all hidden
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embeddings: parametric and non-parametric atten-
tion mechanisms. This procedure is denoted by the
placeholder L-ATTN in Algorithm 1.

1. Parametric attention mechanism
The parametric attention mechanism works in

the self-attention setting, which allows the input
features to be the criteria for the attention itself
(Vaswani et al., 2017). As depicted in Fig. 3a, we
use a single-layer perceptron to calculate the atten-
tion coefficients. It can be expressed as follows:

Cv = softmax
(

σ

(
HvΘ√

dh

))

. (6)

Here, Hv ∈ R
K×dh is the matrix that consists of all

hidden embeddings of K layers, Cv ∈ R
K is the cal-

culated attention coefficient vector (the subscript v

indicates that these notations are related to node v,
∀v ∈ V), Θ ∈ R

dh is the learnable attention param-
eter shared across all nodes, and 1

/√
dh is a scaled

operation.
To obtain sufficient attention information, in

practice, we use the multi-attention mechanism to
make the model more powerful. M versions of the
self-attention mechanism perform the transforma-
tion shown in Eq. (6) in parallel, and then yield a
concatenated Mdh-dimensional output vector as the
final representation:

h(K+1)
v =

∥
∥
∥
∥

M

i=1

(
Ci

v

)T
Hv. (7)

Here, Ci
v is the ith attention coefficient vector calcu-

lated by the corresponding attention head, parame-
ter Θ in each attention head is independent, and ‖
indicates concatenation.

2. Non-parametric attention mechanism
We also use a simpler attention mechanism that

proceeds without any parameters. Similar to the
mechanism applied in the node-wise attention layer,
cosine similarity is used here to calculate the atten-
tion coefficients. As illustrated in Fig. 3b, we mea-
sure the correlation between the Kth hidden embed-
ding (final iteration) and the previous K − 1 hid-
den embeddings. The cosine function is defined as
cos(x, y) = xy/(‖x‖‖y‖) . After computing K − 1

normalized attention coefficients, a weighted sum-
mation is performed to obtain the output embed-
ding h

(K+1)
v . The complete non-parametric atten-

tion mechanism is as follows:

c(l)v = softmax
(

cos
(
h(l)
v , h(K)

v

)
)

,

h(K+1)
v =

K−1∑

l=1

c(l)v h(l)
v .

(8)

The Kth hidden embedding h
(K)
v is not used in

layer aggregation, and it is considered only as the
attention criterion for coefficient calculation.

(b)

Attention network

(a)

... ...

...
...

... ... ... ... ... ...

Fig. 3 Two versions of layer-wise attention: (a) para-
metric attention mechanism (self-attention); (b) non-
parametric attention mechanism

4.3 Node embedding

Here, we summarize the node embedding pro-
cedure of NGAT. First, an embedding layer is used
to transform the input features into higher-level fea-
tures to obtain sufficient expressive power, and also
to retain the inherent features of the nodes when
feeding into the layer-wise attention layer. Next,
we use K − 1 node-wise attention layers followed
by a layer-wise attention layer. Node-wise attention
improves the neighborhood aggregation strategy by
distinguishing the importance of each neighboring
node, and layer-wise attention is to selectively lever-
age these hidden embeddings of all layers to generate
an informative embedding Zv for node v (∀v ∈ V).

4.4 Node classification

Similar to a standard MLP, we use linear regres-
sion with a softmax classifier for node classification:

S = softmax
(
ZW (K+1)

)
. (9)

Here, S ∈ R
N×dc is the probability distribution

of class prediction (dc is the number of classes),
Z ∈ R

N×dh is the final node embedding matrix, and
W (K+1) ∈ R

dh×dc is the trainable weight matrix.
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The softmax function is applied in a row-wise man-
ner. Note that if we apply the multi-head attention
mechanism in layer-wise aggregation, the final node
embedding will contain Mdh features. Accordingly,
the weight matrix W (K+1) ∈ R

