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Abstract: To ensure the safety and reliability of spacecraft during multiple space missions, it is necessary to
conduct in-situ nondestructive detection of the spacecraft to judge the damage caused by the hypervelocity impact
of micrometeoroids and orbital debris (MMOD). In this paper, we propose an innovative quantitative assessment
method based on damage reconstructed image mosaic technology. First, a Gaussian mixture model clustering
algorithm is applied to extract images that highlight damage characteristics. Then, a mosaicking scheme based on
the ORB feature extraction algorithm and an improved M-estimator SAmple Consensus (MSAC) algorithm with an
adaptive threshold selection method is proposed which can create large-scale mosaicked images for damage detection.
Eventually, to create the mosaicked images, the damage characteristic regions are segmented and extracted. The
location of the damage area is determined and the degree of damage is judged by calculating the centroid position
and the perimeter quantitative parameters. The efficiency and applicability of the proposed method are verified by
the experimental results.
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Quantitative assessment
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1 Introduction

With increasing human activities in space, more
and more satellites, rockets, and probes are launched
into the Earth orbit. Consequently, the risk of hyper-
velocity impact (HVI) caused by meteoroid/orbital
debris (M/OD) continues to rise and it has become
a major threat to space activities of spacecraft. This
will also have a great impact on spacecraft, including
the damage caused by surface craters and embed-
ded impurities (Lamb, 2018; Adushkin et al., 2020;
Huang et al., 2020). Considering the uncertainty of
the occurrence of a spacecraft HVI event, the im-
pact damage has high complexity. Therefore, it is
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necessary to adopt effective nondestructive testing
techniques and to evaluate the potential damage to
the spacecraft.

The optical pulsed thermography (OPT)
method has been widely used due to its high effi-
ciency, high safety, and low loss (Cheng et al., 2018;
Kaur and Mulaveesala, 2020; Dua et al., 2021). In
the OPT detection system, Smurov et al. (2016) and
Karnati and Liou (2020) used infrared camera (IR
camera) to record the distributions of Joule heat
which present different transient thermal responses
(TTRs) in the detection area as infrared thermal
data. Recently, algorithms for extracting charac-
teristic information from thermal data have been
studied, such as independent component analysis
(ICA) and principal component analysis (PCA) (Ra-
jic, 2002; Khan et al., 2008; Gao et al., 2014; Liang
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et al., 2016). Huang et al. (2018) introduced a rapid
adaptive method of removing redundant data. Yin
et al. (2021) proposed an improved method of au-
tomatically identifying the defect. Zhang HN et al.
(2020) discussed the use of the variable interval to
search for thermal feature components.

Many scholars have proposed quantitative
methods for assessing damage information in dif-
ferent platforms and solution contexts. Li et al.
(2019) characterized the impact damage types us-
ing passive thermography and facilitated the iden-
tification of impact damage mode and the evalua-
tion of damage degree based on hot spot character-
istics. Yin et al. (2019) proposed a novel HVI dam-
age evaluation method based on an active infrared
thermal wave image detection technology with multi-
objective feature extraction optimization to achieve
quantitative evaluation of M/OD HVI damages.

However, none of the above methods can meet
the requirements of large-scale detection, and they
have strict requirements for detection conditions.
Because spacecraft are so large, it is impossible to
completely understand all the damage information
(such as distribution and extent) due to the limited
range of a single shot. To extract damage informa-
tion and reconstruct it in two-dimensional images
which are easier to process, we refer to large-scale re-
mote sensing image processing methods (Surya Ku-
mari and Bhavani, 2017; Laraqui et al., 2018; Zhang
WP et al., 2018), and apply a mosaicking method to
detect a wide area of spacecraft surface.

