Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520 509

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Programming bare-metal accelerators with heterogeneous
threading models: a case study of Matrix-3000°

Jianbin FANG'$!, Peng ZHANG$!, Chun HUANG!, Tao TANG!,
Kai LU, Ruibo WANG!, Zheng WANG?

1College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
2School of Computing, University of Leeds, Leeds LS2 9JT, UK

TE-mail: j.fang@nudt.edu.cn; zhangpengl3a@nudt.edu.cn; chunhuang@nudt.edu.cn
Received Aug. 27, 2022; Revision accepted Oct. 19, 2022; Crosschecked Mar. 8, 2023

Abstract: As the hardware industry moves toward using specialized heterogeneous many-core processors to avoid
the effects of the power wall, software developers are finding it hard to deal with the complexity of these systems. In
this paper, we share our experience of developing a programming model and its supporting compiler and libraries for
Matrix-3000, which is designed for next-generation exascale supercomputers but has a complex memory hierarchy
and processor organization. To assist its software development, we have developed a software stack from scratch
that includes a low-level programming interface and a high-level OpenCL compiler. Our low-level programming
model offers native programming support for using the bare-metal accelerators of Matrix-3000, while the high-level

model allows programmers to use the OpenCL programming standard. We detail our design choices and highlight

the lessons learned from developing system software to enable the programming of bare-metal accelerators.

Our

programming models have been deployed in the production environment of an exascale prototype system.

Key words: Heterogeneous computing; Parallel programming models; Programmability; Compilers; Runtime

systems
https://doi.org/10.1631/FITEE.2200359

1 Introduction

Heterogeneous many-core processors are now
commonplace in computer systems (Owens et al.,
2005, 2008).
processing unit (CPU) with a specialized acceler-

The combination of a host central

ator (e.g., a general-purpose graphics processing
unit (GPGPU), field programmable gate array
(FPGA), digital signal processor (DSP), or neural
processing unit (NPU)) is shown to deliver or-

§ These two authors contributed equally to this work
¥ Corresponding author
* Project supported by the National Key Research and Devel-
opment Program of China (No. 2021YFB0300101), the National
Natural Science Foundation of China (No. 61972408), and the
UK Royal Society International Collaboration Grant

ORCID: Jianbin FANG, https://orcid.org/0000-0003-3542-
4869; Peng ZHANG, https://orcid.org/0000-0001-8364-9793;
Chun HUANG, https://orcid.org/0000-0002-0317-8192
(© Zhejiang University Press 2023

CLC number: TP315

ders of magnitude performance improvement over
traditional homogeneous CPU setups (Patterson,
2018). The increasing importance of heteroge-
neous many-core architectures can be seen in the
TOP500 (https://www.top500.org/lists/top500/)
Green500 (https://www.top500.org/lists/
green500/) lists, where a large number of supercom-
puters are integrated with CPUs and accelerators
(Liao et al., 2018). Indeed, the heterogeneous many-
core architecture is widely seen as the building block

and

for next-generation supercomputers.

The potential of accelerators can be unlocked
only if the software can make good use of the hard-
ware (Fang et al., 2011; Shen et al., 2012). Writing
and optimizing code for many-core accelerators is
challenging for many application developers. This
is because the current hardware architecture and

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

510 Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520

programming model of accelerators significantly dif-
fer from those of the conventional multi-core proces-
sors (Perez et al., 2007). This change has, by default,
shifted the burden of developing a suitable software
framework onto programmers and compilers (Kudlur
and Mahlke, 2008). In particular, programmers have
to manage the hardware heterogeneity, parallelism,
and a complex, distributed memory hierarchy (Zhai
and Chen, 2018).

