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Abstract: Traditional matrix-based approaches in the �eld of �nite st ate machines construct state transition
matrices, and then use the powers of the state transition mat rices to represent corresponding dynamic transition
processes, which are cornerstones of system analysis. In this paper, we propose a static matrix-based approach
that revisits a �nite state machine from its structure rathe r than its dynamic transition process, thus avoiding the
â€œexplosion of complexityâ€• problem inherent in the exis ting approaches. Based on the static approach, we
reexamine the issues of closed-loop detection and controllability for deterministic �nite state machines. In additio n,
we propose controllable equivalent form and minimal contro llable equivalent form concepts and give corresponding
algorithms.
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1 Introduction

Matrix-based approaches have a wide range of
applications in the �eld of �nite state machines
(Chen et al., 2020b; Lu et al., 2018). For matrix-
based approaches, there are two major mathemati-
cal model types: the state transition matrix model
(Chen et al., 2020a; Xu and Hong, 2013), based on
the conventional matrix product (TM model), and
the matrix model based on the semi-tensor prod-
uct (STP model) (Zhu et al., 2022; Xiangru et al.,
2013). Several representative results are presented
in (Lu et al., 2017; Yan et al., 2021). For a �nite
state machine, the TM model is e�ective for closed-
ended issues such as controllability or reachability.
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However, the computational complexity of the TM
model is often exponential for the optimal path issue
or for �nding relevant inputs. The major reason is
that some input information is lost in modeling for-
malism. Fortunately, the missing information can be
added to the TM model with the help of semi-tensor
(STP) product theory, creating the STP model (Xu
and Hong, 2013; Han et al., 2018). In general, the
STP model contains all information on a dynamic
process, both information of state transitions and
that of inputs. Thus, the STP model can solve all
issues in the �eld of �nite state machines theoreti-
cally. However, a drawback of the STP model is the
â€œexplosion of dimensionâ€• problem (Yan et al.;
Yue et al., 2019); that is, the dimension of state tran-
sition matrices in the STP model increases exponen-
tially with increases in the time step. This problem
also occurs in the TM model, where the complex-
ity increases polynomially as the time step increases
linearly(Xu et al., 2021). This â€œexplosion of com-
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plexityâ€• is caused by the repeated product of state
transition matrices (Yan et al., 2014; Cheng and Qi,
2010). One of the major reasons for the repeated
product is the fact that state transition processes
are always considered as dynamic processes, which
implies that each state transition requires a product
of the state transition matrix.

Motivated by the â€œexplosion of complexi-
tyâ€• inherent in the existing approaches, we pro-
pose a static matrix-based approach, compared with
the traditional matrix-based approaches, that relies
on the structure of a �nite state machine itself rather
than its dynamic process, thus avoiding the â€œex-
plosion of complexity.â€• Based on the static ap-
proach, we reexamine the issue of closed-loop detec-
tion in deterministic �nite state machines. By the
fact that all states in a closed loop are mutually con-
trollable, we present the de�nitions and algorithms
of a controllable equivalent form and a minimal con-
trollable equivalent form. With a static view of the
closed loop, the two-state controllability issue can be
resolved only once, by matrix division, making use
of our algorithms in the best case.

The rest of this paper is arranged as follows.
Section 2 reviews the algebraic models of �nite state
machines, and gives some notations. Section 3
presents the main results of this work, including suf-
�cient and necessary conditions for a single closed
loop, necessary condition for controllability, and the
corresponding algorithms. In section 4, an illustra-
tive example is given to verify our results. Finally,
section 5 o�ers some concluding remarks.

2 Preliminaries

Notations:

� M m � n : the set of m � n real matrices.

� coli (A ): the i -th column of matrix A .

� � i
n : the i -th column of the identity matrix of

dimensionn.

� j Cj: the cardinality of a �nite set C.

� 1m : [ 1 1 � � � 1
| {z }

m

]T .

