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Abstract: This paper presents a group-based dynamic stuck-at fault diagnosis scheme intended for resistive random-
access memory (ReRAM). Traditional static random-access memory, dynamic random-access memory, NAND, and
NOR flash memory are limited by their scalability, power, package density, and so forth. Next-generation memory
types like ReRAMs are considered to have various advantages such as high package density, non-volatility, scalability,
and low power consumption, but cell reliability has been a problem. Unreliable memory operation is caused by
permanent stuck-at faults due to extensive use of write- or memory-intensive workloads. An increased number of
stuck-at faults also prematurely limit chip lifetime. Therefore, a cellular automaton (CA) based dynamic stuck-at
fault-tolerant design is proposed here to combat unreliable cell functioning and variable cell lifetime issues. A
scalable, block-level fault diagnosis and recovery scheme is introduced to ensure readable data despite multi-bit
stuck-at faults. The scheme is a novel approach because its goal is to remove all the restrictions on the number and
nature of stuck-at faults in general fault conditions. The proposed scheme is based on Wolfram’s null boundary and
periodic boundary CA theory. Various special classes of CAs are introduced for 100% fault tolerance: single-length-
cycle single-attractor cellular automata (SACAs), single-length-cycle two-attractor cellular automata (TACAs), and
single-length-cycle multiple-attractor cellular automata (MACAs). The target micro-architectural unit is designed
with optimal space overhead.

Key words: Resistive memory; Cell reliability; Stuck-at fault diagnosis; Single-length-cycle single-attractor
cellular automata; Single-length-cycle two-attractor cellular automata; Single-length-cycle
multiple-attractor cellular automata
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1 Introduction

Chip multiprocessors (CMPs) can be more con-
venient for various latency- and throughput-sensitive

‡ Corresponding author
ORCID: Sutapa SARKAR, https://orcid.org/0000-0002-9469-

5696; Biplab Kumar SIKDAR, https://orcid.org/0000-0002-9394-
8540
c© Zhejiang University Press 2022

applications, if and only if they are well-equipped
with appropriate memory subsystems. Therefore,
to achieve optimized performance benefits, proper
speedup, and required parallelism in CMPs, architec-
ture to memory technology must be properly tuned
into the chip floor area and power budget (Rado-
jković et al., 2016). Resistive random-access mem-
ory (ReRAM) can provide high package density (4X–
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16X), good scalability, low cost, low read latency, low
read energy, ultra-low leakage power, and data re-
tention. ReRAM falls in the category of non-volatile
memory (NVM) and is currently available in mem-
ristors, phase change memory (PCM), spin transfer
torque memory (STTRAM), magneto resistive RAM
(MRAM), ferro-electric RAM (FRAM), etc. (Fan
et al., 2013). Consequently, ReRAM has drawn spe-
cial attention in multi-layer on-chip cache (Lin and
Chiou, 2015) and main memory construction (Zhou
et al., 2009) because it can provide legitimate power
consumption governed by Moore’s Law.

Unlike transient faults in dynamic random ac-
cess memory (DRAM), ReRAM is more prone to
have permanent stuck-at faults because the high re-
sistance state (HRS) and low resistance state (LRS)
exhibit logic states 0 and 1, respectively. Cell re-
sistance is also repetitively changed from low to
high or high to low states during writes. During
repetitive writes in ReRAMs (PCM-109, STTRAM-
4 × 1012), a number of scattered memory cells may
stick to logic 0 (S-A-0) or logic 1 (S-A-1). Al-
location of pages containing stuck-at faults is re-
stricted by the operating system (OS) or through
software control (Fan et al., 2013), but stuck-at
faults are spatially scattered and grow in number
during runtime or aging (Seong et al., 2010; Mel-
hem et al., 2012; Fan et al., 2013). Therefore, this
page-level scheme appears to be an impractical so-
lution due to wastage of usable memory. Recy-
cling of faulty pages is presented in a dynamic pair-
ing scheme (Kang et al., 2007; Ipek et al., 2010),
which uses pairing of faulty pages with different off-
sets for different faulty bits, but page-level software
schemes do not support wear leveling. Therefore,
this scheme inherently becomes unprotected against
malicious attacks and affected for cell lifetime vari-
ation causing unreliable operation. Schechter et al.
(2010) proposed a hardware scheme at block-level
granularity to eliminate memory waste. Faulty bit
addresses are recorded to restrict their future use.
An additional backup array is used instead of us-
ing faulty bits (Schechter et al., 2010), but it in-
creases appreciable storage with significant memory
volume and with an increasing number of faults.
Consequently, unreliable cell function and lifetime
variation of ReRAM limit its application in CMPs.

Fault-tolerant designs are proposed with the ap-
proach by which faulty cells can still be usable and

exact readable data can also be obtained (Seong
et al., 2010; Melhem et al., 2012). Though it can-
not alter stored data, it can retrieve correct data by
knowing the fault status. Architecture-level fault-
tolerant schemes are proposed at block-level gran-
ularity to increase the reusability of the memory
(Seong et al., 2010). The hardware-based schemes
complement wear-leveling schemes that are used to
protect cells by remapping write requests after a
write-count threshold (Sarkar et al., 2020). For
stuck-at-wrong (SAW) cells, data needs to be rec-
tified as it is stored, but it is readable for stuck-at-
right (SAR) cells without modification of stored data
(Seong et al., 2010; Melhem et al., 2012). Therefore,
identification or diagnosis of the spatially scattered
SAW cells becomes a design challenge for an efficient
fault diagnosis scheme.

Error correction code (ECC) was applied for
fault diagnosis in Hamming (1950). However, over-
head of the traditional Hamming code-based multi-
bit schemes is quite high. Moreover, these schemes
fail to cope with scalable architectures due to their
increased complexity and growing number of faults.
ECC bits also fail at a higher rate than data bits,
causing unreliable operation. A few polynomial
code based fault diagnosis schemes like Bose, Ray-
Chaudhuri, Hocquenghem (BCH) and Reed Solomon
have also been proposed (Strukov, 2006). These
schemes can address the issues of transient faults
(Schechter et al., 2010), but they are inappropriate
for multi-bit stuck-at fault position detection and
correction because of high computational complex-
ity, and become unfit within a limited space bud-
get. Error correction pointer (ECP) schemes use
correction pointers and spare cells. In a typical ECP
scheme (Schechter et al., 2010), six pointers are in-
troduced to decode and save the fault position within
a 512-bit memory block, but reliable memory oper-
ation is not guaranteed if all the correction pointers
have elapsed. In Sarkar (2018), correction point-
ers were not limited within a root pointer and fault
coverage increased. In both cases, however, space
overhead grows linearly with the increase of memory
size and increases with the increase of the number of
faults.