Mdh×dc , where M is
the number of attention heads. For semi-supervised
node classification, we jointly train NGAT and the
multi-class softmax classifier using the gradient de-
scent method. The optimization goal is to minimize
the cross-entropy loss over all labeled nodes:

L = −
∑

i∈YL

dc∑

j=1

Yij lnSij , (10)

where YL is the set of node indices that have labels.
The time complexity of a single node-wise at-

tention layer computing dh-dimensional embedding
may be expressed as O(Nd2h + |E|dh), where N and
|E| are the numbers of nodes and edges in the graph,
respectively. The time complexity of the layer-wise
attention head aggregating K-layer hidden embed-
dings may be O(NKdh). The memory complexity
is O(N2). If using the sparse representation for the
adjacency matrix A and the node feature matrix X,
the memory requirement can be reduced to O(|E|).

5 Experiments

We evaluate NGAT on semi-supervised node
classification datasets and compare its performance
with those of other powerful GNNs. Our experimen-
tal results show that NGAT is highly competitive in
learning representation of graph data.

5.1 Datasets

We use five benchmark datasets for our experi-
ments. Three are well-known citation networks, i.e.,
PubMed (Namata et al., 2012), Cora, and Citeseer
(Sen et al., 2008), where nodes and edges repre-
sent documents and citation links, respectively. The

other two are new co-authorship networks: Microsoft
Academic CS and Academic Physics from the KDD
Cup 2016 Challenge (https://www.kdd.org/kdd-
cup/view/kdd-cup-2016/Data). All datasets use the
bag-of-words representations as node features, and
the class labels indicate the research fields that each
node (document/author) belongs to. The statistics
of the datasets are reported in Table 1. We treat
all graphs as undirected versions, and the adjacency
matrix of each graph is binary.

5.2 Experimental setup and baselines

We construct an NGAT model with five node-
wise attention layers (K = 6 with the first embed-
ding layer). Each hidden layer has a fixed feature size
of dh = 32. For the layer-wise attention mechanism,
we evaluate both parametric and non-parametric
versions, denoted by P-NGAT and NP-NGAT, re-
spectively. P-NGAT applies the multi-head atten-
tion with four heads (M = 4). For optimization, we
choose the Adam optimizer (Kingma and Ba, 2014)
with learning rate of 0.005. We fix the dropout (Sri-
vastava et al., 2014) rate to be p = 0.5 applied after
all linear layers and node-wise attention layers, and
add an L2 regularization with λ = 0.0005 on the
model parameters. In practice, we have tried other
hyperparameter settings and evaluated them on the
validation set but did not find much difference. We
train for a maximum of 500 epochs. However, the
actual training time is considerably shorter since we
use an early stopping criterion. Specifically, training
stops if the validation loss does not decrease for 20
epochs. We reset the parameters of NGAT to the
state with the lowest validation loss. In each epoch,
we feed all training nodes as a batch, and the model
parameters are updated through back propagation
to reduce the cross-entropy training loss. For base-
line approaches, we test GCN (Kipf and Welling,
2017), AGNN (Thekumparampil et al., 2018), GAT
(Veličković et al., 2018), and JK-Net with GCN

Table 1 Statistics of the node classification datasets used for experiments

Dataset
Number of Number of Number of Number of Train/Dev/Test

Label rate
nodes edges features classes size

Cora 2708 5429 1433 7 140/500/1000 0.052
Citeseer 3327 4732 3703 6 120/500/1000 0.036
PubMed 19 717 44 338 500 3 60/500/1000 0.003
Academic CS 18 333 81 894 6805 15 300/500/1000 0.016
Academic Physics 34 493 247 962 8415 5 100/500/1000 0.003
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feature concatenation (Xu et al., 2018) from the
released implementations, and thereafter, cite the
performances of other novel GNNs such as DGI
(Veličković et al., 2019), SGC (Wu F et al., 2019),
LanczosNet (Liao et al., 2019), and AdaLNet (Liao
et al., 2019) from their original papers.