� A (i; j ): the entry for a matrix A in row i and
column j .

� � n := f � 1
n ; � 2

n ; � � � ; � n
n g.

� ^ and _: the logical operators of â€œAndâ€•
and â€œOrâ€•, respectively.

� ind(a): the in-degree of a statea.

� � n f i 1; : : : ; i n g :=
�

� i 1
n ; : : : ; � i n

n

	

We assume that the reader is familiar with the
basic notions and concepts of �nite state machines
and STP. Identify x i with � i

n (or x i ) (1 6 i 6 n),
expressed asx i � � i

n (x i ) for simplicity, and call
� i

n (x i ) the vector form of x i . In the framework
of matrix-based approaches, the dynamics ofA =
(X; E; f; x 0) with input e = e1e2 : : : et 2 E � can be
formulated as follows.

(1) STP model

x (t) = ~F t n � x 0
n n u(t) (1)

where (i) u (t) = n t
i =1 � i

m = � 1
m n � 2

m n : : : n � t
m ,

and � j
m is the vector form of ej , j = 1 ; 2; : : : ; t;

(ii) ~F = F n W [n;m ] where W [n;m ] is a swap
matrix (Zhu et al.), and F = [ F1; : : : ; Fm ] is
de�ned as

F i (s;t ) =
�

1; if � s
n 2 f (� t

n ; � i
m );

0; otherwise.
(2)

(2) TM model

x (t) = Tet � � � Te2 Te1 � x 0
n : (3)

Equations (1) and (3) are standard matrix models
in that they construct the state transition matrices,
~F in the STP model and Tei (1 6 i 6 t) in the
TM model, to describe the dynamics of A. It is
noted that we are more interested in the outcome of
a state transition than in the inputs that can cause
the transition. Therefore, we modify Equation (3) as

x (t) = T t � x 0
n (4)

whereT =
tP

j =1
T i

ej
.

We simplify notations by writing � X
n instead ofP

x i 2 X
� i

n and ind(X ) instead of
P

x 2 X
ind(x). 	 (� ) :=

f � k
n j the k-th element of � is non-zero for any� 2

M n � 1. For example, let M = [ 1 0 1 0 ]T ,
then 	 (M ) = f � 1

4 ; � 3
4g. Also, we use� n [i 1; : : : ; i n ]

instead of
�

� i 1
n : : : � i n

n

�
for brevity.
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3 Main results

3.1 A static approach for detection of closed
loops

The closed loops, the core point of the paper,
are proposed in this subsection.
De�nition 1. For a DFSM M = ( X =
� n ; E; f; x 0), a state set X s � X is called a single
closed loop, if for all x 2 X s

(T jX s j � x
n ): � � X s

n = � x
n ;

where operator :� denotes element-wise multiplica-
tion.

Although De�nition 1 is an accurate descrip-
tion, it is not less complex than the repeated matrix
products in Equations (1) and (3). Thus we give the
following de�nition of a weak version.
De�nition 2. For a DFSM M = ( X =
� n ; E; f; x 0), a state set X s � X is called a single
closed loop, if

(T � X s
n ): � � X s

n = � X s
n ^ (T T � X s

n ): � � X s
n = � X s

n :

Note that De�nition 2 is not strictly a su�cient
condition, but it can be applied to the results pre-
sented in this paper and has time complexityO(1).
De�nition 3. For a DFSM M = ( X =
� n ; E; f; x 0), a state set X s � X is called a com-
pound closed loop, if

((T � T T )� X s
n ): � � X s

n = 0:

a state x i is called a bifurcation state if�
� 	 (T � i

n )
�
� > 1. It is clear that a bifurcation state

is the exit for the transitions from states inside a
closed loop in which the bifurcation state stays to
states outside the closed loop. If a bifurcation state
stays in a closed loop, then we say the bifurcation
state forms the closed loop. We use symbol� to re-
fer to a bifurcation state. Also, we useWA to denote
all the single closed loops in DFSMA. Due to the
fact that the increase of complexity caused by the in-
crease of number of bifurcation states is not a linear
increase with the number of bifurcation states, we
give the following function to di�erentiate DFSMs
with di�erent numbers of bifurcation states.