Hardware-based multi-bit stuck-at fault diag-
nosis schemes have been proposed in several pa-
pers (Seong et al., 2010; Melhem et al., 2012; Fan
et al., 2013; Sarkar et al., 2017). Stuck-at fault
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error recovery (SAFER) (Seong et al., 2010) consid-
ers single-bit faulty partitions. When two faulty cells
fall in the same partition, the partition is adjusted
to form single-bit fault partitions again. Fault di-
agnosis is achieved using the single error correction
double error detection (SEC-DED) method. The
possible number of partitions depends on the num-
ber of cell index bits. Thus, the number of tolerable
faults is restricted to log2n+1 for an n-bit block.
Aegis (Fan et al., 2013) defines a more precise and
systematic design solution to make fewer partitions
(groups) tolerate more faults. It introduces slope-
based groupings with a single fault in each group, as
in SAFER (Seong et al., 2010), but again its com-
putational complexity is quite high. Melhem et al.
(2012) introduced a recursively defined invertible set
(RDIS) to tolerate an appreciable number of faults.
RDIS accepts a universal set of stuck-at faulty cells.
Thereafter, the RDIS scheme forms recursively ex-
clusive subsets of SAR and SAW cells from that set.
It recovers from general fault conditions using simple
logic, which is effective for any block size. Because
it accepts a known set of stuck-at faults, it lacks
a runtime fault-handling capacity to cope with cell
lifetime variability. Therefore, an innovative and ac-
curate solution is needed for this problem.

Cellular automaton (CA) based schemes are
found in different applications of homogeneous or
heterogeneous CMPs (Das et al., 2010; Sarkar, 2018).
Dalui and Sikdar (2017) proposed a CA-based cache-
coherence-controller design. The protocol processor
(PP) reported for MSI (modified, shared, and in-
valid), MOSI (modified, owned, shared, and invalid),
and MOESI (modified, owned, exclusive, shared, and
invalid) protocols works on the accurate state iden-
tification of the cache lines (modified, shared, and
invalid). This PP concept can also be extended to
stuck-at fault-tolerant designs at cache line granular-
ity. Further, ReRAM blocks having single-bit SAW
or SAR faults can be detected by a special class of
CAs (Saha et al., 2016). Sarkar et al. (2017) pro-
posed a CA-based stuck-at fault diagnosis scheme
for ReRAM to address cell endurance. The scheme
was developed around a nonuniform null bound-
ary CA. By synthesizing SACAs, 100% fault toler-
ance was achieved. However, this dynamic group-
based design is restricted to handling complex fault
conditions. State-of-the-art block-level dynamic par-
titioning or group-based multi-bit stuck-at fault di-

agnosis schemes have restricted use in general fault
conditions (Seong et al., 2010; Fan et al., 2013; Sarkar
et al., 2017).

In this study, a complete hardware-based stuck-
at fault diagnosis scheme is proposed at block-level
granularity. It is complementary to wear-leveling
schemes. Cell lifetime variability is addressed by a
CA-based recursive-grouping strategy. The major
contributions of this paper are as follows:

1. A CA-based simple and efficient test archi-
tecture is designed to ensure 100% fault tolerance
against permanent stuck-at faults.

2. Uniform and nonuniform SACA, TACA, and
MACA rules are synthesized in alternate fault detec-
tion design solutions.

3. The presence of SAW and SAR cells in the
same memory block in complex fault conditions is
handled. Theoretically, it does not impose any limi-
tation on the number or the nature of tolerable faults.

4. Unique periodic boundary TACA based and
null boundary SACA based test architectures are em-
ployed in multi-bit fault diagnosis.

5. The design can diagnose a huge number of
faults using recursive partitioning logic that is suit-
able for any block size. Space overhead is also re-
duced with increased block size in complete system
design.

6. Simple but effective data recovery logic is
used to provide readable data in spite of stuck-at
faults at multiple bits within a memory block.

2 Cellular automata

Cellular automata (CAs) are represented by
a quadruple of ZD, S, M, and R, which are a
D-dimensional lattice or cellular space, a set of
states, a set of neighborhood vectors, and a set of
local rules, respectively. Wolfram’s one-dimensional
(1D) two-state CA or elementary cellular automaton
(ECA) is used to model versatile discrete dynamical
systems such as very large scale integration (VLSI),
cryptography, networking, and cache systems.
Those CA-based models are suitable for computer
simulation with MATLAB, VHDL, and so on. The
proposed fault-tolerant design is also developed
around a subset of ECA that considers a special
class of single-length-cycle single- or multiple-
attractor CAs. CA is analogous in operation to an
autonomous finite state machine (FSM). An n-cell
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binary CA stores discrete variable values of 0 or
1 at each time step t, which is referenced to the
present state (PS) (St

i ). The next state (NS) (St+1
i )

of each cell at the next time step (t+1) is updated
by the PSs of left neighbor (St

i−1), self (St
i ), and

right neighbor (St
i+1) in a 1D three-neighborhood

CA. The NS of the ith CA cell is given in Eq. (1):

St+1
i = fi(S

t
i−1, S

t
i , S

t
i+1). (1)

Therefore, the NSs of an n-cell CA can be rep-
resented by

St+1 =
(
f1(S

t
0, S

t
1, S

t
2), f2(S

t
1, S

t
2, S

t
3), · · · ,

fn(S
t
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t
n, S

t
n+1)

)
.

(2)

From the perspective of switching theory, the
rule minterm (RMT) is the combination of the PSs
of the left neighbor (St

i−1), self (St
i ), and right neigh-

bor (St
i+1) of the ith CA cell. RMTs are therefore

minterms of a three-variable (St
i−1, St

i , St
i+1) switch-

ing function. They are given in the columns of the
first row of Table 1. The decimal equivalent of NSs
of eight RMTs is called rule (Ri). The next state
function (fi) of an ith CA cell can also be derived
from its rule. In two-state three-neighborhood ele-
mentary CA (ECA), 22

3

(256) possible rules can be
found. A few example CA rules 116, 192, 207, 212,
222, 238, 244, 252, 254, and 255 employed in our
current design are stated in Table 1. For RMT 2,
NS (St+1

i ) of the ith CA cell is 1 for CA rules 116,
207, 212, 222, 238, 244, 252, 254, and 255, but 0 for
CA rule 192. An RMT St

i−10St
i+1 (St

i−11St
i+1) in a

CA rule is called passive if the corresponding NSs
are St+1

i−10St+1
i+1 (St+1

i−11St+1
i+1 ). On the other hand, if

the NS of an RMT St
i−10St

i+1 (St
i−11St

i+1) is 1 (0),

it is active. For example, the NSs of passive RMT 0
(000) and RMT 2 (010) are 0 and 1 respectively in
CA rule 254. However, NS (St+1

i ) of RMT 0 (000) of
CA rule 255 is 1 being active.

The rule set of an n-cell CA is designated by a
rule vector R = < R1, R2, · · · , Rn >, where each Ri

(i = 1, 2, · · · , n) represents the rule applied to each
CA cell. If identical Ri is applied to all CA cells, the
CA is a uniform one. It is a nonuniform (hybrid) CA
for dissimilar Ri’s applied to each CA cell. Finite CA
with nonuniform and/or uniform null and periodic
boundary (PBCA) conditions are considered for the
current design. For null boundary CAs (NBCAs),
the left terminal of the leftmost cell and the right
terminal of the rightmost cell remain in the 0-state.
For periodic boundary CAs (PBCAs), the right of
the rightmost terminal is connected to the left of
the leftmost terminal. CAs can be constructed with
D-flipflops and combinational logic circuits (Fig. 1).