5.3 Results

1. Planetoid split

First, we evaluate all models on a common semi-
supervised train/dev/test set according to Planetoid
split (Yang et al., 2016), i.e., 20 nodes per class for
training, 500 nodes for validation, and 1000 nodes
for test. Except the training set, the remaining
nodes are label-invisible during training. The quan-
titative details are presented in Table 1. Table 2
reports the experimental results on Planetoid split.
For each dataset, we evaluate the performance of all
models for 10 runs, and compute the average test
accuracy with standard deviation. We observe that
both NP-NGAT and P-NGAT achieve the best accu-
racy and significantly outperform all baseline mod-
els (p < 0.05 based on Student’s t-test) on all five
datasets, which shows that NGAT is highly com-
petitive on the node classification task. Compared
to JK-Net with six layers, which is similar to our
model that uses a final aggregated layer for all hid-
den embeddings, the classification accuracy of us-
ing P-NGAT is improved by 2.5% on Cora, and

3.2% on PubMed. NP-NGAT also shows the same
classification boost. This improvement shows that
our attention-guided layer-wise aggregation is suit-
able for learning a structure-aware representation.
Furthermore, NP-NGAT and P-NGAT both achieve
significant performance in experiments, but there
is a slight difference in the relatively large graphs
(PubMed, Academic CS, and Academic Physics,
where the number of nodes is 10 times that of Cora
and Citeseer) such that P-NGAT outperforms NP-
NGAT by 0.6% roughly.

2. Random split
In the Planetoid split experiment, we sample the

same number of labeled nodes per class for training.
In the second experiment, we use Cora, Citeseer,
and PubMed citation datasets, and test all the mod-
els on random split. The experimental settings follow
Buchnik and Cohen (2018) with some slight changes.
We retain the train/dev/test set of the same size as
in the Planetoid split, but randomly sample the la-
beled nodes for training. For example, there are still
140 labeled nodes for training in the Cora dataset,
but different classes might have different numbers of
labeled nodes in the training set. We evaluate the
performance of all models in such a random split for
10 runs, and in each run, we carry out a new random
sampling and report the experimental results in Ta-
ble 3. P-NGAT and NP-NGAT still achieve the best
classification accuracy on the three datasets. Com-
pared to the results in Table 2, the test accuracy

Table 2 Node classification accuracy on Planetoid split from Yang et al. (2016)

Model
Node classification accuracy (%)

Cora Citeseer PubMed Academic CS Academic Physics

From literature∗

GCN 81.5 70.3 79.0 91.1±0.5∗∗ 92.8±1.0∗∗

GAT 83.0±0.7 72.5±0.7 79.0±0.3 90.5±0.6∗∗ 92.5±0.9∗∗

AGNN 83.1±0.1 71.7±0.1 79.9±0.1 – –
DGI 82.3±0.6 71.8±0.7 76.8±0.6 – –
SGC 81.0±0.0 71.9±0.1 78.9±0.0 – –

LanczosNet 79.5±1.8 66.2±1.9 78.3±0.3 – –
AdaLNet 80.4±1.1 68.7±1.0 78.1±0.4 – –

Our experiments

GCN 81.6±0.6 70.6±0.8 78.5±0.8 89.8±0.4 91.1±1.3
GAT 83.2±0.4 72.3±0.7 79.2±0.5 90.1±0.8 92.1±0.8

AGNN 83.8±0.2 71.0±0.4 79.8±0.4 90.9±0.3 91.5±0.3
JK-Net 82.6±0.8 72.4±1.0 77.9±0.5 91.4±0.4 92.4±0.7

Our models
NP-NGAT 84.9±0.4 72.7±0.6 80.8±0.8 91.0±0.5 92.6±0.4
P-NGAT 85.1±0.3 72.6±0.9 81.1±0.6 91.7±1.1 93.2±0.8