The method based on feature points is widely
used and has better performance because of its high
detection speed and low computational complexity.
Among the diverse feature-based methods, scale in-
variant feature transform (SIFT) and speeded-up ro-
bust feature (SURF) are two of the most popular
feature extraction algorithms. These algorithms can
maintain the scaling and rotation invariance of im-
ages and are robust to noise, displacements, geomet-
ric deformation, and illumination (Lowe, 2004; Bay
et al., 2008). In conventional mosaicking schemes,
for feature matching the distance ratio method and
the RANdom SAmple Consensus (RANSAC) or M-
estimator SAmple Consensus (MSAC) algorithm are
often adopted to find the matched point pairs after
screening and to estimate the geometric transforma-
tion matrix model parameters to realize the image
mosaicking process (Richter et al., 2014; Magri and

Fusiello, 2017). Traditional schemes rely on the expe-
rience of researchers to select the iterative threshold
for screening the correct matching point combina-
tion, which is inaccurate and not universal. It is of
great significance to use the optimization algorithm
to calculate the appropriate threshold value to en-
sure matching point accuracy and save manpower.

Color features directly reflect different damage
characteristics, so we can preliminarily extract dam-
age regions by the color image segmentation method.
The limitation of the classic RGB color space is that
the three colors have significant linear correlation.
In contrast, the L∗a∗b∗ (Lab for simplification) color
space is the most uniform color space independent of
equipment because of its uniformity on the percep-
tion level. Therefore, the Euclidean distance can be
used as the metric criterion in the Lab color space,
to further realize color feature segmentation using
a classification algorithm (Chandrakanth and Sand-
hya, 2015; Fida et al., 2017).

Based on the clustering idea, in this study a
Gaussian mixture model (GMM) is introduced to
classify and divide data information according to the
TTRs, and to separate images that highlight dam-
age information (Chen et al., 2015; Qiu et al., 2019).
The damage characteristics are extracted from the
infrared thermal video to reconstruct the damage
image. Then the ORB algorithm, which has high
feature point detection efficiency, is adopted, and an
optimized MSAC feature-matching algorithm based
on an adaptive threshold selection method is pro-
posed to obtain an accurate set of matching points
to ensure the correctness of the mosaicking results
(Rublee et al., 2011). Finally, the damage area is
further segmented and extracted, and the location
and quantitative calculations are performed on it.
The efficiency and applicability of the quantitative
assessment scheme are verified by the results.

2 Problem statement and presentation

In this study, we aim at achieving a rapid and ef-
fective quantitative assessment of spacecraft damage
while meeting the needs of large-scale detection, and
propose three main processing modules to deal with
the three key issues shown in Fig. 1. They are based
on damage information extraction, mosaic technol-
ogy for damage image reconstruction, and quantita-
tive assessment.
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Fig. 1 Schematic of the key issues

The main innovations and contributions of this
paper are as follows: (1) Based on the idea of clus-
tering, we classify and extract damage information
from the infrared thermal data, and reconstruct it in
a two-dimensional image highlighting the damaged
area; (2) We introduce an innovative use of mosaic
technology based on damage reconstructed images,
which can satisfy the large-scale detection require-
ment; (3) A new quantitative assessment method is
effectively applied to spacecraft damage detection.

3 Damage reconstruction module

3.1 Damage information extraction

The thermal video information is sampled as
the image sequence Is(f) with a certain number of
frames (f = 1, 2, ..., F1). The frame-by-frame change
of each pixel is denoted as a TTR. Then, we vector-
ize each image frame and combine them into a recon-
struction matrix Ottr with the dimension of F1×F2,
where F2 = 1, 2, ..., p× q and p× q is determined by
the infrared camera resolution. Figs. 2a–2d show the
data conversion. Each column of the reconstruction
matrix Ottr is the corresponding TTR of a pixel, so
Ottr can be regarded as the TTR data composed of
multiple characteristic regions. Based on the TTR
characteristics, the typical TTRs with the same pat-
terns are similar and can be classified.

The thermal data can be approximated using a
GMM composed of TTRs in various characteristic
regions, so we can use the GMM algorithm which
can describe the probability distribution of several
Gaussian components to classify Ottr into the cate-
gory with the highest probability. Then, the mean
vectors of each Gaussian model that can most typ-
ically reflect the data distribution characteristics of
each Gaussian model are selected to constitute the
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Fig. 2 Schematic of the data conversion and cluster-
ing: (a) image sequence Is(f); (b) fth frame of Is(f);
(c) vec[Is(fth)]T; (d) reconstruction matrix Ottr;
(e) damage characteristic matrix construction

damage characteristic matrix Gd, which is shown in
Fig. 2. The flowchart of the Ottr classification im-
plemented by the GMM algorithm (Algorithm 1) is
as follows:

As shown in Fig. 2e, the GMM algorithm is used
to divide the reconstruction matrix Ottr into three
clusters. The clustering results are G1, G2, and G3,
which are combined into the damage characteristic
matrix Gd (F1 × 3).