Clock

D6 Q6 D5 Q5 D4 Q4 D3 Q3 D2 Q2 D1 Q1

A13 A12 A11

O6 O5 O4 O3 O2 O1

A10    A9 A8    A7 A6    A5 A4    A3 A2    A1
0 0 0 0 0

Fig. 1 Block diagram of a six-cell nonuniform PBCA

The transition functions (fi’s) of all applied CA
rules are given in Table 1. The fi’s of each CA cell
of the nonuniform rules 192 (St

i−1S
t
i ) and 207 (S

t

i−1

+ St
i ) are constructed with combinational PS logic

circuits for self, left, and right neighbors as given in

Table 1 Truth table

PS 111 110 101 100 011 010 001 000 Rule
NS function (fi)

RMT (7) (6) (5) (4) (3) (2) (1) (0) (Ri)

NS 0 1 1 1 0 1 0 0 116 St
iS

t
i+1+St

i−1S
t
i

NS 1 1 0 0 0 0 0 0 192 St
i−1S

t
i

NS 1 1 0 0 1 1 1 1 207 S
t
i−1 + St

i

NS 1 1 0 1 0 1 0 0 212 St
iS

t
i+1+St

i−1S
t
i+1

NS 1 1 0 1 1 1 1 0 222 S
t
i−1S

t
i+1+St

i+St
i−1S

t
i+1

NS 1 1 1 0 1 1 1 0 238 St
i + St

i+1

NS 1 1 1 1 0 1 0 0 244 St
iS

t
i+1+St

i−1

NS 1 1 1 1 1 1 0 0 252 St
i−1 + St

i

NS 1 1 1 1 1 1 1 0 254 St
i−1 + St

i + St
i

NS 1 1 1 1 1 1 1 1 255 1
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rows 2 and 3 of Table 1 and detailed in Section 5.
A state transition diagram (STD) and

transition representation of the CA state space of
five-cell PBCAs constructed with R1=<252, 252,
252, 252, 252> and R2=<238, 238, 238, 238, 238>
are shown in Figs. 2a and 2b, respectively. STDs
are given to characterize CA states as reachable
or unreachable and cyclic or acyclic states. Irre-
versible CAs have unreachable states, which cannot
be reached from any other state (e.g., 1, 2, 4, 8, 9,
13, 16, 20, 21, 22) but can have a few states with
multiple predecessor states 30 (predecessor states 20
and 28), 23 (predecessor states 5 and 7), etc., as
given in Fig. 2a. An attractor associated with a sin-
gle state is called a single-length-cycle attractor or
fixed-point attractor. Two single-length loops or cy-
cles 0 → 0 and 31 → 31 are found in both STDs that
form single-length-cycle attractors of the CAs. The
depth of a CA is the maximum distance (measured
with the number of states) traversed to settle down
to an attractor state from any other state. In Fig. 2a,
the depth of the CA is 4 (8 → 12 → 14 → 15 → 31).

The current design was developed around the
theory of three-neighborhood null boundary and
periodic boundary SACAs, TACAs, and MACAs.
Nonuniform NBCAs with the rule pairs (192, 207)
and (254, 255) are configured to detect the fault
status of a memory word based on the following
properties:
Property 1 A rule Ri can contribute to the
formation of fixed point attractor(s) if at least one
of the NSs of RMTs 0, 1, 4, and 5 is 0, and/or at
least one of the NSs of RMTs 2, 3, 6, and 7 is 1 (Saha

et al., 2016).
Property 2 Uniform rule 192 forms an SACA with
all-0 single-length-cycle attractor only in its three-
neighborhood null-boundary construction.
Property 3 Nonuniform three-neighborhood
NBCA rule pair (192, 207) is converted to a TACA
from an SACA for hybridization in a single cell or
multiple cells. It forms two all-0 and all-1 single-
length-cycle attractors only.
Property 4 Uniform three-neighborhood
NBCA rule 254 incorporates two all-0 and all-1
single-length-cycle attractors and thus becomes a
TACA.
Property 5 The uniform TACA with rule 254
(Ro) is converted to an SACA when it is hybridized
with rule 255 (Rh) at a single cell or multiple cells.
In alternate designs of fault detection and diagnosis
(Sections 3 and 4), few uniform PBCA and NBCA
rules can be used. Stated CA rules satisfy the design
requirements as per the given properties:
Property 6 A three-neighborhood uniform PBCA
with rule 238 forms a TACA because it forms two all-
0 and all-1 single-length-cycle attractors for passive
RMTs 0 and 7.
Property 7 A uniform PBCA with rule 252 forms
a TACA in its 1D three-neighborhood construction.
It forms two all-0 and all-1 single-length-cycle attrac-
tors for RMTs 0 and 7 as they are passive.
Property 8 A uniform NBCA with rule 116
forms a TACA in its three-neighborhood construc-
tion. It forms two single-length-cycle attractors
for RMTs 7 and 0 as they are active and passive,
respectively.
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Fig. 2 STDs of uniform PBCA <252, 252, 252, 252, 252> (a) and <238, 238, 238, 238, 238> (b)
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Property 9 A uniform three-neighborhood NBCA
with rule 244 forms an MACA. It forms all-0, all-
1, and other single-length-cycle multiple attractors
for RMT 5 being active and RMTs 0 and 7 being
passive.

Property 10 The three-neighborhood uniform
NBCA rule 222 forms an MACA. It has all-0
and other single-length-cycle multiple attractors for
RMTs 0, 5, and 7 being passive.

Property 11 Uniform NBCA rule 212 forms a
TACA with two all-0 and all-1 single-length-cycle
attractors for RMTs 0 and 7 being passive.

A reachability tree (RT) is a binary tree con-
structed to characterize the states of a CA state
space. CA states can be characterized as non-
reachable, reachable and acyclic, or reachable and
cyclic states using an RT. In this fault-tolerant de-
sign, a subset of ECAs is chosen, having only single-
length-cycle single or multiple attractors. An RT
can be used to detect those single-length cycles ef-
ficiently. An example tree with a four-cell CA with
uniform CA rule 244 is shown in Fig. 3. The non-
reachable states are 1, 2, 4, 5, 7, 9, 10, and 13.
These states do not contribute to form cycles. The
RMT sequence obtains a reachable state. Reachable
states may form cyclic states. Cyclic states can set
up single-length-cycle attractor(s) (e.g., 0 → 0) if
their RMT sequence (e.g., <0000>) evolves through
passive RMTs only.

3 Fault-tolerant ReRAM design

The motivation of the current research is to
propose a CA-based dynamic fault-tolerant design
methodology at block-level granularity for general
fault conditions. Memory blocks are assumed to
have a universal set of N cells, indexed with c(0),
c(1), . . ., c(N − 1) with the possibilities of the cell
(c(i)) status as non-faulty (NF), stuck-at-0 (S-A-0),
and stuck-at-1 (S-A-1). The fault status of c(i) can
be SAR, SAW, and NF, as compared to the input
data (D). This implies that if the faulty cell (c(i)) is
in the S-A-0 status and input data (D) is 1, or vice
versa, the status of c(i) is SAW.