The best result in the corresponding dataset is in bold. ∗ means that the results are cited from their original papers; ∗∗ means
that the reported numbers are taken from Shchur et al. (2018); – denotes no result for the corresponding dataset. The reported
numbers in “Our experiments” are the test accuracy values averaged over 10 runs. NP-NGAT and P-NGAT both outperform
the compared models on all datasets based on Student’s t-test (p < 0.05)
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of all models shows a decrease by about 3%–4% in
the random split experiment. It is worth noting that
JK-Net and NGAT have a relatively small drop com-
pared to GCN, GAT, and AGNN. We think that it is
due to the layer aggregation mechanism. As the node
classes in the training set are unfairly distributed, a
model is prone to be optimized toward the classes
involving more labeled nodes. For those classes with
fewer labeled nodes, the classification variance will
accumulate as the number of layers increases. Hence,
the features of earlier iterations are more helpful.
JK-Net and NGAT both use node embeddings from
all iterations while other models use only the node
embedding of the final iteration, so the classification
accuracy of models using layer aggregation is better
than those of others.

3. Different aggregators
Table 4 shows the effect of using self-attention

for layer-wise feature aggregation. We report the
performance of self-attention (Self-Attn) and com-
pare it to those of other simple aggregators that fuse
the output of all hidden layers. The baseline “None”
means not to use layer-wise aggregation. We explore
three simple aggregators: Concatenation (Concat)
directly combines the features of all layers; Max-
Pooling (MaxPool) is the most straightforward way
to select the informative layer for each feature co-
ordinate; AveragePooling (AvgPool) is applied in a
point-wise manner to fuse all features equally. We
construct a model using five node-wise attention lay-
ers; in each experiment, we combine this base model
with different aggregators, and then report the test
accuracy averaged over 10 runs. The train/dev/test
set is split according to the Planetoid split experi-
ment. It can be easily seen that compared to the
“None” aggregator, using layer-wise feature aggrega-
tion can greatly improve the accuracy of node classi-
fication. Moreover, the result of using self-attention
is better than those of the other three simple aggrega-
tors, which shows that our self-attention aggregator
can learn node embeddings with abundant structural
information very well.

4. Size of training set
Since labeled data are very important for semi-

supervised learning, in the next experiment, we look
into the influence of different numbers of labeled
training nodes on classification performance. We re-
tain the validation and test set of the same size as in
the previous experiments, and change the size of the

Table 3 Node classification accuracy on random split
for citation network datasets

Model
Node classification accuracy (%)

Cora Citeseer PubMed

GCN 79.0±1.3 67.5±1.9 76.2±2.3
GAT 80.1±1.0 68.4±1.9 77.0±2.9
AGNN 80.4±0.8 68.2±0.7 76.6±2.1
JK-Net 80.9±1.5 69.7±1.6 77.2±1.6
NP-NGAT 82.4±1.8 69.7±1.2 78.8±1.8
P-NGAT 82.8±1.4 70.2±1.5 78.9±1.6

The best results are in bold. Reported numbers are in the
form of mean accuracy with standard deviation of 10 runs

Table 4 Test accuracy of different layer-wise aggre-
gators on citation network datasets

Aggregator
Test accuracy (%)

Cora Citeseer PubMed

None 80.4±0.2 69.4±0.4 78.2±0.1
MaxPool 83.6±0.5 72.1±0.5 80.8±0.2
AvgPool 84.2±0.2 71.7±0.1 80.4±0.1
Concat 84.4±0.8 72.2±1.0 79.9±0.5
Self-Attn 85.1±0.3 72.6±0.7 81.1±0.6