3.2 Damage image reconstruction

When introducing the pseudo-inverse matrix
G†

d, we obtain the observation result matrix Or (n×
M) of Gd under the reconstruction matrix Ottr con-
ditions by Or = OT

ttr(G
†
d)

T, which can highlight
all kinds of characteristic information. Similarly,
matrix Or is converted back to the original image
size to reconstruct various images of typical char-
acteristics. As shown in Fig. 3, matrix Or is re-
constructed into three types of characteristic images
(Or1 ,Or2 ,Or3). Each type represents a different de-
tection area location.

The essence of the damage reconstructed image
(DRI) is a matrix that contains temperature infor-
mation. Based on the reconstructed temperature
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Algorithm 1 GMM clustering algorithm for TTRs
Require: the reconstruction matrix Ottr and the number of

clusters M

Ensure: the damage characteristic matrix Gd

1: Initial value setting: Ottr is classified and expressed as
Ottr(:, i) (i = 1, 2, ..., n). Randomly set the initial value
of mean vectors μμμm, where m = 1, 2, · · · ,M .

2: Establish the Gaussian mixture probability density func-
tion. Eq. (A1) can be used to approximate the complex
distribution of TTRs:

p (oooi|θ v) =
M∑

m=1
αv
impm (oooi |μμμv

m,ΣΣΣv
m ), (A1)

where αim is the mixing coefficient and
M∑

m=1
αim = 1

(i = 1, 2, ..., n), oooi ∈ {Ottr(:, 1),Ottr(:, 2), · · · ,Ottr(:, n)},
and θ = {μμμ1, μμμ2, ..., μμμM ,ΣΣΣ1,ΣΣΣ2, ...,ΣΣΣM} denotes the
parametric vector set of mean vector μ and covariance
matrix Σ.

3: Calculate the posterior probability of oooi coming from the
mth Gaussian mixture distribution. Use Eq. (A2) to
find the posterior probability of oooi coming from the mth

Gaussian mixture distribution:

βv
im = p (m |oooi, θv ) = αv

impm(oooi|μμμv
m,ΣΣΣv

m )
M∑

m=1
αimpm(oooi|μμμm,ΣΣΣm )

. (A2)

4: The logarithmic likelihood function L(θ, θv) is used to
carry out iterative calculation of θ. It is calculated by
Eq. (A3):

L(θ, θv) =
M∑

m=1

n∑

i=1
p(m |oooi, θv)ln αim

+
M∑

m=1

n∑

i=1
p(m |oooi, θv)ln pm(oooi |θ) .

(A3)

Update parameter θv+1 using the following formula:

θv+1 = argmax
θ

L (θ, θv) . (A4)

5: The cluster mark of each sample oooi is determined by
Gm = arg max

m∈{1,2,...M}
βim, and is divided into the cor-

responding clusters.
6: The mean vectors of each Gm cluster are combined to

form the damage characteristic matrix.

information represented by each element in the ma-
trix, a mapping is formed to the color space. In DRIs,
the damage characteristic area is reconstructed in red
and the background area is blue.

4 Mosaicking module

We propose a mosaicking scheme for DRIs, de-
spite a wide range of detecting requirements, which
can realize complete integration of globally detected
information on a large scale. First, considering its
detection speed and robustness, the ORB algorithm
is applied. Then, after the initial rough matching

method with Euclidean distance calculation, numer-
ous mismatches, which will seriously affect the pre-
cision and effect of mosaicking, need to be removed.
To accomplish this task, an optimization algorithm,
such as the MSAC algorithm, is used to search for
inliers.