Given a matrix M 2 M m � n , kM k is de�ned as
kM k = jf i jj 	 (coli (M )) j > 1gj.
Lemma 1. For any DFSM M = ( X =
� n ; E; f; x 0) at kT k = 0 , if a state set X s � X

is a single closed loop if and only if

(T � I n � n )� X s
n = 0 ^ (T � I n � n )� X �

s
n 6= 0 ;

whereX �
s 2 2X s .

Proof (Necessity). The reachable state set of a
single closed loop is itself atkT k = 0 , that is,
T � X s

n = � X s
n and/or T T � X s

n = � X s
n .

(Su�ciency). We �rst prove that if (T �
I n � n )� X s

n = 0^ (T � I n � n )� X �
s

n 6= 0, then T � x
n = � x

n

holds for all x 2 X s . It is easy to see, from
the STP properties, that (T � I n � n )� X s

n = ( T �

I n � n )�
f x i 1 ;��� ;x i p g
n = (T � I n � n )�

x i 1
n + � � � + ( T �

I n � n )�
x i p
n = 0 (1 6 p 6 n). By contradiction, as-

sume that x i 2 X s has T � x i
n 6= � x i

n (i = a; b).
We then obtain either (T � I n � n )� x a

n + � � � + ( T �
I n � n )� x b

n � � � 6= 0 if (T � I n � n )� x a
n 6= � (T �

I n � n )� x b
n , or (T � I n � n )x = 0 has another basic so-

lution x = � f x a ;x bg
n 2 2X s if (T � I n � n )� x a

n = � (T �
I n � n )� x b

n . Hence, a contradiction exists. Next, we
prove that for all x 2 X s, (T jX s j � x

n ): � � X s
n = � x

n is
satis�ed. BecauseT � x

n = � x
n (x 2 X s) holds, we get

that (T j X s j � x
n ): � � X s

n = � x
n : � � X s

n = � x
n holds for all

x 2 X s .
The following algorithm is designed to �nd all

closed loops in a DFSM atkT k = 0 . It is worth
pointing out that the solutions of matrix equations
are basic solutions in this paper. Next, we consider

Algorithm 1 Finding of closed loops in a DFSM at
kT k = 0

1: Construct T ;
2: The set of all closed loops is C =

f 	 (x ) j(T � I n � n )x = 0 ^ (T � I n � n )x � 6= 0 g
where x � 2 2x .

more general cases and begin withkT k = 1 .
Lemma 2. For any DFSM M = ( X =
� n ; E; f; x 0) at kT k = 1 . If a state set X s � X
is a single closed loop, then

( ~T � I n � n )� X s
n = T � �

n _ (T � I n � n )� X s
n = 0

where (i) � 2 S = f i jj 	 (coli (T )) j > 1g; (ii) ~T is
de�ned as

~T (i; j ) =
�

~T (i; j ) = T (i; j ) + 1 ; if � i
n = � j

n 2 	 (T � �
n );

~T (i; j ) = T (i; j ); otherwise:

Proof If X s is the same type of closed loop as in
Lemma 1, then (T � I n � n )� X s

n = 0 is satis�ed.
Therefore, we assume(T � I n � n )� X s

n 6= 0 which
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implies that the bifurcation state � must be in X s.
It is easy to �nd that T � X s

n = � X s
n + � X �

n where
� X �

n = 	 (T � �
n )n	 (� X s

n ). X � is de�ned as � X �
n =

	 (T � �
n ) \ 	 (� X s

n ), and we get � X �
n + � X �

n = T � �
n .