The best results are in bold. Reported numbers are averaged
over 10 runs

training set within {5, 10, 20, 30, 40, 50, 60} labeled
nodes per class. Here, we choose AGNN rather than
GAT as the baseline of attention-based models, be-
cause our breadth exploration uses cosine similarity
to calculate attention coefficients, which is similar
to the setting of AGNN. Therefore, the comparison
with AGNN will show the improvement of NGAT
using layer aggregation. We run GCN, AGNN, JK-
Net, and P-NGAT on the Cora dataset for 10 ran-
dom seeds and report the average test accuracy in
Fig. 4. We can find that with a smaller number of la-
beled nodes, P-NGAT is more superior to other mod-
els in terms of classification accuracy. We attribute
this improvement in accuracy to the fact that NGAT
stacks more layers than other models, so the label in-
formation can be propagated over a larger neighbor-
hood. Therefore, this experiment shows that deep
GNNs perform better in scenarios with sparse la-
bels. When the number of labeled nodes increases,
all test models reach a similar performance level.

5. Model depth
In this experiment, we explore how the accuracy

of node classification depends on the depth for dif-
ferent models. We add an ablation study to com-
pare the performance when using only node-wise
attention or layer-wise attention, and then empiri-
cally demonstrate NGAT’s capacity to alleviate the
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problem of oversmoothing. The baseline model is
GCN. Node-wise GCN (NGCN) denotes an NGAT
with only node-wise attention, while layer-wise GCN
(LGCN) is a model with only layer-wise attention.
We report the test accuracy averaged over 10 runs
on five datasets: Cora, Citeseer, PubMed, Aca-
demic CS, and Acadamic Physics using Planetoid
split (Yang et al., 2016). The results are summa-
rized in Fig. 5. For the datasets considered here, the
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Fig. 4 Test accuracy averaged over 10 runs for differ-
ent sizes of the training set (number of labeled nodes
per class) on the Cora dataset. For smaller train-
ing set sizes, the performance of P-NGAT increases
further

best results of GCN and NGCN are both obtained
with less than five layers. If the GCN has more than
five layers, the classification accuracy drops rapidly,
while the NGCN with more than 10 layers encounters
accuracy decrease. It shows that node-wise attention
can improve the accuracy, but cannot alleviate over-
smoothing clearly. In addition, we can observe that
compared to the results on the Cora and Citeseer
datasets, the accuracy decrease on the PubMed, Aca-
demic CS, and Academic Physics datasets (whose
number of nodes is 10 times that of Cora and Cite-
seer) is relatively small. For example, on the Cora
dataset, the accuracy of the 25-layer GCN decreases
by 29% compared to the accuracy of the 2-layer
GCN, while the decrease is 9% on the Academic
Physics dataset. If we use only layer-wise attention,
depicted by LGCN, we find that it can maintain high
classification accuracy even with deep layers, which
shows the ability of overcoming the oversmoothing
issue. It is worth noting that with both node-wise
attention and layer-wise attention, P-NGAT can al-
leviate the problem of oversmoothing, and further
improve the classification accuracy. Therefore, we
can empirically conclude that even with deep lay-
ers, the node embeddings learned by P-NGAT are
informative and distinguishable.
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Fig. 5 Influence of model depth (number of layers) on node classification performance. The experimental
results of P-NGAT (using self-attention layer-wise aggregation) are compared to those of a standard GCN
model, an NGAT with only node-wise attention (NGCN), and an NGAT with only layer-wise attention (LGCN)
on datasets Cora (a), Citeseer (b), PubMed (c), Academic CS (d), and Academic Physics (e). Markers denote
test accuracy averaged over 10 runs



Hu and Zhang / Front Inform Technol Electron Eng 2022 23(3):409-421 419

5.4 Analysis

Based on the above experimental results, we
conclude that NGAT can learn high-quality node
embeddings in a semi-supervised manner. To ob-
tain a deep understanding of the layer-wise atten-
tion mechanism, we train the 10-layer and 20-layer
P-NGAT on the Cora dataset for comparison. The
train/dev/test set is split according to the Planetoid
split.