However, in the conventional MSAC algorithm,
the threshold is set empirically by researchers,
which is extremely uncertain and time-consuming.
Therefore, we propose an adaptive threshold-setting
method to obtain the optimized feature matching re-
sults to ensure the accuracy of mosaicking. In this
section, a detailed algorithm description is provided
and the schematic of DRI mosaicking is shown in
Fig. 4.
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Fig. 3 Diagram sketch of image reconstruction (Ref-
erences to color refer to the online version of this
figure)
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Fig. 4 Schematic of the image mosaicking scheme
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4.1 ORB feature extraction algorithm for
DRIs

The ORB method is improved on the basis of the
FAST detector and BRIEF descriptor. Conventional
FAST-16 with a circular radius of 16 is adopted here;
it is favorable due to the performance boost that it
can offer. For a local area of damage in a DRI, the
absolute pixel value difference between point P and
the pixel point in the dashed line in Fig. 5 is greater
than a given threshold; that is, Eq. (1) is satisfied:

D =

{
1, if |I(x)− I(p)| > ε,

0, otherwise,
(1)

where I(x) represents the grayscale value of a pixel
point on the circumference, I(p) represents the
grayscale value of target pixel p, and ε is a prede-
termined threshold.

P

16 1
3

2

4
5
6

7
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A local area
A damage 

reconstructed image FAST feature 
point detection

Fig. 5 Feature detection vs. feature point detection

An intensity centroid is employed to make FAST
robust against orientations. An assumption is made
that the intensity of the corner is offset from its cen-
ter and that it subsequently uses this vector to add
an orientation. The moments Mpq of a patch used
to compute the centroid are represented as follows:
Mpq =

∑
x,yx

pyqI(x, y). The centroid can be ob-
tained as CCC = (Cx, Cy) = (M10

M00
, M01

M00
). Then, a vec-

tor can be constructed from O (center of the corner)
to the centroid, and the orientation of the patch be-
comes θ = arctan(Cx

Cy
). In the aforementioned equa-

tions, I(x, y) is the grayscale value of point (x, y) and
(Cx, Cy) is the centroid.

Consider the illustration of conventional BRIEF
operations. Suppose that there is a smoothed image
patch p. A binary test τ on this patch is represented
as follows:

τ(p;x, y) =

{
1, p(x) < p(y),

0, p(x) ≥ p(y),
(2)

where p(x) denotes the intensity at a given point x.
Hence, the feature can be written as a vector of n

binary tests as follows:

fn(P ) =
∑

1≤i≤n2
i−1τ(p;xi, yi). (3)

Consider any given feature set of n binary tests
at a particular location, a 2 × n matrix can be rep-
resented as follows:

S =

(
x1 x2 ... xn
y1 y2 ... yn

)
. (4)

Using the patch orientation θ and the corre-
sponding rotation matrixRRRθ, a steered version SSSθ of
S can be written as SSSθ = RRRθS. Hence, the steered
BRIEF operator can be represented as follows:

gn(p, θ) := fn(P )|(xi, yi) ∈ SSSθ. (5)

The angle is discretized such that every angle
is a multiple of 2π/30 (12◦). A lookup table of pre-
computed brief is constructed. The accurate set of
points SSSθ will be used to compute the key point de-
scriptor as long as key-point orientation θ is constant
across all the directions.

4.2 Adaptive threshold selection method for
MSAC

In this subsection, an adaptive threshold selec-
tion method is developed based on the MSAC algo-
rithm. The MSAC algorithm model can be expressed
as

e2i =
∑
i

(
(x̂i−xi)2 + (ŷi − yi)

2
)
, (6)

p(e2i ) =

{
e2i , e2i < T 2,

cost, e2i ≥ T 2,
(7)

cost =
∑
i

p(e2i ), (8)

where e2i represents the difference between the ith

actual value of the data (xi, yi) and the theoretical
value (x̂i, ŷi), p(e2i ) is the data error weight, and
“cost” is the overall error of the model sought, which
is also called the cost function.

Detailed steps of the adaptive threshold selec-
tion method are as follows:

Step 1: For all the initial matching point pairs,
calculate the cost function.