The known conditions are T and � . For X s, we
have ind(X � ) = 1 . Because� X �

n \ � X s
n = ; and

� X �
n \ � X s

n = � X �
n , by making ~f (i 2 f (� )) := f (i ) [ i ,

we get ind(X snX � ) = 1 , ind(X � ) = 1 and ind(X � ) =
2 for X s. In other words, we get a new state transi-
tion matrix ~T such that the only di�erence between
the two state transition matrices is that the new ma-
trix makes ~f (X s) � X s = X � + X � hold. Then
~T � X s

n � � X s
n = � X �

n + � X �
n = T � �

n is obtained by
using the vector form.

Lemma 2 is also a necessary condition. To �nd
all single closed loops atkT k = 1 , the idea is to �rst
�nd all possible single closed loops by the necessary
condition, and then use De�nition 2 to determine
which ones are single closed loops. From Lemmas 1
and 2, one way to �nd single closed loops is given
in Algorithm 2. Note that Algorithm 2 cannot �nd
compound closed loops. The algorithm for solving
compound closed loops is stated later.

Algorithm 2 Finding of all single closed loops for
M = ( X = � n ; E; f; x 0) at kT k = 1

1: Construct ~T by computing � ;
2: Compute X s = f x

�
�
�( ~T � I n � n )x = T � �

n g;
3: Apply De�nition 2 to X s ;
4: Apply Algorithm 1 to M .

Lemma 3. For any DFSM M = ( X =
� n ; E; f; x 0) at kT k = 2 . If a state set X s � X
is a single closed loop, then

( ~T � I n � n )� X s
n = T � S

n _ (T̂ � I n � n )� X s
n = T � S

n

_(T � I n � n )� X s
n = 0

where (i) S = f i jj 	 (coli (T )) j > 1g; (ii) ~T is de-
scribed in Lemma 2, andT̂ is de�ned as

T̂ (i; j ) =

(
T̂ ( i; j ) = T ( i; j ) + 1 ; if � i

n = � j
n 2 	 (T � �

n ) ;
T̂ ( i; � ) = T ( i; � ) + 1 ; if � i

n 2 	 (T � S n �
n ) ;

T̂ ( i; j ) = T ( i; j ) ; otherwise.

where � 2 S.
Proof For the sake of clarity, suppose that there is
only one single closed loopX s and (T � I n � n )� X s

n 6=
0. Then we can only get two cases, that is,S � X s

(case 1) orS 6� X s (case 2). Assume that� 2 X s

and Sn� = � 2 X s if case 1 occurs, and� 2 X s

and � =2 X s if case 2 occurs. It is easy to �nd that
T � X s

n � � X s
n = � X �

n + � X �
n in case 1 where� X �

n =
	 (T � �

n )n	 (� X s
n ) and � X �

n = 	 (T � �
n )n	 (� X s

n ), and
that T � X s

n � � X s
n = � X �

n in case 2. Case 2 actually
involves the same type of closed loops as in Lemma
2. Thus, we take ~f (i 2 f (� ) = X � [ X  ) := f (i ) [
i to get ~T � X s

n � � X s
n = T � �

n + � �
n = T � S

n in case
1 and ~T � X s

n � � X s
n = T � �

n in case 2. Note that
although S is known, � and X � are unknown. To
get T � S

n , we makef̂ (� ) := f (� ) [ X � . Then case 2
becomesT̂ � X s

n � � X s
n = T � �

n + T � �
n = T � S

n . As a
consequence, case 1 and case 2 both have the form
Ax = b. Finally, for the situation where two single
closed loops occur, the same result( ~T � I n � n )� X s

n =
T � S

n can be obtained from Lemma 2.
It is clear that a single closed loop can con-

tain more than one bifurcation state. Thus,
for a DFSM A, we use � to denote all bi-
furcation states that can form a closed loop
in A, and � � for all bifurcation states of the
closed loop in which � is a bifurcation state,
that is, � � :=

�
� i

n j9y 2 WA ; x i ; � 2 y ^ i; j 2 S
	

�
S = f i jj 	 (coli (T )) j > 1g; � j

n � �
�
.