In this paper, we share our experience of de-
signing and implementing a programming model and
its supporting compiler and runtime system for the
Matrix-3000 (also coined as MT-3000) heterogeneous
many-core accelerator (Section 2). This accelerator
is designed to be a building block for next-generation
exascale prototype supercomputers (Lu et al., 2022).
While providing potential high performance, MT-
3000 has a complex memory hierarchy and processor
organization. Furthermore, as no operating system
(OS) runs on the accelerators, it is highly challeng-
ing to debug and manage parallel threads running
on them. In a nutshell, the architecture design of
MT-3000 poses a range of challenges to the low-level
system software design.

To support software development for MT-3000,
we have developed a piece of full-stack system soft-
ware (Section 3) from scratch, where we focus on
two programming modules: the hthreads low-level
programming interface (Section 4) and the MOCL3
OpenCL compiler (Section 5). Specifically, we de-
velop a low-overhead high-availability heterogeneous
programming interface (hthreads). At the core
of hthreads is a heterogeneous threading model
introduced for the bare-metal MT-3000 accelera-
tor. The hthreads interface consists of the general-
purpose (GP) zone side application programming
interfaces (APIs) and the acceleration (ACC) zone
side APIs. On one hand, hthreads exposes as many
performance-related architecture features as we can,
aiming to fully tap its computing potentials. On
the other hand, we introduce the threading model
to hide the metal-related uses such as the native di-
rect memory access (DMA) usage. At a higher level,
we provide the implementation of the OpenCL stan-
dard parallel programming interface (MOCL3) for the
MT-3000 architecture. It follows the programming
specification of OpenCL version 1.2. While ensur-
ing to explore the computing potential of MT-3000,
MOCL3 can be effectively compatible with OpenCL

legacy code and significantly improve programma-
bility. With these two programming interfaces, we
aim to achieve a balance among performance, pro-
grammability, and portability for our bare-metal
accelerator.

Both hthreads and MOCL3 have been deployed
in the production environment of an exascale proto-
type system with the MT-3000 executing hthreads
and MOCL3 optimized code at any time. We showcase
the performance of the developed system on micro-
benchmarks and matrix multiplications (Section 6).
We hope that the experience presented in this pa-
per can provide new insights into the development of
future high-performance accelerators and their pro-
gramming systems.

2 Matrix-3000 architecture

This section describes the hardware architecture
design of the MT-3000 accelerator.

2.1 Heterogeneous multi-zones

As depicted in Fig. 1, MT-3000 implements a
multi-zone microarchitecture with 16 CPU cores, 96
control cores, and 1536 acceleration cores. The CPU
cores form a GP zone, while the control cores and ac-
celeration cores form an ACC zone. The ACC zone is
then equally divided into four autonomous acceler-
ation clusters. Each cluster has 24 control cores,
384 acceleration cores, and on-chip global shared
memory (GSM), high-bandwidth shared memory
(HBSM), and off-chip double data rate (DDR) mem-
ory. The GP zone CPU cores run at 2.0 GHz,
while the ACC zone cores operate at 1.2 GHz and
can deliver a total of 11.6 Tflops double-precision

CPU CPU CPU CPU

Acceleration zone 1/0 unit Acceleration zone
cluster 1 cluster 2
Ctrl Ctrl - Ctrl Ctrl Ctrl - Ctrl
EPXe: M IACCHACC General | |9 [XSIS} - 32GB
DDR4 i H (| DDR4
----- ----- AcC
GSM GSM
HBSM CPU CPU CPU CPU HBSM
(12 2] 12]12]
| ___HBSwm | | ____HBSM |
L CPU CPU CPU CPU IR
GSM GSM
Ctil Ctrl - Ctrl ot Ctrl Ctrl

32GB
DDR4

32GB|_|

----- Acc|MalL2 L2] L2] L2 |WelACCHACCEES
DDR4 : :

1/0 unit

Acceleration zone
cluster 4
Fig. 1 Overview of the Matrix-3000 architecture
(DDR: double data rate; Ctrl: control; ACC: accel-
eration; GSM: global shared memory; HBSM: high-
bandwidth shared memory; I/O: input/output; CPU:
central processing unit)

Acceleration zone
cluster 3

Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520 511

performance with a power efficiency of 45.4 Gflops
per watt. The four ACC zone clusters can run inde-
pendent of each other.