However, if faulty c(i) is in the S-A-1 status and
D is also 1, or vice versa, the cell status is SAR.
For an NF or SAR cell, the data can be directly
read from c(i) without data rectification, being in-
distinguishable as D and stuck-at value. Therefore,
detection of SAW cells is the primary requirement of
the fault-tolerant design. To test an SAW cell, data
(v) written to c(i) is stored back in V . The SAW
status is exhibited when data to be stored (D or v)
and retrieved data (V ) are not equal (Table 2). If v
and V are identical, then c(i) may be NF or SAR.
Now, to test that c(i) is in the SAR status, the com-
plemented data is stored in c(i) and retrieved to Vc.
For equal v and Vc, the status of c(i) is inferred as
SAR. For unequal values of v and Vc, the c(i) is NF
as explained in Table 2.

Level-0

Level-1

Level-2

Level-3

Level-4

<0000>

0, 1, 3

0, 1, 3

0, 1, 2, 3, 6, 7

0, 1, 2, 3

0, 1, 2, 3, 6, 7

0, 1, 3

4, 5, 6, 7 0, 1, 2, 3

0, 2, 60, 2, 4, 64, 60, 2, 6

0000 (0)
(attractor state (0))

1001 (9)
(unreachable state)

4

40           2, 60     10     10     10    10  0 1  2, 6 4, 6 2, 4, 60  0    1

4, 5

1

0                                         10                                         1
2, 6, 7

4, 5

4, 5, 6, 7
0                  10            1 0                  1 1    20, 1, 32,6,7

2
0

0

0   1 0     1

Fig. 3 Reachability tree for the four-cell NBCA rule vector <244, 244, 244, 244>



1116 Sarkar et al. / Front Inform Technol Electron Eng 2022 23(7):1110-1126

3.1 Fault detection circuit employed in
ReRAM

The test logic can be implemented using a com-
binational logic circuit succeeded with CA. Each
memory cell status can be identified by checking the
output bits Oj of XOR2 and Ok of XNOR1 gates,
respectively, as shown in Fig. 4. D is inputted
through the controlled buffer (XOR1). Control sig-
nal (Dcon) produces D and D according to the com-
parison operation. The SAW status of c(i) can be
sensed by Oj , which gives a comparison result of V
and v. For c(i) to have the SAW status, Oj is 1. If
Oj = 0, then the status of c(i) is either SAR or NF
and is rechecked by Ok for the exact status. XNOR1

compares Vc and v. For c(i) to have the SAR status,
Ok = 1, and for the NF status, Ok = 0.

A memory block can have (1) NF cells only
(BNF), (2) SAR and NF cells but no SAW cell
(BSAR), (3) SAW and NF cells without any SAR cell
(BSAW), or (4) SAR, SAW, and NF cells (BSARW).
For runtime fault detection of a memory block, two
N -cell CAs, namely CA1 and CA2, are employed.
By sensing the least significant bits (lsbs) of the at-
tractor states of both CA1 and CA2, the fault status
in b(i) can be exhibited.

If the c(i) status bit is 0, the cell rule is RNF

(192). The status bit for RSAW or RSAR (207) is
1. Therefore, for an NF memory word, the rule set
is uniform for CA1 (RCA1) and CA2 (RCA2) with
RNF (192), as shown in Table 3. After the tth1 time
step, it settles down to the attractor state (0 → 0),
whose lsb (st) is 0 as given in Table 3. In case of SAR
and SAW, both CAs (CA1 and CA2) are configured
with a hybrid rule of RNF => 192 and RSAR => 207

Write

v

c(i)
Read 

Compare 

Resistive memory CA1
1 for SAW

Oj

v V

XOR2

v Vc

XNOR1

Ok

CA2 1 for SAR

XOR1

Dcon

D

Fig. 4 Identification of the fault status of the memory
block (Sarkar et al., 2017)

Table 2 Tabular representation of fault-tolerant design steps

Input data Cell status Retrieved data Comparative result Decision

D Dcon v c(i) V Vc XOR2 (Oj) XNOR1 (Ok) SAR/NF SAW

0 0 0 S-A-0 & NF 0 – 0 – SAR/NF –
0 0 0 S-A-1 1 – 1 – – SAW
0 1 1 S-A-0 – 0 – 0 SAR –
0 1 1 NF – 1 – 1 NF –
1 0 1 S-A-1 & NF 1 – 0 – SAR/NF –
1 0 1 S-A-0 0 – 1 – – SAW
1 1 0 S-A-1 – 1 – 0 SAR –
1 1 0 NF – 0 – 1 NF –

Table 3 Tabular representation of fault detection with a nonuniform NBCA rule pair (192, 207)

Status register Rule vector T state st
Block state

Status word 1 Status word 2 RCA1 RCA2 t1 t2 (0) (1)

0 0 0 0 0 0 0 0 192192192192 192192192192 1 1 0 0 BNF

0 0 0 0 0 1 0 1 192192192192 192207192207 1 1 0 1 BSAR

0 0 0 1 0 0 0 0 192192192207 192192192192 1 1 1 0 BSAW

0 0 0 1 0 0 0 1 192192192207 192192192207 1 1 1 1 BSARW
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and/or RSAW => 207. Now, if the CA is run for the
tth2 time step, it settles down to the attractor state
with lsb 1 (e.g., attractor state 7 or 5). If O(j)O(k) =

1, the encoded rule 207 is set as O(j) = 1 => St+1
i =

S
t

i−1 + St
i . For O(j)O(k) = 0 => St+1

i = St
i−1 St

i ,
set rule 192 for the ith cell of CA1 (CA2) (Table 3).

To improve the misprediction rate (Mp),
another hybrid CA rule pair can be employed. The
fault status is tested by the previously mentioned
two consecutive read-write and compare-check op-
erations. In an alternate design, the CA rule for
RNF is 254, whereas RSAR (RSAW) is 255. The
same fault-check process sets the ith cell rule. RSAR

(RSAW) is set for O(j) = 1 (O(k) = 1) as 255 and
O(j) = 0 (O(k) = 0) as RNF 254, as shown in Ta-
ble 4. Therefore, CA1 (CA2) is a uniform CA with
rule vector <254, 254, 254, ...> for a non-SAR (non-
SAW) memory word. For all other fault conditions,
CAs are configured with hybrid CA rule RNF (254)
and RSAR (RSAW) (255) (RCA1, RCA2) (Table 4).

During memory testing, CA1 (CA2) is initial-
ized with an all-0 seed. For each non-SAR/non-
SAW word, both CAs are configured with uniform
rule RNF as 192 (254) and allowed to run for a single
time step (t=1). For NF words, CAs remain in the
all-0 state. The test logic enforces the CA config-
uration to be hybridized with RSAR (RSAW) as 207
(255) when faulty words are encountered. It jumps
to a non-zero state within a single time step (Tables
3 and 4). For any subsequent faulty or non-faulty
words, the hybrid CA continues to run for single time
steps. Reaching b(i)’s last word, CAs are allowed to
settle down to an attractor state. The status of b(i) is
tagged by the lsbs of the attractors (st(0) and st(1))
as to (1) 00 for BNF, (2) 01 for BSAR, (3) 10 for
BSAW, and (4) 11 for BSARW (Tables 3 and 4).