Step 2: Calculate and record the minimum,
maximum, and mean values of the cost at step 1
as Emin, Emax, and Emean, respectively.
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Step 3: K, the number of thresholds T , is con-
sidered in the range from Emin to Emax, where the
value of K determines the range of the threshold.
The step size of the adjacent threshold is calcu-
lated as ∂ = Emax−Emin

K , and in accordance with
T (k) = (∂ × k) + Emin (k = 1 : ∂ : K), the value of
each threshold is determined.

Step 4: For K threshold values, two classes are
determined, and for each matching point pair, cost is
calculated. According to the selected threshold value
and the calculated cost, the matching point pairs are
divided into two categories (the correct matching is
the first category and the incorrect matching is the
second category).

Step 5: To decrease the variance in the first cat-
egory (correct matches) and to increase the variance
in the second category, distance values must be close
to each other in the first category. The mean value
Emean is also taken into account, where the thresh-
old value should be close to the average value. The
objective function is implemented as

f(k) =
δ21k + |Emean − T (k)|

δ22k
, (9)

where δ21k is the kth variance value in the first class

and δ22k is the kth variance in the second class.
Finally, the threshold with the lowest value

min f(k) is selected as the final threshold accord-
ing to Eq. (9). The optimal inlier point set Ninlier

and candidate homography Hinlier are selected, and
the infrared reconstruction image mosaicking pro-
cess is further implemented based on the homogra-
phy Hinlier.

5 Damage quantitative assessment
module

In this section, a two-stage damage information
segmentation method is proposed to achieve a com-
plete extraction of the damage areas. The flowchart
is shown in Fig. 6.

5.1 Segmentation and extraction of damage
characteristic regions

The color feature difference of the damage re-
constructed image directly reflects the different char-
acteristic areas, so we can apply a clustering segmen-
tation algorithm to segment the regions with damage
characteristic color features (orange to red).

Direct segmentation

Clustering segmentation 
algorithm

Damage characteristic area Thermal diffusion areaBackground area

Results of binary segmentation Marked binary 
segmentation results

Mark the damage 
characteristic area 

Calculate the quantitative 
parameters

Damage characteristic 
areas cannot be extracted 
effectively and completely

Effectively complete 
segmentation and realize 

the quantitative 
assessment

Extract complete 
information of damage 

characteristic area 

Fig. 6 Flowchart of the quantitative assessment method (References to color refer to the online version of this
figure)
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First, the input DRI is converted to the Lab
color space, and it is recorded as a color feature
object set D(ai, bi) (i = 1, 2, ..., n), where n is the
number of DRI pixels. The goal of K-means cluster-
ing is to divide D(ai, bi) into K categories and form
the damage feature data set Cd= {ck|k = 1, 2, ...,K},
where the cluster center of ck is ok. Define the Eu-
clidean distance measurement color difference crite-
rion as

ψ(D(ai,bi),ok)=

√√√√ nk∑
i=1

(D(ai, bi)−ok)2, D(ai,bi)∈ck.

(10)
Based on Eq. (10), there are nk color feature

object sample points that are divided into category
ck. Take the average value of all sample points in the
class subset ck as the class center ok. The iterative
update calculation method is as follows:

ok =
1

nk

∑
D(ai,bi)∈ck

D(ai, bi). (11)

Calculation is repeated until the color difference
takes the minimum value, which means that the sum
of the distances from each sample data to its clus-
ter center point takes the minimum value. If ok in
Eq. (11) goes to the minimum, the judgment algo-
rithm is terminated and the damage characteristic
data set Cd is taken as the final clustering segmen-
tation result.

The cluster segmentation image reflects the dif-
ferent DRI area information, in which the red dam-
age characteristic region is separately extracted, re-
moving the interference caused by the background
and the lateral heat diffusion.

Moreover, we propose a binary segmentation ex-
traction algorithm that is based on dual-threshold
segmentation processing to ensure the segmentation
accuracy and obtain complete segmentation results
of damage characteristic regions. Suppose that the
gray level set of its pixels is g ∈ (0, 1), that the
number of all pixels in gray level i is denoted as gi,
and that the total number of pixels is Ngi . Then, the
probability that gray level i appears in the image can

be expressed as Gi =
gi
Ngi

, where Gi ≥ 0,
N∑
i=1

Gi = 1.