An OS runs in the GP zone.
the GP zone, the acceleration cluster is a bare-metal

Different from

device, with no support of OS, and all hardware re-
sources need to be managed by user programs. The
CPU cores in the GP zone are capable of managing
the overall task execution, running the OS, and pro-
cessing general-purpose tasks, while the ACC zone is
designed for computation-intensive tasks. The CPU
and the accelerator have different accessing scopes
of the memory hierarchy, which are detailed in the
following subsection.

2.2 Hybrid memory hierarchy

MT-3000 is featured with a hybrid memory hi-
erarchy. Processing cores in the GP and ACC zones
have different memory accessing scopes.

1. General-purpose zone

Each of the 16 CPUs in the GP zone has its
own L1 and L2 cache. The CPU cores are connected
through a mesh-based on-chip network (NoC) that
achieves cache coherency. The size of the L2 cache is
512 KB, and it is organized in a 16-way set associated
with a 64-byte cacheline. The L1 cache adopts an in-
clusive policy. Therefore, when an L2 data element
is requested by other CPUs, the L2 cache controller
will have to retrieve the newest values from its cor-
responding L1 cache if the data are dirty. The CPUs
support optional prefetch; i.e., upon a cache miss, 0,
2, 4, or 8 cachelines would be prefetched into L2.

2. Acceleration zone

As shown in Fig. 1, each cluster in the ACC zone
has its own GSM, HBSM, and DDR memories. GSM
and HBSM are private to the cluster, but are shared
by all the control and acceleration cores within the
same acceleration cluster. To reduce memory con-
flicts, both HBSM and GSM are organized into mul-
tiple banks. Combined with direct memory access,
such a multi-banked organization provides flexible
support for runtime data management.

The CPU core can access the entire
HBSM/GSM and the DDR space located in different
acceleration clusters. By contrast, acceleration cores
can access GSM, HBSM, and DDR only within their
acceleration cluster. Data transfers across different
acceleration clusters have to be managed by CPUs.

2.3 Acceleration array organization

2.3.1 Combined very long instruction word (VLIW)
and acceleration array

Fig. 2 shows that each MT-3000 acceleration
cluster has 24 acceleration arrays, each of which fur-
ther has one control core and 16 acceleration cores.
In the acceleration array, the 16 acceleration cores
are driven by one single instruction stream and work
in a lock-step manner. The single instruction stream
is handled by the control core.
array is the main source for data-level parallelism

The acceleration

(DLP), which is commonly seen in high-performance
computing (HPC) workloads.

Furthermore, each acceleration core uses a
VLIW organization, having three multiply-and-
accumulate (MAC) units, one integer execution unit
(IEU), and two load /store units. At most six instruc-
tions can be packed and issued simultaneously to an
acceleration core within a cycle. Each MAC unit sup-
ports both fixed and floating-point multiplication-
and-accumulation. The MAC unit supports half-,
single-, and double-precision floating-point opera-
IEU can support both bitwise and integer
operations. By combining VLIW and acceleration
array organization, we can exploit both data- and
instruction-level parallelism.

tions.

2.3.2 On-chip memory design

MT-3000 uses a high-bandwidth on-chip mem-
ory design, i.e., scalar memory (SM) and array mem-
ory (AM), which is shown in Fig. 2. SM is private to

Acceleration cluster

Acceleration array

v ¥

i

I

——
i [B Bl Ed]
vt ' i

I

Fig. 2 Organization of an acceleration cluster (Ctrl:
control; Mem: scalar memory; ACC: accelera-
tion; GSM: global shared memory; HBSM: high-
bandwidth shared memory)

512 Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520

a control core and AM is shared by the 16 acceler-
ation cores. AM supports at most two loads/stores
on each acceleration core. The data types of AM
load/store include half-word (32-bit), word (64-bit),
and double-word (128-bit). Thus, AM can provide at
most 512 bytes (16 x 2 x 128 bits) to 16 acceleration
cores. Each SM buffer is of 64 KB, which is private
to a control core, and each AM buffer is of 768 KB,
which is private to the 16 acceleration cores. Note
that the AM buffer and the SM buffer are located at
the same level.