Lemma 4. For any DFSM M = ( X =
� n ; E; f; x 0) at kT k > 2. If a state set X s � X
is a single closed loop, then

(
_

T � I n � n )� X s
n = T � S

n _ (T � I n � n )� X s
n = 0;

where
_

T is de�ned as

_

T (i; j ) =

8
<

:

_
T ( i; j ) = T ( i; j ) + 1 ; if � i

n = � j
n 2 	 (T � � �

n ) ;
_
T ( i; � ) = T ( i; � ) + 1 ; if � i

n 2 	 (T � S n � �
n ) ;

_
T ( i; j ) = T ( i; j ) ; otherwise.

where � 2 � � .
Proof Lemma 4 is obtained by arbitrarily combining
case 1 and case 2 in Lemma 3.
Corollary 1 Given a DFSM M = ( X =
� n ; E; f; x 0), S = f i jj 	 (coli (T )) j > 1g can be di-
vided into H = f h jx h 2 � n S ^ xh 2 � � g and L =
f l jx l 2 � n S ^ x l =2 � � g for any � 2 S.

It is noted that the key to Lemma 4 is � � . Given
a bifurcation state � that may form a single closed
loop, one way to �nd � � is given in Algorithm 3.
Algorithm 3 has time complexity O(

P

s2 S n�
j 	 (T � s

n )j2)

and space complexityO(n2).
From Corollary 1, Lemma 4, and Algorithm 3,

one way to �nd all single closed loops for any DFSM
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Algorithm 3 Finding of � � for M
Input: T , � , S := f i jj 	 (coli (T )) j > 1g, D := Sn� ,

� � := f � g, L := ;
Output: � �

1: while � � [ L 6= S do
2: T � := T
3: Y := 	 (x ) : ( T � I n � n )x = 0:
4: for i 2 D do
5: for � j

n 2 	 (T � i
n ) do

6: if j =2 � � then
7: T � (: ; j ) := 0
8: T � (�; j ) := T � (�; j ) + 1
9: for � k

n 2 	 (T � i
n )n� j

n do
10: T � (k; j ) := T � (k; j ) � 1
11: end for
12: else
13: T � (j; j ) := T � (j; j ) + 1
14: end if
15: end for
16: T � (�; � ) := T � (�; � ) + 1
17: if (T � � I n � n )x = T � � �

n has a solution set C
and jf k jk 2 C ^ k \ Y = ;gj =

�
� 	 (T � i

n )
�
� then

18: BREAK: � � := � � [ f x i g
19: else
20: L := L [ (x i )
21: end if
22: end for
23: end while

Algorithm 4 Finding of all single closed loops for
M
Input: T , W := ; , H := ; , D := ; , S :=

f i jj 	 (coli (T )) j > 1g
Output: WM

1: while S 6= D [ H do
2: � 2 SnH
3: Apply Algorithm 3 to get � �

4: if j� � j = 1 then
5: D := D [ � �

6: else
7: H := H [ � �

8: end if
9: C :=

�
x

�
�
�
� (

_
T � I n � n )x = T � S

n

�

10: for i 2 C do
11: if (T i ): � i = i ^ (T T i ): � i = i then
12: W := W [ f 	 (i )g
13: end if
14: end for
15: end while

16: C � := f 	 (x )

�
�
�
�
�

(T � I n � n )x = 0 ^ (T � I n � n )x � 6= 0

(x � 2 2x )
g

17: W := W [ C �

is given in Algorithm 4. Algorithm 4 has time com-
plexity O(jSj) and space complexityO(n2).
Remark 1 From Algorithm 4, it is easy to �nd that
the reason why De�nition 2, as the weak version of
De�nition 1, is applicable in this paper is the fact
that we traverse all bifurcation states and detect the
existence of a single closed loop at each bifurcation
state.