After dual-threshold (T1, T2) binarization segmen-
tation, the pixels in the image are divided into
three categories, C0−T1 , CT1−T2 , and CT2−1. The
probability distribution of various occurrence types

is ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h0=h0(T1) = P (C0−T1) =
T1∑
i=0

Pi,

h1=h1(T1T2) = P (CT1−T2) =
T2∑

i=T1

Pi,

h2=h2(T2) = P (CT2−1) =
1∑

i=T2

Pi.

(12)

The average values of various gray levels are as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν0(T1) =
T1∑
i=0

iPi,

ν1(T1T2) =
T2∑

i=T1

iPi,

ν2(T2) =
1∑

i=T2

iPi,

νs =
1∑

i=0

iPi.

(13)

The expression for the variance between classes
is as follows:

χ2
c(T1, T2) = h0ν

2
0 + h1ν

2
1 + h2ν

2
2 − ν2s . (14)

Finally, the best threshold combination (T ∗
1 , T

∗
2
)

is obtained as

χ2
c(T

∗
1 , T

∗
2
) = max

0≤T1≤T2≤1

{
χ2
c(T1, T2)

}
. (15)

From the best threshold combination (T ∗
1 , T

∗
2
),

the damage characteristic region is segmented and
marked as bright white, which achieves segmentation
and extraction of damage information.

5.2 Localization and quantification of damage
characteristic regions

By counting the number of pixel points in the
connected domain of each damage characteristic re-
gion as “1,” we compare the “1” pixels statistically
and record the minimum and maximum horizontal
and vertical coordinates as the upper-left corner co-
ordinates ul(x, y) and the lower-right corner coor-
dinates lr(x, y), respectively. We set the upper-left
corner of the shooting range and the damage segmen-
tation image as the starting point (1, 1) of the spatial
position coordinates and the pixel coordinates.

Assume that the detection area is M × N and
that the DRI with resolution m× n is segmented by
the clustering segmentation algorithm and binariza-
tion segmentation algorithm. The equivalent propor-
tional relations are expressed as x′ = x

m ×M, y′ =
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y
n×N . Fig. 7 shows the damage location. The actual
spatial location information of the damage character-
istic regions of the test piece is estimated based on
the scale conversion of the position information of
image pixel points.
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of the detection   
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DRI 
m×n
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Binary segmentation 
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The lower-right corner 
of the detection area 

lr'(x', y')

The lower-right corner 
of the DRI lr(x, y)

y

xox'

o'

y'

Fig. 7 Schematic of damage characteristic area
localization

The perimeter conversion coefficient λ between
the tested region and the DRI is the ratio of the
actual perimeter Pmr of the tested region to the
perimeter value Pmp. The calculation formula is
as follows:

Pmr_d =
Pmr

Pmp · Pmp_d
= λ·Pmp_d, (16)

where Pmp_d and Pmr_d represent the calculated
and actual perimeter values of a damage character-
istic region, respectively.

6 Experimental results and discussion

6.1 Experiment of damage reconstruction

In the experiment, for sample A with HVI and
sample B with artificial carbon fiber damage, we col-
lected the infrared thermal data of local areas A1–A4
and B1–B4. We set the mixing coefficient of GMM as
3, divided the data, and recorded the mean vectors
of the Gaussian distributions as µ1, µ2 and µ3. The
mean vector curves of different detection areas re-
flecting the same damage region were approximately
the same and can be clearly distinguished. As shown
in Tables 1 and 2, we further applied the reconstruc-
tion algorithm to obtain the DRIs of samples A and
B, respectively.

6.2 Mosaicking results of reconstructed dam-
age images

We carried out an experiment of the three meth-
ods (SIFT, SURF, and ORB) based on the Mat-
lab2020a platform. By comparing the number of
detection feature points and the time spent, the ap-
plicability and advantages of the algorithms can be
determined.