To summarize, MT-3000 is a bare-metal hetero-
geneous processor with a complex core and memory
organization. Such hardware design provides the po-
tential for high performance by giving a large de-
gree of flexibility to the system software to optimize
data placement, thread communications, and paral-
lel computation. However, this architectural design
requires having an effective programming model to
lower the programming difficulties. Our work will
focus on addressing the programming issues of MT-
3000 and similar accelerators.

3 MT-3000 programming stack

Fig. 3 gives an overview of our four-layer soft-
ware stack designed for MT-3000. A standard Linux
OS runs on the CPU. The OS manages the interac-
tions between CPUs and the bare-metal accelerator
clusters in the ACC zone through a device driver.
The MT-3000 compiler, m3cc, translates C code into
executable binaries to run on MT-3000. As part of
the compilation toolchain, 1ibMT provides a low-level
interface for the runtime to manage accelerators, and
HPML is a high-performance math library specifically
optimized for MT-3000.

At the core of this work are the two program-
ming interfaces that we have developed for MT-3000.

OpenCL

hthreads

libMT m3cc HPML

o [om
Matrix-3000

Fig. 3 The MT-3000 programming stack (OS: oper-
ating system)

The hthreads programming model provides a het-
erogeneous threading model for MT-3000. Built
upon hthreads, MOCL3 implements the OpenCL het-
erogeneous programming standard of version 1.2 for
MT-3000. In a nutshell, hthreads and MOCL3 are
built on top of the lower-level components of the
software stack of MT-3000.

3.1 The m3cc compiler

As a key component of the MT-3000 software
stack, we develop a low-level, in-house compiler
(m3cc), which translates C99 compatible programs
into executable MT-3000 binaries. m3cc is a cross-
compiler that runs on the general-purpose CPU of
MT-3000 to generate binaries for the accelerator.
In addition to standard C, m3cc supports vectoriza-
tion intrinsics and embedded assembly codes. m3cc
is integrated with the assembler (m3cc-as) and the
linker (m3cc-1d), which form a complete compiling
toolchain for MT-3000.

3.2 Low-level software interface

The 1ibMT library acts as a low-level software in-
terface for managing the interactions between CPUs
and accelerators. This library first provides the func-
tions of managing the shared buffers and data trans-
fers between CPUs and accelerators. Given that ac-
celerators can use only physical addresses and CPUs
use virtual addresses, 11bMT has to perform address
translation between them based on the lower-level
driver module. Then, 1ibMT loads a program im-
age and its kernel argument data onto a predefined
location, and fires the accelerators for kernel execu-
tion. As there are caches on the CPU side, 1ibMT
also provides interfaces to maintain data consistency
between CPUs and accelerators by invalidating the
data cachelines when needed.

3.3 High-performance math library

HPML is a bundle of mathematical libraries,
including libm, basic linear algebra subprograms
(BLASS), sparse BLASs (SparseBLASs), fast Fourier
transform (FFT), and many others. The math li-
braries are highly optimized by experts for the ac-
celerators of MT-3000, aiming to fully tap its com-
puting potentials of MT-3000. They are typically
hardcoded kernels in assemblies. On the host side,
they are implemented in 1ibMT or hthreads to

Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520 513

manage the interactions between the GP zone and
the ACC zone.

4 The hthreads programming interface
4.1 Design overview

To avoid users having to directly deal with
the underlying hardware, and to improve pro-
grammability, we present a low-overhead high-
availability heterogeneous threads (hthreads) pro-
gramming interface.