3.2 Alternate design option for fault detection

Though hybrid SACA rules 192 and 207 as well
as 254 and 255 can appropriately classify the fault
status of b(i), there is room for performance improve-
ment. Instead of nonuniform CAs, a few uniform
NBCAs and PBCAs can be employed in fault detec-
tion. Employed CAs are required to settle into dif-
ferent single-point attractors (Attr’s) for faulty and
NF blocks. Further, the best possibility is to find
an even rule CA configuration that settles into an
attractor state of lsb 0 for NF b(i) and lsb 1 for the

faulty b(i). In an alternate design option, TACA and
MACA are used to avoid the rule-set complexity of
SACA.

For simple CA design, uniform NBCA with the
TACA configuration is employed for the fault detec-
tion circuit. To test the presence of an SAR (SAW)
cell, the test logic remains unaltered in the alternate
design (Section 3.1). Uniform TACA rules 116 and
244 are found to be appropriate to reduce the design
complexity (Table 1). For CA rule 116, for a faulty
b(i), the CA settles down to a single-point attractor
Attr 1 → 1 of lsb 1. It settles down to Attr 0 → 0 of
lsb 0 for an NF block. For CA rule 244, the fault sta-
tus can be detected by Attr 1 → 1 with lsb 1, whereas
the NF status is indicated with a single-point attrac-
tor Attr 0 → 0 with lsb 0. The uniform MACA rule
212 can indicate the fault status of a memory word
having single-point attractors Attr’s 1 → 1, 5 → 5 of
lsb 1. The uniform MACA rule 222 can also indicate
the fault status of a memory word having multiple
single-point attractors Attr’s 11→11, 13→13, 15→15
with lsb 1. Both CAs indicate NF c(i) with Attr 0 →
0. Uniform PBCAs can also be employed in fault de-
tection circuits maintaining the aforesaid test logic
(Section 3.1). Uniform TACA rules 252 (Fig. 2a)
and 238 (Fig. 2b) are found to be more appropri-
ate for fault detection. The above CAs (CA1 and
CA2) are allowed to run to settle down to attractor
states. The lsbs of attractor states are collected to
obtain the faulty status of b(i) (Table 4). The at-
tractor Attr (15 → 15) with lsb 1 flags for the SAR
or SAW status and the NF status is indicated by a
single-point attractor Attr (0 → 0) with lsb 0. Sum-
marization reveals that the idea of fault tolerance is
implemented in three steps: (1) identification of the
nature of faulty cells through test logic, (2) selection
of uniform or nonuniform, PBCA or NBCA rule with
the rule selection logic, and (3) classification of b(i)
as per the status of the c(i)’s in a CA-based block
categorization (CABC) logic. The working steps of
the fault detection logic, rule set logic, and CABC
are detailed in Table 2.

Fault detection is a pre-requisite of all group-
based static RDIS (Melhem et al., 2012) or dynamic
SAFER (Seong et al., 2010) fault diagnosis schemes.
The described fault detection unit can be imple-
mented separately to detect a fault condition of b(i)
only or collectively as a built-in sub-unit of the fault
diagnosis process. Further, because the cell status
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(SAR or SAW) can change with the input data, the
fault status can be saved in a separate on-chip cache
unit to avoid redundant writes of the compare-check
process.

3.3 Block diagram of a fault-tolerant system

Tentative blocks of fault-tolerant ReRAM hard-
ware design are illustrated in Fig. 5. The system im-
plements fault detection for diagnosis and includes
up to fault recovery logic with four logically con-
nected units: (1) The fault identification (detection)
logic unit checks the status of each c(i) for all mem-
ory blocks. This unit categorizes and puts a tag (st)
in each b(i). (2) Two n-bit registers for n-bit words
are used to record the status of each memory cell
under test. The outputs of those buffer registers are
connected to the input of the fault diagnosis unit.
BSAW and BSARW pass through fault diagnosis units
using cascaded multiplexers (MUX-1, MUX-2, and
MUX-3) for further processing. MUX-1 and MUX-2
simply pass BSAR/BNF and BSAW/BSARW as per se-
lection lines (sel1, sel2). MUX-3 differentiates SAW
and non-SAW blocks, which either pass through the

B

Bi

n
Y

Y
n

n

n

n

B B B B
Si Si

Fig. 5 Tentative block representation of multi-bit
stuck-at fault-tolerant system design

diagnosis unit or pass directly to the read/write
(RD/WR) buffer. One DEMUX (DEMUX-1) is con-
nected to the output of MUX-3. It passes the blocks
BSAR/BNF through Y0 and BSAW/BSARW through
Y1 as per selection line (sel4). Y0 is directly con-
nected to the RD/WR buffer. The selection logics of
MUX-1, MUX-2, MUX-3, and DEMUX-1 are shown
in Fig. 5. It is implied that, for st=00 and 10 and
st=01 and 11, sel4=>0 and 1, respectively. The
fault diagnosis block is composed of partitioning,
data mapping, and recovery logic units. The fault
diagnosis unit takes input from the fault detection
unit through the Y1 output of DEMUX-1. Finally it
passes corrected data to the RD/WR buffer. (3) The
RD/WR buffer contains the correct (readable) data
regardless of any fault condition. (4) ReRAM is the
device under test (DUT).

4 Fault diagnosis methodology

The fault detection unit detects the presence
of faults within a block, whereas the fault diagnosis
unit checks the exact fault position of SAW (SAR)
cells within a block (BSAW or BSARW). If SSAR(i)

(SSAW(i)) = 1, the status of c(i) is SAR (SAW) and 0
for the NF cell. The detected fault positions of SAW
cells are inputted to the data correction unit and
explained in Section 4.3. Fault diagnosis is imple-
mented in three steps: (1) The first step is recursive
partitioning of data blocks. The partitioning infor-
mation is saved in registers for data mapping. (2)
Reshaping is done on a partitioned 1D array into a
2D array. Group information along with partition-
ing fields is further stored in a lookup table (LUT)
for recovery logic. (3) The position of a stuck-at
faulty cell in a group (partition) is obtained through
a CA-based method.