Fig. 8 shows the experimental results of the fea-
ture extraction process of A1-A2 mosaicking. The
three methods have extracted a considerable number
of feature points. The experimental data statistics
of the feature extraction algorithm is shown in Ta-
ble 3. Among them, the feature points detected by
the SIFT algorithm were distributed mainly at the
edge feature contour of the impact damage and the
number of feature points was considerable, but the
detection time was too long. Meanwhile, compared
with the ORB algorithm, the SURF algorithm had
fewer feature points detected per unit time. In sum-
mary, for the mosaicking process of damage recon-
structed images, the detection speed and efficiency
of the ORB algorithm were better than their coun-
terparts of the traditional SIFT and SURF methods.

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Experimental result comparison of feature ex-
traction algorithms: (a) SIFT for A1; (b) SIFT for
A2; (c) SURF for A1; (d) SURF for A2; (e) ORB for
A1; (f) ORB for A2
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Table 1 Damage characteristic mean vector curves and the corresponding DRIs of sample A

Detection area Damage characteristic curves Damage reconstructed image

A1

0 50 100 150 200 25023.9

24.0

24.1

24.2

24.3

24.4

μ1

Damage characteristic

Frame number

T 
(°

C
)

μ2μ3

A2

0 50 100 150 200 25024.2

24.3

24.4

24.5

24.6

24.7

24.8

24.9

Damage characteristic

μ1

Frame number

T 
(°

C
)

μ2μ3

A3

0 50 100 150 200 250
24.0

24.1

24.2

24.3

24.4

24.5

24.6

Damage characteristic

μ1

Frame number

T 
(°

C
)

μ2μ3

A4

0 50 100 150 200 25023.8

24.0

24.2

24.4

24.6

24.8

Damage characteristic

μ1

Frame number

T 
(°

C
)

μ2μ3

Table 2 Damage reconstructed images of sample B

B1 B2 B3 B4
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The root mean square error (RMSE) was se-
lected to quantify the accuracy of homographyHinlier

estimation, and it is defined as follows:

RMSE=
√∑

n
i=1

1
n ‖N ′

inlier −HinlierNinlier‖22.
(17)

The initial matching set obtained with the num-
ber 142 from the mosaicking process of A1-A2 was
used as the input, and we found that the value of the
adaptive threshold was 13.43. Next, as shown in Ta-
ble 4, we set the threshold values to 1, 5, 10, 50, 100,
and 13.43. It can be seen from Table 4 that when

Table 3 Experimental results of the feature extraction
algorithms

Process
Number Time (s)

SIFT SURF ORB SIFT SURF ORB

A1-A2 928/1717 713/1207 1279/2059 2.9318 0.8344 0.6503
A3-A4 1261/1131 998/1364 1817/1537 2.2267 0.6213 0.5461

Number means the number of detected feature points. At the
feature point detection step, two images need to be processed.
The left side of “/” represents the number of feature points
detected in the reference image, and the right side represents
the number of images to be mosaicked

Table 4 Comparison of mosaicking results for differ-
ent thresholds

Threshold Number of inliers Inlier ratio RMSE

1 50 0.33 0.4188
5 140 0.92 1.3557
10 142 0.93 1.3848

13.43 142 0.93 1.3848
50 142 0.93 1.3848
100 143 0.94 4.6928

RMSE: root mean square error

the threshold was set to 1, the inlier ratio was very
small. When the threshold was set from 5 to 50, the
ratios and RMSE values were almost the same and
when the threshold value was set to 100, mismatches
occurred and the RMSE value became large, which
means that the mosaicking precision was low.

Finally, the specific mosaicking process of sam-
ple A is shown in Table 5. Similarly, the mosaicking
results of sample B are shown in Fig. 9. From the
final global mosaicking results of samples A and B,
it can be seen that the mosaicking results were ex-
plicit, without deformation or distortion, reflecting
the global damage characteristic distribution of the
test samples. The experimental results proved the
efficiency and applicability of the proposed method.

Fig. 9 Global mosaicking results of sample B

Table 5 Specific display of image mosaicking of sample A

Process Initial feature matching Optimized matching Image mosaicking results

A1-A2

A3-A4

A1A2-A3A4
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6.3 Damage quantitative assessment results

Fig. 10 shows the damage characteristic region
segmentation extraction results of the global mo-
saicking based on the clustering segmentation al-
gorithm in the Lab color space. Through the seg-
mentation algorithm, the background noise of the
test sample was removed and the lateral thermal dif-
fusion interference caused by thermal radiation was
reduced. The damage characteristic images were seg-
mented to carry out further parameter calculation to
achieve damage quantitative assessment.