3.2 A static approach for a controllable equiv-
alent form

Clearly, for any DFSM, all states in a single
closed loop are mutually controllable. Therefore, we
can combine a single closed loop into a single â€œag-
gregateâ€• state without changing controllability of
the whole DFSM. We give the following de�nition.
De�nition 4. Consider a DFSM M = ( X =
� n ; f m ; x0). A = ( X = � a ; f a; x0) is called a con-
trollable equivalent form of M , if there exists a func-
tion f : � a ! 2� n , such that

f (f m (x; e)) = f a(f (x); e):

The function f shows the correspondence be-
tween the new statey i 2 � a and the original state
x i 2 � n , and is called a controllable equivalent func-
tion. We are used to expressing a DFSM in terms of
state transition matrices. Thus, one way to obtain
a controllable equivalent form in the TM model is
stated in Algorithm 5. Note that Algorithm 5 can be
considered as a proposition for controllable equiva-
lent form. Therefore, we present a part of the MAT-
LAB code to emphasize this point. Algorithm 5 has
time complexity O(l ) and space complexityO(n2),
where l is the number of single closed loops in the
DFSM. Given a set S 6= ; of which the elements are
sets,� (S) is de�ned as � (S) = ( Snx i ; x j ) [ (x i [ x j )
where x i ; x j 2 S and x i \ x j 6= ; . For a DFSM,
the controllable equivalent form is often not unique.
In practice, we are more concerned with the DFSM
with the fewest states. Thus, we give the following
de�nition.
De�nition 5. Consider a DFSM M = ( X =
� n ; f m ; x0). A = ( X = � a ; f a ; x0) is one of the con-
trollable equivalent forms ofM . A is called a minimal
controllable equivalent form for M , if a = n � � + p

where � =

�
�
�
�
�

S

x 2 W M

x

�
�
�
�
�

and p = j� (WM )j.

To get the minimal controllable equivalent form,
compound closed loops must be processed. There are
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Algorithm 5 Controllable equivalent form of M
Input: T , WM , T � := [ ] , T � := [ ]
Output: T � is the TM model of the controllable equiva-

lent form of M ; The controllable equivalent function
f is de�ned as yi = f (x i ) = 	 (coli (T � ))

1: for i 2 WM do
2: a = min

�
�nd

�
� i

n

��

3: 1n = ones(n,1)
4: b = 1n � � i

n

5: T � = diag(b)
6: T � (:; a) = � i

n

7: T � (:; all (T � == 0)) = [ ]
8: A = (( T :0) � T � )
9: A (:; a) = A (:; a) � � i

n

10: T � = (( A :0) � T � )
11: end for

two ways to solve the compound closed loops: the cir-
culation method and the virtual state method. The
circulation method detects a single closed loop and
combines the states therein repeatedly. Algorithm
6 is proposed with the circulation method and has
time complexity O(c) and space complexityO(n2),
wherec is the maximum number of the single closed
loops nested in a compound closed loop.

Algorithm 6 Finding of all closed loops and the
minimal controllable equivalent form for M
Input: T , Tmin := T , W � := ;
Output: T �

min is the TM model of the minimal control-
lable equivalent form; W � contains all closed loops
in M

1: repeat
2: Tmin := T �

min

3: Apply Algorithm 4 to get Wmin for Tmin

4: Apply Algorithm 5 to get T �
min for Tmin

5: W � := W � [ Wmin

6: until T �
min = Tmin

Remark 2 Note that Algorithm 6 obtains all closed
loops in a DFSM while obtaining the minimal con-
trollable equivalent form. Although its e�ciency de-
creases with an increase in the number of compound
closed loops, it is still valuable when performing dis-
tributed simpli�cation of large networks of DFSMs.