Table 4 Tabular representation of fault detection with a nonuniform NBCA rule pair (254, 255)

Status register Rule vector T state st
Block state

Status word 1 Status word 2 RCA1 RCA2 t1 t2 (0) (1)

0 0 0 0 0 0 0 0 254254254254 254254254254 1 1 0 0 BNF

0 0 0 0 1 0 0 1 254254254254 255254254255 1 2 0 1 BSAR

1 0 0 1 0 0 0 0 255254254255 254254254254 2 1 1 0 BSAW

1 1 0 0 0 1 1 0 255255254254 254255255254 2 2 1 1 BSARW
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4.1 Recursive partitioning technique

For an n-bit block, the partitioning unit forms
k groups by taking even or odd cell indices sepa-
rately. Recursive partitioning considers single-bit
faulty groups for fault position detection. The newly
occurring fault to a pre-existing faulty group en-
forces regrouping. All single-bit faulty groups are
formed with sub-multiples of block-length (n). The
partitioning scheme uses the c(i) index bits Im−1,
Im−2, · · · , I1, I0. The default partition is repre-
sented by even and odd groups by considering par-
tition position (p) = 1 and based on I0 (0 for even
and 1 for odd). The occurrence of a fault in a single-
bit faulty group enforces re-partitioning by group-
discriminator logic. For an example design with a
16-bit data block, there are four index bits (m =
log2n). For default groups, the number of elements

(c(i)’s) is eight
(

n

2p
=

16

21

)
for each group. Two

faulty c(i)’s in default partitions may occur as fol-
lows: (1) in the same group P-E or P-O, requiring
repartitioning, or (2) in different groups P-E and P-
O, not requiring any change in partition. If F1 is
assumed to be in c(8) with index I3I2I1I0 = 1000
and F2 is in c(3) with index I3I2I1I0 = 0011, default
partitioning is maintained, because the faults are in
P-E and P-O, respectively. If F3 is considered at
c(0), its partitioning field is the same as c(8). P-E
is repartitioned to P-EE and P-EO. If F4 occurs at
c(15), P-O is repartitioned as P-OE and P-OO to
maintain single faults in odd partitions.

The partitioning fields of even and odd group
structures take the form of a binary code tree
(Fig. 6). Odd and even group partitioning fields are
encoded and saved in the tree structure using the
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Fig. 6 Code tree structure for fault condition: (a)
complete tree; (b) incomplete tree

convention of even partition field PE = 0 and odd
partition field PO = 1. However, the left branch
always represents even, whereas the right branch
is for odd partitioning information. The tree may
take a form of a complete or incomplete binary tree
structure depending on the number and position of
faults. Using maximum likelihood decoding, parti-
tioning field information can be retrieved at the time
of recovery.

A total of log2k bits are required to represent
the k groups. Identification of the faulty cells in the
same group is required to re-adjust the partitions.
Comparing the faulty cell’s index bits in the default
partition I0= 0 or 1, the even-odd group can be dis-
tinguished. Similarly, even-even/even-odd (EE or
EO) and odd-even/odd-odd (OE or OO) groups are
fixed with the index bits I1I0=00 (10) and I1I0=01
(11). Therefore, the 1st, 2nd, 3rd, and up to nth

lsbs are compared to determine re-partitioning. By
inspecting and comparing index bits Im−1 · · · I0 of
faulty cells, the group discriminator creates control
logic for memory partitioning (Fig. 7a).

4.2 Data mapping logic

The contents of the status buffer registers (SSAW

and SSAR) and PE and PO partitioning information
are fed to the data mapping logic unit. At this stage,
a 1D array SSAW (SSAR) of length n is mapped in
a 2D array (n = n1 × n2) (Sarkar et al., 2017). For
cell index C(j, k), j and k are denoted as j=�i/n2�
and k = i (mod n2), respectively, where i = jn2 +

k. The mapping of a 1D array of block length n

= 16 to a 2D array of 4 × 4 (BSARW) is shown
in Fig. 8a. The mapped 2D array shows only the
BSAW status in Fig. 8b, whereas the BSAR status is
shown in Fig. 8c. The intersection point C(j, k) =

1 if the corresponding cell is in SAW (SAR) (i.e.,
BSARW(i) = 1); otherwise, it is 0.

4.3 Fault position detection using CA

A CA is employed to test each row and column
to detect the exact position of a faulty cell. The
design step is proposed around nonuniform and/or
uniform CAs. The n1-cell (n2-cell) CAs are used
for each row (column) of the 2D array. A uniform
rule vector <254, 254, 254, ...> is configured for a
non-faulty row (column), which settles to an attrac-
tor state of lsb-0 as per Property 4. The CA rule is
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hybridized for the presence of a faulty cell in a row
(column). Contents of a row and/or column are con-
sidered as seeds of row (column) CAs. For example,
a faulty cell in a row Ri = [0, 0, 0, · · · , 1] and column
Cl = [1, 0, 0, · · · , 0] will set a nonuniform rule vec-
tor <254, 254, ..., 255> and <255, 254, ..., 254> for
the row and column, respectively. A nonuniform CA
settles to an attractor state of lsb-1 as per Property
5. The lsbs of the attractors of row and column CAs
are collected in Vx and Vy registers. A faulty cell
index (C(j, k)) is found by the intersection points
of Vx and Vy (Fig. 8). Uniform PBCA rules 238 or
252 can also be used for this step of fault diagno-
sis. However, n1-cell (n2-cell) CAs are applied in
the aforesaid technique to each row (Ri, Rj , Rk, Rl)
and column (Ci, Cj , Ck, Cl) (Fig. 8). These PBCA
rules form TACA construction as per Property 6 and
Property 7, to settle to the alternate attractors, thus
enabling fault position detection.

The partial hardware realization of recovery
logic is shown in Fig. 7b. Row (column) decoders
take input from Vx and Vy. The row and column
decoders enable control and multiplexer selection of

recovery logic. If ANDi=0, the cell C(j, k) is in NF
or SAR. No data correction is required. The stored
value is placed in the read/write buffer. For ANDi

= 1, C(j, k) is in SAW. The data is inverted by a
controlled buffer (XORi) and saved in an RD/WR
buffer.

5 Performance analysis

Cell endurance is affected by repetitive writes,
caused by uneven distribution of workload among
cores and malicious attacks. The proposed scheme
considers uneven workload distribution that pro-
duces spatially scattered stuck-at faults (Sarkar
et al., 2020). Variable cell lifetime is also noticed,
because few memory blocks are frequently written
whereas others are seldom or never used. SAFER
(Seong et al., 2010) and RDIS (Melhem et al., 2012)
rely on Monte Carlo simulation to observe cell re-
liability over repetitive writes. Cell lifetime varia-
tion against the number of writes shows a probability
density function (PDF) of Gaussian distribution as
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Fig. 7 Logic circuit implementation of the group discriminator logic (a) and data recovery logic (b)
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given by

f(x | μ, σ2) =
1√
2σ2

exp

(
− (x− μ)2

2σ2

)
. (3)

NORM.DIST(value, mean, stddev, c) is used
to interpret cell lifetime variation over the number
of writes within the range 1 × 108–2.6 × 108 with
variance (σ2) 1× 107 and mean lifetime (μ) 1 × 108

writes (Fig. 9).
The write endurance problem is often addressed

with aggressive wear leveling and proactive error
masking (Qureshi et al., 2009). Wear leveling is used
to eliminate nonuniform writes. It is achieved mainly
through address remapping techniques (Sarkar et al.,
2020). Therefore, feasible fault-tolerant design needs
to be complementary to wear-leveling schemes for
cell lifetime improvement. Unlike SAFER and
RDIS, this scheme is compatible with wear-leveling
schemes. As it can be effectively applied along with
wear-leveling schemes, each memory cell is assumed
to have an equal probability of being written.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
Number of writes (×108)

0.4

0.3

0.2

0.1

0

Pr
ob

ab
ilit

y 
de

ns
ity

 

Fig. 9 Cell lifetime variability vs. the number of
writes (Seong et al., 2010)

5.1 Analysis of CA tools

CA tools are used to detect stuck-at faults (SAW
or SAR) of memory blocks (b(i)’s). Each block (hav-
ing n cells) is operated independently in fault de-
tection. Various n-cell three-neighborhood CAs are
configured in fault detection logic (Section 3). State
transitions of the CA state space are observed in
MATLAB version R2014a. Each CA configuration
is run on a 64-bit (Win 64) Intel�, CoreTM i3-6006U
processor @2.00 GHz ×4, 64-bit operating system.
Null boundary and periodic boundary conditions are
configured for a programmable CA structure using
MATLAB. Starting from the all-0 state as an initial
condition, all possible combinations of PS (St

i ) and
NS (St+1

i ) states within the CA state space evolve.