First, we present the classification results of
1000 test nodes using the t-SNE algorithm (van
der Maaten and Hinton, 2008), as shown in Fig. 6.
Numerically speaking, the 10-layer P-NGAT can
achieve an 84.6% average accuracy, while the 20-
layer counterpart shows 84.4% accuracy. It can be
seen that there is no significant decrease in perfor-
mance as the model goes deeper. The same result

can be seen between the panels in Figs. 6a and 6b,
and the class cluster visualization of the 20-layer P-
NGAT still has a clear distinction, which is close to
the 10-layer version.

Second, we look for the preference of NGAT in
different neighborhood depths. We define the con-
cept of layer importance to characterize the contri-
bution of the layers to the final node embeddings.
Definition 1 (Layer importance) In multi-head
self-attention settings, Ci

v ∈ R
K is the ith attention

vector computed by the corresponding head for node
v (∀v ∈ V). The layer importance LI(l) is defined as

LI(l) = softmax
(∑

v∈V

M∑

i=1

Ci
v,l

)

, l ∈ {1, 2, . . . ,K},

(11)
where M is the number of attention heads and Ci

v,l

is the lth attention coefficient.
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Fig. 6 Insight into NGAT performance on the Cora dataset. (a) and (b) are the t-SNE visualization of the
classification of 1000 test nodes. Different colors mean different classes. Panel (a) is a 10-layer P-NGAT and
panel (b) shows a 20-layer model. (c) depicts the layer importance of each hidden layer for representation.
The numbers below the panel represent the index of the layer, and darker color means greater importance
score
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Fig. 6c visualizes the layer importance of each
hidden layer in heatmap form. We find that the 10-
layer P-NGAT emphasizes the node embeddings of
the 3rd and 4th layers, while the 20-layer P-NGAT
emphasizes the layers from the 8th to 10th and from
the 16th to 18th. Therefore, despite being a 10-layer
or deeper architecture, NGAT pays sufficient atten-
tion to those shallow layers, and selectively fuses
these features from all layers to generate a depth-
adaptive node embedding.

Lastly, we are interested in the nodes that are
misclassified. We construct a six-layer P-NGAT, and
present the quantitative statistics of truly and falsely
classified nodes in Table 5. Table 5 shows that ev-
ery truly classified node vt has an average of 3.91
neighboring nodes. Among these neighbors, 89.4%
nodes have the same label as vt, while the falsely
classified nodes have smaller values in both the fields.
We can conclude that the local structure and label
sharing are beneficial to node embeddings. For each
node in the graphs, more neighbors provide more
mutual information, and more neighbors with the
same label are helpful to generate a label-aware node
embedding.

Table 5 Quantitative statistics of the test prediction
results on the Cora dataset

Case Number of nodes Avg.N Avg.C (%)

True 854 3.91 89.4
False 146 3.24 46.4

Avg.N: average number of directly connected nodes; Avg.C:
average proportion of neighboring nodes that have the same
label as the classified node

6 Conclusions

In this paper, we have proposed a novel nested
graph attention network (NGAT), which can learn
high-quality node embeddings on graphs with very
few labeled nodes. The intuitive motivation is to re-
duce the harm of oversmoothing, which renders node
embeddings indistinguishably and hurts the classifi-
cation accuracy as the number of network layers in-
creases. NGAT improves both breadth and depth
exploration, and allows the stacking of more layers
within a feasible scope. Our work can be standard-
ized as an extension of JK-Net (Xu et al., 2018).
We have adopted a simple but powerful architec-
ture for both neighborhood and layer aggregations.

On many node classification benchmarks, NGAT
achieves state-of-the-art performance compared to
some novel GNNs. For future work, we aim to first
explore ways such as sampling methods (Chen et al.,
2018; Zou et al., 2019) to reduce the computational
complexity of node embedding. Second, we try to
apply NGAT to graph classification tasks.
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