3.3 A static approach for controllability

In this subsection, we reconsider the issue of
controllability with the help of the closed loops.
Lemma 5. Consider DFSM M = ( X =
� n ; E; f; x 0). If x a 2 � n is controllable to x b 2 � n ,

then there exists a closed loop containingxa and xb

in M � whereM � is de�ned as

M � (i; j ) =
�

M � (i; j ) = 1 ; if i = a ^ j = b;
M � (i; j ) = T (i; j ); otherwise:

Proof By contradiction, assume that there is no
the closed loop. We then have thatxa , xb either
are unreachable to each other or reachable in one
direction. Note that M � (a; b) = 1 implies that xb is
controllable to xa . Hence,xa is not controllable to
xb, and a contradiction holds.

To cope with the problem of the repeated matrix
product, we now present a procedure that virtualizes
a connection from the goal state to the start state,
and utilizes the idea of the closed loops with a virtual
state method. This procedure is called the virtual
connection method and is reported in Algorithm 7.
The so-called virtual state method refers to adding a
virtual state to each closed loop, to destroy the struc-
ture of the closed loops that are nested in compound
closed loops. At this time, the compound closed
loops become single closed loops. More precisely,
given M = ( X = � n ; E; f; x 0) and Q (Q � X ),
the TM model with the virtual state method for Q,
denoted by TV (Q) , is de�ned as

TV (Q) =

8
<

:

TV ( Q ) ( i; j ) = 0 ^ TV ( Q ) ( l; j ) =

TV ( Q ) ( i; l ) = 1 ;

if i 2 H � ^ x j 2

Q ^ T ( i; j ) = 1 ;
TV ( Q ) ( i; j ) = 0 ; if i; j > n;

TV ( Q ) ( i; j ) = T ( i; j ) ; otherwise.

where (i) H � = H \ �S, � n H = 	 (T � Q
n ), �S =�

i
�
�
�
� 	 (coli (T T ))

�
� > 1

	
; (ii) the dimension of TV (Q)

is (n + jH � j) � (n + jH � j); and (iii) l 2 � V (Q) =
� n + jH � j n� n is the corresponding virtual state.

Remark 3 If TV (S) and
_

T V (S) are constructed in
advance, the time complexity of Algorithm 7 can be
reduced to O(1).

��
��

��
��

Fig. 1 DFSM A
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Algorithm 7 Two-state controllability with virtual
connection method forM = ( X = � n ; E; f; x 0)
Input: T , goal state xb, start state xa , S :=

f i jj 	 (coli (T )) j > 1g
1: T (xa ; xb) = 1
2: Construct TV ( S )

3: Construct
_

T V ( S ) where � is speci�ed as the start
state xa

4: C :=

8
>>>><

>>>>:

	 (x )

�
�
�
� (

_
T V ( S ) � I ( n + j H � j ) � ( n + j H � j ) )x =

TV ( S ) � S
n + j H � j ^ (T x ): � x = x

^ (T T x ): � x = x

9
>>>>=

>>>>;

5: if C 6= ; then
6: BREAK: xa is controllable to xb

7: else
8: BREAK: xa is not controllable to xb

9: end if

4 An illustrative example

Example 1. Consider A = ( X; E; f; x 0) depicted
in Fig. 1, where X = f 1; 2; 3; 4; 5; 6; 7; 8; 9; 10g,
x0 = f 1g, E = f a; bg, and transition function f
is represented by labeled arrows.

(1) Apply Algorithm 3 to get � � where � = 5 ,
and apply Algorithm 5 to get � .

The TM model of A is as follows.