For an n-bit generic CA with various SACA, TACA,
and MACA rules, generated present states and next
states are tabulated through built-in MATLAB func-
tions. STDs are formed and single-length-cycle at-
tractor states are extracted from them. State space
evolution is also observed for CA depth and to find
the non-reachable states that are not contributing to
the formation of any single-length-cycle attractor.

Stuck-at faults (SAW or SAR) are primarily de-
tected through alternate pairs of NBCAs. Nonuni-
form cell rule pairs (254, 255) and (192, 207) (Section
3) are used. The uniform NBCA rule 254 has two
single-length attractors (all-0 and all-1). The hy-
bridized rule of 254 and 255 is found to be an SACA
rule that settles only to a single attractor state of
15 → 15 with lsb 1 (detecting the faulty block sta-
tus). The nonuniform NBCA rule pair (192, 207)
may form an MACA in multi-bit faulty cells. There-
fore, a nonuniform CA with the rule set 254 and 255
is advantageous instead of using the CA rule set 192
and 207 due to increased speed and reduced mispre-
diction rate (Table 5).

Alternatively, uniform NBCA rules 116, 212,
222, and 244 are used in fault-tolerant design. These
CA rules satisfy the requirements of fault detection
as per Properties 8, 9, 10, and 11, respectively. These
designs are compared in Table 6 with respect to the
misprediction rate and depth of CA (D). These de-
sign options can also provide 100% fault tolerance
although the speed of execution is different in each
case. The application of uniform CA rules 116 and
222 can provide more speedup (D = 3) than the al-
ternate CA rules 212 and 244 (D = 4). CAs with
uniform rule vectors 116 and 244 settle to an all-0
attractor (0 → 0) with lsb 0 and a 1 → 1 attractor
state with lsb 1 to indicate the non-faulty or faulty
status of b(i) (Figs. 10a and 10b). Uniform CA rule
212 has an all-0 attractor along with another two
attractors with lsb 1 (1 → 1, 5 → 5) (Fig. 11a).
Uniform CA rule 222 settles to an all-0 attractor (0
→ 0) with lsb 0 and 11 → 11, 13 → 13, and 15 → 15

attractor states with lsb 1 (Fig. 11b).
All NBCA rules are described in four-cell struc-

tures in this example design. The numbers of single-
length-cycle attractors for variable n-cell CA struc-
tures are compared in Fig. 12a. The number of
single-length-cycle attractors marginally increases in
CA rule 212, whereas CA rules 116 and 244 have the
same number of single-length-cycle attractors. CA



1122 Sarkar et al. / Front Inform Technol Electron Eng 2022 23(7):1110-1126

rule 222 has a larger number of single-length-cycle
attractors than others. It will create design com-
plexity for larger block size (n). Uniform PBCA rules
238 and 252 can be employed in alternate design so-
lutions and those performance parameters are also
compared in Table 6. Both CAs have only two at-
tractor states 0 → 0 and 15→ 15 with alternate lsbs 0
and 1 to detect the faulty or NF status (Figs. 2a and
2b). All design options using various uniform PBCA

or uniform/nonuniform NBCA CAs when initialized
with an all-0 (all-1) seed settle to an attractor state
with lsb 0 (1) after the nth

1 (nth
2 ) step. Therefore,

identification of the SAW, SAR, or NF status word
requires additional T states. The number of T states
required to detect the fault status is given in Fig. 13.
Employing TACA rules 238 and 252 takes additional
three T states (maximum) to detect the presence of
faults.

Table 5 Comparative analysis of fault detection with CA rule pairs (192, 207) and (254, 255)

CA Type Cycle Depth Mp (%)

RuleA RuleB Uniform Hybrid RA RB RA RB RA RB

192192192192 254254254254 SACA, TACA 0→0
0→0,

15→15
3 3 0 0

192192192207 254254254255 SACA, SACA 1→1 15→15 3 3 0 0

192192207192 254254255254 – TACA, SACA
2→2,
3→3

15 → 15 3 3 13.75 0

192207192192 254255254254 – MACA, TACA
4→4,
6→6,
7→7

15→15 2 3 16.25 0

207192192192 255254254254 – MACA, TACA

8→8,
12→12,
14→14,
15→15

15→15 2 3 17.50 0

Table 6 Comparative state analysis report of fault detection with various uniform CA rules

CA type
Rule CA attractors State Status bit

Depth Mp (%)
TACA, MACA Attr1 Attr2,3,4 Other basins basin-0 st0 st1

PBCA R238 0→0 15→15 1–15 0 0 1 3 0
PBCA R252 0→0 15→15 1–15 0 0 1 3 0
NBCA R116 0→0 1→1 1–15 0 0 1 3 0
NBCA R244 0→0 1→1 1–15 0 0 1 4 0
NBCA R212 0→0 1→1, 5→5 1–15 0 0 1 4 0
NBCA R222 0→0 11→11, 13→13, 15→15 1–15 0 0 1 3 0
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Fig. 10 STD of four-cell uniform NBCA rules 116 (a) and 244 (b) in TACA construction
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The fault detection test logic circuit requires
various rule-specific logic gates to check the status
of faulty cells as described in Section 3. The re-
quired numbers of XOR and XNOR logic gates (n)
to check and compare V and v and Vc and v remain
unaltered for all employed CA rules. However, the
various design approaches using the nonuniform CA
and uniform CA (as per Table 1) require a varied
number of AND, OR, or NOT logic gates (Fig. 12b).
The design with 254 and 255 (192 and 207) stores the
SAR and SAW status using a nonuniform rule set-
ting. Therefore, for an n-cell CA, the configurable
CA options are 2n (here 24). A few such instances

i j k l

Fig. 13 Speed of operation for uniform or nonuniform
CA rules

with nonuniform rule vectors are shown in Table 5.
The time of execution and the misprediction rate are
derived from STDs (Saha et al., 2016). Additional
uniform and nonuniform rule setting logic requires
a maximum number of gates for CA rules 192, 207,
254, and 255 compared with other uniform CAs, al-
though CA rule pair (254, 255) requires far fewer
gates than the rule pair (192, 207) (Fig. 12b).