Fig. 4 shows that hthreads consists of GP zone
side APIs (host APIs) and ACC zone side APIs (de-
vice APIs). In general, hthreads takes the GP side
as host, and takes each acceleration cluster as a com-
On the host side, we provide APIs
to manage devices, program images, threads, and
shared resources. At the core of hthreads is the in-
troduction of the threading concept. Thus, program-
mers can use the logical threading instance, rather
than the physical-cores-related concepts. On the de-
vice side, we provide APIs to manage thread par-
allelism, synchronization, data movements between
on-chip and off-chip buffers, and the orchestration of
the 16 acceleration cores with vector data types and

pute device.

intrinsics.

Below we show example codes in hthreads.
Fig. 5 shows a code example for vector ad-
dition (C[] = A[]+ B[]) in hthreads. We
see that hthreads uses hthread_dev_open and
hthread_dev_close to switch the device on and
off respectively, and conducts necessary initializa-
tion. = We use hthread_dat_load to load the
compiled kernel image into the predefined loca-
tion (line 3). Then it allocates buffers for a spe-
cific device with hthread_malloc (lines 4-6), and

Host APIs Device APIs

Device management Parallelism managemen

management

management
Interrupt and exception

management

I

Image management

Thread management

Buffer management

=
(0]
o

resource

Vector intrinsics

N

,___
@
3
=t

Fig. 4 Overview of the hthreads interfaces (API: ap-
plication programming interface)

they are freed before the program exits (line 10).
Programmers have to explicitly specify the buffer
size and properties (HT_MEM_RO, HT_MEM_WO, or
HT_MEM_RW). After preparing the arguments, we cre-
ate a thread group and launch kernel execution with
hthread_group_create (line 7). When coding ker-
nels, we use a qualifier __global__. To manage
threads on the device side, we use get_thread_id to
identify a thread, which is pinned to an acceleration
array (Fig. 2). We then use vector_{malloc|free}
and vector_{load|store} APIs for AM manage-
ment and data movements. These interfaces encap-
sulate the hardware details of the DMA units with
abstractions.

1 /* main entry for vector addition */
hthread_dev_open(dev_id);
3 hthread_dat_load(dev_id, "vadd_kernel.dat");
long *A = hthread_malloc(dev_id, size,
< HT_MEM_RO);
5 long *B = hthread_malloc(dev_id, size,
< HT_MEM_RO);
long *C = hthread_malloc(dev_id, size,
< HT_MEM_RW);
int tg_id = hthread_group_create(dev_id,
< num_threads, "add_vector", 2, 3,
— args);
hthread_group_wait(tg_id);
9 hthread_group_destroy(tg_id);
hthread_free(A); /* the same for B and C %/
11 hthread_dev_close(dev_id);
/* borderline between host and device codes
— */
13 __global__
< length, long *A, long *B,
int tid = get_thread_id();
15 long i = 0, b = 0;
long step_size = 16 * 1024;
17 long num_steps = length/step_size;
unsigned long offset = tid * length;

-~

void add_vector(unsigned long
long *C){

19 lvector long * srcl = vector_malloc(
< step_size * sizeof (long));
lvector long * src2 = vector_malloc(
< step_size * sizeof (long));
21 lvector long * dst = vector_malloc(
<> step_size * sizeof (long));
for(b = 0; b < num_steps; b++){
23 vector_load(&A[offset], srci,
< step_size * sizeof (long));
vector_load(&B[offset], src2,
< step_size * sizeof (long));

25 for (i = 0; i < step_size / 16; i
— ++)
dst[i]l = src1[il + src2[il;
27 vector_store(dst, &C[offset],
< step_size * sizeof (long));
offset = offset + step_size;
29 }
vector_free(srcl);
31 vector_free(src2);

vector_free(dst);

Fig. 5 An example in hthreads for vector addition

514 Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520

4.2 Implementation

Fig. 6 shows the conceptual framework of
hthreads. The modules above the dashed line are
the interface provided to users, and the internal im-
plementation function modules are below the dashed
line. GP and ACC zones communicate through in-
terrupt and shared memory.