Then, for the results obtained by the clustering
segmentation algorithm, the binarized segmentation
results of the damage characteristic area were further
extracted. Because compared with single thresh-
old processing, multi-threshold processing increases
only the computational complexity and will involve
more parameter adjustments, to facilitate verifica-
tion and comparison of advanced methods, we in-
troduced only the single-threshold principle. We
listed the following state-of-the-art threshold-based
segmentation algorithms as a comparison, namely,
Otsu, the minimum error threshold method, one-
dimensional maximum entropy threshold segmen-
tation method, and two-dimensional maximum en-
tropy threshold segmentation method.

The segmentation results of the four methods
are shown in Fig. 11, and it can be seen that all the
four methods can achieve segmentation and extrac-
tion of partial damage characteristic regions. The
threshold results are shown after calculation and op-
timization of each threshold segmentation algorithm
and the time spent on image segmentation is also pro-
vided. Compared with other threshold segmentation
algorithms, the Otsu method had a great advantage
in time consumption and the calculated threshold pa-
rameters can achieve partial effective segmentation

(a) (b)

Fig. 10 Segmentation results of the clustering seg-
mentation algorithm: (a) damage characteristic re-
gions of sample A; (b) damage characteristic regions
of sample B

of the damage characteristic areas. Therefore, based
on the Otsu threshold segmentation algorithm, we
used dual-threshold processing to achieve complete
segmentation and extraction of the damage charac-
teristic regions.

As shown in Fig. 12, segmentation results of
each damage characteristic region were surrounded
by the smallest circumscribed rectangle delimited by
the upper-left corner coordinates ul(x, y) and the
lower-right corner coordinates lr(x, y). Both sam-
ples A and B were square plates of 1 m × 1 m,
and the perimeter was denoted as 4 m. The re-
constructed image mosaicking results of samples A
and B showed that the characteristic parameters of
perimeter were calculated as 3296.077 and 3200.316
respectively, and the resolutions were 855× 845 and
883 × 752 respectively. Based on this, the con-
version coefficients of perimeter were calculated as
λA = 1.21 and λB = 1.25. Finally, the image damage

(a) (b)

(c) (d)

Threshold=77, t=0.007 s Threshold=78, t=8.4937 s

Threshold=47, t=0.3658 s Threshold=52, t=9.8954 s

Fig. 11 Experimental result comparison of threshold
segmentation algorithms: (a) Otsu; (b) minimum er-
ror threshold; (c) one-dimensional maximum entropy;
(d) two-dimensional maximum entropy

Fig. 12 Segmentation marking results of damage
characteristic regions of samples AAA (a) and BBB (b)
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characteristic regional coordinates and perimeter
parameter Pmp_d were converted into the actual
regional spatial position coordinates lr(x′, y′) and
ul(x′, y′) and the actual damage perimeter Pmr_d,
respectively. A1–A4 and B1–B9 damage character-
istic regions were extracted from samples A and B

and the statistics is shown in Tables 6 and 7.
The actual regional spatial position coordinates

correspond to the position information of each dam-
age characteristic region in the test sample and re-
flect the damage distribution information. The ac-
tual damage perimeter value Pmr_d of each damage
characteristic region obtained by conversion directly
reflects the damage degree, thus realizing quantita-
tive assessment of the damage information.

7 Conclusions

In this study, we proposed a quantitative dam-
age assessment method for spacecraft based on
the damage reconstructed image mosaic technology.
Based on the GMM clustering algorithm, the damage
characteristics were extracted from the infrared ther-
mal video information to reconstruct the image. On
this basis, an improved mosaicking scheme was pro-
posed. Based on the global mosaicking results, the
damage characteristic region was further segmented
and extracted. Damage localization and quantitative
calculation of the damage information were realized.
The experimental results verified the efficiency and
applicability of the quantitative assessment scheme.
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