The fault diagnosis unit also uses CA-based
fault position detection logic (Section 4). Design
requirements are as follows: (1) The presence of
faults is to be detected through the single-length-
cycle nonzero attractor(s); (2) The absence of faults
is detected through the single-length-cycle zero at-
tractor state. For the presence of 1 (for SAW or
SAR cell) in a row (column), the CA with CA rule
254 is hybridized by CA rule 255. The uniform or
nonuniform n2-cell (n1-cell) CAs (254 and 255) fol-
low Properties 2, 3, 4, and 5, respectively, which sat-
isfies the design requirements. PBCA rules 238 and
252 can also be used in fault diagnosis because they
follow the properties of TACA (Properties 6 and 7)
to fulfill the design requirements (zero and nonzero
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Fig. 11 STD of four-cell uniform NBCA rules 212 (a) and 222 (b) in MACA construction

Fig. 12 Number of single-length-cycle attractors for different uniform NBCA rules (a) and the test overhead
in fault detection in terms of logic gates (b)
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single-length-cycle attractors 0 → 0 and 15 → 15)
(Table 6).

5.2 Analysis of space overhead

A trade-off between tolerable faults and space
overhead is essential for a feasible multi-bit fault
diagnosis unit design and implementation. There-
fore, a CA-based design not restricted by the
number of tolerable faults is proposed here. The
memory block under consideration has n memory
cells with k faulty bits. The space overhead of the
proposed fault-tolerant design (Sms) is given by

Sms =
2log2n+ k

n
. (4)

Sms is sensitive to the number of faults and the
block size (Fig. 14a). The space overhead shows
linear growth with the increased number of faults and
the block of fixed size. It is reduced with a variable
block size when the number of faults is fixed. The
space overhead of SAFER k is given by

SSFR = �log2k��log2�log2N��+�log2�log2k�+1�+k.

(5)
For example, to protect a block size of 512 bits

and for SAFER 32, the space overhead is 10.93%
(Fig. 14b). This requires higher space overhead than

the proposed scheme to protect a memory block hav-
ing the same number of faults (Fig. 14b). SAFER
(Seong et al., 2010) is also limited by the number
of tolerable faults as log2n+1. RDIS (Melhem et al.,
2012) can tolerate a maximum (RDIS_max) number

of faults given by s =

⌈
log2

n+m− 1

2

⌉
. Similarly,

the space overhead for RDIS is given by

SRDIS =
(2m + 2n)s

mn
. (6)

The RDIS scheme needs an elevated percent-
age of space overhead to tolerate a large number of
faults. A comparison of SAFER and RDIS is shown
in Fig. 14b. As can be seen, recursive re-grouping is
found to be more advantageous than others based on
tolerable faults and space overhead.

A CA-based multi-bit fault diagnosis and recov-
ery scheme was proposed in Sarkar et al. (2017), but
the scheme assumed a limited number of writes to
assure 100% fault tolerance. It is also limited by the
number of tolerable faults as log2n+1. The proposed
CA-based recursive logical partitioning technique re-
moves restriction on tolerable faults with reduced
overhead (Fig. 15a).

The proposed scheme is also compared with
an error correction pointer (ECP) based fault

Fig. 14 Space overhead vs. the number of tolerable faults (a) and comparison with RDIS and SAFER (b)

Fig. 15 Space overhead comparison with Sarkar et al. (2017)’s scheme (a) and ECP-based scheme (b)
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diagnosis scheme (Fig. 15b). For example, to tol-
erate six faults in a memory with a block size of 1024
bits, the space overhead is 6.54%. Overhead for the
ECP-based scheme monotonically increases with the
increase of the number of tolerable faults.

SECP = k (�log2N�+ 1) + 1. (7)

The proposed scheme requires almost marginal
changed space overhead with a smaller number of tol-
erable faults. Therefore, the ECP-based scheme in-
curs much higher space overhead than the proposed
scheme (Fig. 15b).

Space overhead increases in full system imple-
mentation of the proposed scheme, as is the case in
state-of-the-art schemes. Secondary space overhead
per memory block is derived from Eq. (8). Because
it is assumed that each group must contain a single
fault, k bits are required to identify which groups
are carrying faulty bits. Status bits are tagged to
flag the presence of the nature of fault(s) in a block.
Complete or incomplete code tree structure requires
log2n bits to encode each of the partitioning infor-
mation of even and odd groups. The row (column)
elements of BSAW or BSARW (memory cells) are rep-
resented by the CA cells constructed with D f/fs and
combinational logic circuits. The faulty cell position
detection in a row (column) with a CA rule pair of
255 and 254 or other nonuniform CA rules requires
additional storage for identification of faulty groups.
Vx and Vy are the row and column buffers that keep
the lsbs that act as decision bits, respectively. The
intersection information of the row/column of the
faulty cell position ([C(j, k)]) adds storage burden.

Sadd =
klog2N + (n+m)k + 2

N
. (8)

Additional space overhead (Sadd) increases with
the increase of the number of tolerable faults
(Fig. 16a) and decreases with the increased block
size (Fig. 16b).

The reshaped 2D data matrix has multiples of
m× n (e.g., 4× 4 and 8× 8) row versus column ele-
ments and the CA structure needs to vary according
to dynamic partitions. The CA employed in fault
diagnosis must be a programmable CA (PCA) with
a variable number of cells (n/2p). Although it does
not add any additional storage burden, the design
complexity of PCA must be handled for recursive
grouping of an increased number of faults. Further,
the fault-tolerant design unit needs to complement
with wear-leveling schemes to improve memory cell
endurance (Seong et al., 2010) and combat security
threats (Sarkar et al., 2020). Wear leveling puts
an address translation layer among the logical ad-
dress, intermediate address, and physical address.
This micro-architectural design unit is required to
be embedded within the memory controller because
it works along with wear-leveling schemes.

6 Conclusions and future work

Unreliable cell operation due to multi-bit stuck-
at faults limits the application of ReRAMs in CMPs.
The proposed scheme assures 100% fault tolerance in
spite of spatially scattered complex multi-bit stuck-
at faults. Because it is a runtime strategy, it can
also cope with the variable cell lifetime issue. Here,
the recursive partitioning technique is used to di-
agnose SAW or SAR cells at block-level granular-
ity. It is effective for general fault conditions and
for any number of tolerable faults. The unique test

Fig. 16 Secondary storage overhead vs. the number of tolerable faults (a) and block size (b)
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architectures are developed around SACA, TACA,
and MACA rules with three-neighborhood NBCA or
PBCA construction. Various options increase sim-
plicity and flexibility in design and implementation
stages of detection and/or diagnosis. An optimized
design solution using alternate CA rules reduces the
space overhead in spite of increasing the block size.

The proposed group-based diagnosis scheme as-
sumes a single fault in each partition. Single-bit
faulty groups can be modified to create multi-bit
faulty groups that can tolerate more faults with
the same number of partitions. This scheme can
be an extension of the current CA-based diagnosis.
The concepts of uniform and nonuniform PBCA or
NBCA rules can also be applied for complete design
solutions of single- and multi-bit group-based fault
diagnosis schemes in the future work. Further, a
CA-based SEC-DED technique can be implemented
in the single-bit faulty group based scheme. The re-
covery logic will in turn reduce the design complex-
ity and increase the flexibility of PCA application in
diagnosis.
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