Interrupt

‘ Shared memory .

Fig. 6 The hthreads implementation modules
(perf: performance analysis; ACC: acceleration; GP:
general-purpose)

4.2.1 Memory layout

As acceleration clusters have no support of OS,
hthreads has to prepare execution contexts for ker-
nels. Kernel execution can be treated as an indepen-
dent process, which has its own process space. Before
kernel execution, hthreads will load code segments
and data segments into predefined memory locations,
prepare the stack register, set the entry point, and
pass parameters to kernel functions according to the
calling conversion (line 3 of Fig. 5). Thus, we need
to set up the memory layout for them. For the use
convenience, we also have to map HBSM, GSM, AM,
and SM into the process space.

Due to the complex memory hierarchy, the map-
ping space of the memory layout is particularly large.
We can choose to place the scalar stack on DDR,
GSM, HBSM, or SM. The code and data segments
can also be mapped onto DDR, GSM, or HBSM.
When we put the scalar stack on SM, the instruction
latency will be short. However, SM has limited ca-
pacity and it could be too small to hold large codes.
Alternatively, when we put the scalar stack on DDR,
the latency will be large. Therefore, we have to make
a tradeoff between performance and buffer capacity.

For the acceleration cores of the ACC zone, we
place the heap and stack on the private vector mem-
ory of the acceleration array. Note that the stack
space grows downwards and the heap space grows
upwards. As we do not support thread switching, a

thread will occupy an entire acceleration array in an
exclusive manner until it exits.

4.2.2 Communication between GP and ACC zones

Since 1ibMT is the library of the GP zone, there
is no way to communicate between GP and ACC
zones. We need to implement the communication
driver in hthreads. We choose not to use a daemon
process to act as a management process in the ACC
zone. Instead, the process/thread running on each
control core has to manage its hardware resource
independently. This means that the GP zone needs
to communicate with all the used control cores.

We build the communication driver based on
the interrupt system to support real-time interac-
tions between GP and ACC zones. On the ACC
side, we implement a complete interrupt and excep-
tion system to handle relevant events. This system
supports the sending/receiving of interrupts to/from
other control cores or the GP zone. On the GP side,
hthreads supports the sending/receiving of inter-
rupts to/from all the control cores.

There are two ways to implement the interrupt
mechanism: (1) to simulate it by busy waiting, and
(2) to implement it based on the hardware features
of MT-3000. The former does not require hardware
support but consumes computing resources, whereas
the latter does not consume computing resources but
requires hardware support. We implement both ap-
proaches, and compare their performance.

To reduce the synchronization cost between GP
and ACC zones, we design an optimized synchro-
nization model. Fig. 7a is the direct synchroniza-
tion model, and Fig. 7b is the proxy synchroniza-
tion model. In the direct synchronization model,
the host thread in the GP zone needs to synchronize
with all the ACC cores. In the proxy synchroniza-
tion model, the proxy core synchronizes with other
cores, and then it synchronizes with the host thread
in the GP zone. The synchronization overhead be-
tween the ACC cores is smaller than that between the
GP and ACC zones. So, the proxy synchronization
model performs better than the direct synchroniza-

tion model, and consumes fewer GP zone resources.
4.2.3 ACC zone runtime

To minimize the kernel launching overhead, we
implement an OS-like runtime for the ACC zone.

Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520 515

O

553 o83

GP zone ACC zone
(b) !