T = � 10 [2; f 3; 7g; f 4; 8g; 5; f 3; 6g; 10; 5; 9; 10; 10]:

Then we haveS = f 2; 3; 5g, D = f 2; 3g, � � = f 5g,
and Y = f 10g. For i = 3 2 S, T � is constructed as

T � =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� 1 0 0 0 0 0 0 0 0 0
1 � 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 � 1 0 0 0 � 1 0 0
0 0 0 1 � 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 � 1 0 0 0
0 0 1 � 1 0 0 0 � 1 0 0
0 0 0 0 0 0 0 0 � 1 0
0 0 0 0 0 1 0 0 1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

By solving (T � � I 10� 10)x = T � f 5g
10 , we have

x1 = f 3; 4; 5g, x2 = f 3; 5; 8g, x3 = f 3; 4; 5; 10g, x4 =
f 3; 5; 8; 10g. Because jf k jk 2 C ^ k \ Y = ;gj =
jf x1; x2gj = 2 =

�
�	 (T � i =3

n )
�
� where C =

f x1; x2; x3; x4g, we obtain � � = f 3; 5g. For
i = 2 2 S, constructing T � and solving
(T � � I 10� 10)x = T � f 3;5g

10 , x = f 10g. Be-
cause jf k jk 2 C = f xg ^ k \ Y = ;gj = 0 6= 2 =�
� 	 (T � i =2

n )
�
� , we obtainL = f 2g. Note that � [ L = S.

Thus, the algorithm terminates and � � =5 = f 3; 5g.
Moreover, we have� � =5 = � becauseH = � , D = L ,
and D [ H = S, which implies there is only one
closed loop inA.

(2)Apply Algorithm 6 to get the minimal con-
trollable equivalent form.

According to sub-question (1) above, we have

� = f 3; 5g. By solving (
_

T � I 10� 10)x = T � S
10, we

get WM = ff 3; 4; 5gg. By applying Algorithm 5, we
obtain

T � = � 8 [2; f 3; 5g ; f 4; 6g ; 8; 3; 7; 8; 8] ;

T � = � 10 [1; 2; f 3; 4; 5g ; 6; 7; 8; 9; 10]:

According to the controllable equivalent function
f (x i ) = 	 (coli (T � )) and the notation yi = f (x i ) =
x0

i , we have10 = f 1g, 20 = f 2g, 30 = f 3; 4; 5g, 40 =
f 6g, 50 = f 7g, 60 = f 8g, 70 = f 9g, 80 = f 10g. The
minimal controllable equivalent form is shown in Fig.
2.

Fig. 2 The minimal controllable equivalent form of A
in the TM model

(3) Apply Algorithm 7 to check the two-state
controllability from state 4 to state 9.

We �rst make T (4; 9) = 1 to virtualize a connec-
tion from state 9 to state 4. Based onT , we haveS =
f 2; 3; 5g, �S = f 3; 4; 5; 10g, � 10H = � 10 f 3; 4; 6; 7; 8g,
� 10H � = � 10 f 3; 4g. Because	 (T � 3

10) \ � 10H � =
f � 4

10g and 	 (T � 5
10) \ � 10H � = f � 3

10g, virtual states
11, 12 and 13 are proposed such that2 ! 3 )
2 ! 11 ! 3, 3 ! 4 ) 3 ! 12 ! 4, 5 ! 3 )
5 ! 13 ! 3. The modi�ed TM model is shown
in Fig. 3, where the dotted lines refer to the vir-

Fig. 3 The modi�ed TM model of A with the virtual
states

tual states and the virtual connection. It is easy
to get � � =9 = f 3; 5; 9g by Algorithm 3. By solving

(
_

T V (S) � I 13� 13)x = TV (S) �
S= f 2;3;5g
13 , we get x =
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�
0 0 1 1 1 0 0 1 1 0 0 0 1

� T
�

f 3; 4; 5; 8; 9; 13g. Thus, there exists a closed loop
between state 4 and state 9, which implies state 4 is
controllable to state 9.

5 Concluding remarks

A matrix-based static approach for the issue of
detection of a closed loop has been proposed. Based
on the static view, we propose the de�nitions of the
controllable equivalent form and minimal control-
lable equivalent form. The static approach is then
extended for the issue of controllability and elimi-
nates the â€œexplosion of complexityâ€• problem
inherent in the existing approaches. For the issues
mentioned in this work, the implementation of our
algorithms is much simpler than that of algorithms
designed from the dynamic process perspective.
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