1 ()
GP zone % ACC zone

Fig. 7 The hthreads communication model: (a) direct
model (the host thread in the GP zone communicates
with all ACC cores directly); (b) proxy model (the
host thread in the GP zone communicates only with
the proxy core in the ACC zone, which then commu-
nicates with other ACC cores). GP: general-purpose;
ACC: acceleration; H: host; P: proxy core; C: ACC
core

Fig. 8a shows the naive ACC zone runtime, which
supports kernel execution, but will stall after kernel
completion. With this naive runtime, users have to
fire the ACC zone for each kernel execution, which
suffers from a large overhead. To avoid repeatedly
switching the ACC zone on/off, we implement an OS-
like runtime for the ACC zone, as shown in Fig. 8b.
We see that it not only supports kernel execution,
but sets up the interrupt and exception services that
can report kernel runtime errors. In addition, the
OS-like runtime will still run on the ACC zone after
kernel completion, and wait for a new request from
the GP zone. A new request can be a new kernel
execution or other operations such as synchroniza-
tion. A detailed evaluation of the kernel launching
overhead will be shown in Section 6.2.2. We will
see that the OS-like runtime can yield better perfor-
mance than the naive one.

4.2.4 Vector extension

To orchestrate the use of the 16 acceleration
cores of an acceleration array, we extend standard
C to support vector data types and vector opera-
tions. The use of vector data types is demonstrated
in lines 19-21 of Fig. 5, where the qualifier 1vector
is followed by the relevant conventional data types.

These vector extensions are designed to give the
programmer the ability to explicitly control the 16
acceleration cores working in a lock-step manner.
They can also be used by the m3cc compiler to ex-
ploit the potential of the acceleration array in the

(Fire the ACC zone)
v

Initialize the hardware

v

Set up the interrupt &
exception service

Fire the ACC zone) Set up the hthreads
l management information

Initialize the hardware

|

Wait for a new reque
rom the GP zone

(a) (b)

Fig. 8 The ACC zone runtime: (a) naive ACC run-
time (which will stall after the user task completion);
(b) OS-like ACC runtime (which will still run on the
ACC zone after the user task completion, and wait for
new tasks). ACC: acceleration; OS: operating system;
GP: general-purpose

ACC zones of MT-3000.
4.2.5 Debugging supports

As MT-3000 is a new heterogeneous many-core
accelerator, and its ACC zone is a bare-metal de-
vice, programming the ACC zone is error-prone and
time-consuming. The debugging process requires a
deep understanding of the hardware architecture. To
help users debug, we provide a printf function on
the ACC side. When there occurs an exception from
device kernels, hthreads will print the kernel call
stack on the GP side. We also implement a gdb-like
tool (i.e., et_ctl) to help users debug their codes.
It supports common debugging functions, such as
setting breakpoints, showing the contents of regis-
ters or memory, and step execution. We are cur-
rently enriching the tool to enable it to capture more
information.

5 MOCL3

MOCL3 is an implementation of the OpenCL
standard parallel programming interface for the MT-
3000 architecture. It follows the programming spec-
ification of OpenCL (version 1.2). In general, the
implementation of the OpenCL programming model

516 Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520

for MT-3000 includes two parts: the kernel compiler
and the runtime system. The kernel compiler com-
piles OpenCL kernels into MT-3000 binaries, and the
runtime system implements the programming inter-
faces defined by the OpenCL specification. MOCL3 is
an upgraded version of the OpenCL programming
system that was developed originally for Matrix-
2000, known as the OpenCL programming interface
for Matrix-2000 (MOCL) (Ja#skeldinen et al., 2015;
Zhang et al., 2018).

5.1 OpenCL kernel compiler

From the programmer’s point of view, an
OpenCL program includes two parts: host side code
and device side code (i.e., kernels). When compil-
ing a kernel, we need to compile the OpenCL C
code into MT-3000 binaries. The OpenCL kernel is
written according to the OpenCL C (based on C99)
specification, but it also has syntax extensions and
constraints.

Fig. 9a shows that our kernel compiler for
MT-3000 is implemented in three steps. We
first convert OpenCL kernels into workgroup func-
tions with a loop (WGF), represented in low-level
virtual machine (LLVM) intermediate representa-
tion (IR). According to the index space defined
by the OpenCL program, the translated program
is the task to be performed by a single work-
group function. Different workgroup functions share
the same code, but access different data elements

Kernel compiler

OpenCL
kernel

Clang 10.0

caull
Noo
MT-3000
binaries
(a)
Workgroup

list to be

bR bR scheduled
OpenCL OPeI:ICL I
code runtime
ooo
‘ACCO ACC1 ACC2 ACC:’;‘
(b)

Fig. 9 Implementation of MOCL3: (a) MOCL3 ker-
nel compiler; (b) MOCLS3 runtime. WGF: workgroup
function; IR: intermediate representation; Opt: op-
timizer; NDR: NDRange; WG: workgroup; ACC:
acceleration

through the index space. Second, we perform op-
timizations on the WGF IR codes with a cus-
tomized optimizer. Due to the lack of an LLVM
backend for MT-3000, we use the 1lvm-cbe tool
(https://github.com/JuliaComputing/llvm-cbe/) to
translate the WGF IRs into C codes. Third, we com-
pile the workgroup functions into MT-3000 binary
representations with the m3cc compiler.

1. Handling local variables

The local variables of OpenCL kernels are
shared among all the work-items of the same work-
group. We convert such local variables to an ad-
ditional workgroup function argument with a fixed
allocation size. During runtime, the local variables
are mapped to a predefined address of the on-chip
buffers, i.e., either SM or AM (Fig. 2). Given that
programmers have to manually move data between
on-chip buffers and off-chip DDR memories, we im-
plement the relevant builtins (async_work_group_
copy) to assist data movements between local and
global memories.

2. Atomics implementations

OpenCL C provides atomic operations to loca-
tions in __ _local memory. In MOCL3,
a workgroup is translated into a work-item loop by
our kernel compiler, which is scheduled to a hard-
ware thread. The work-items within a workgroup are
executed one by one and in a sequential fashion. In
terms of memory access, the work-items of this work-

global or

group will access local variables sequentially. There-
fore, the atomic operations on local memories can be
replaced by equivalent functional operations without
synchronization. For the global memory case, we re-
ply on the hardware locks of MT-3000 to implement
the atomic functions. Again, hthreads provides rel-
evant APIs to manage the shared resource such as
locks.

5.2 MOCL3 runtime system

When we implement the OpenCL runtime sys-
tem on MT-3000, the key is to implement OpenCL
APIs.
mainly to manage the interaction between the host
and the accelerator, including creating a context en-
vironment, managing the program object and com-
pilation at the ACC zone, managing the buffers and
data movements between the host zone and the ACC

OpenCL programming interfaces are used

zone, and starting the kernel program at the ACC

zone. Our OpenCL runtime system on MT-3000

Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520 517

is built on the heterogeneous driver and hthreads
(Fig. 3).

According to the aforementioned OpenCL ker-
nel compilation process, a large number of concur-
rent tasks (i.e., workgroup functions) are defined by
the index space. After the kernel program is started
at the accelerated zone, the OpenCL runtime system
needs to dispatch tasks during runtime. The process
of executing an OpenCL program during runtime is
shown in Fig. 9b. Taking the OpenCL application
as the input, the kernel (as well as the corresponding
NDRange) is submitted to the computing device for
execution through the OpenCL task queue, which is
managed by the runtime system; on the device side,
a workgroup is used as the basic unit for assigning
tasks to available acceleration array cores. Consider-
ing that the OpenCL program adheres to a parallel
model of data structure, the task mapping strategy
used is a static one.

6 Results

This section evaluates how hthreads and MOCL3
perform on MT-3000, and compares the design trade-
offs when implementing the programming interfaces
for MT-3000.

6.1 Conformance test

Since hthreads is a new heterogeneous pro-
gramming interface specifically targeting MT-3000,
we have developed a large number of internal test
cases, also known as the ht-bench suite, which aims
to cover all the APIs of hthreads. Up to now, our
hthreads library can successfully verify all the test
cases.

As for MOCL3, we use the test cases built in the
POCL repository (http://portablecl.org/). Our re-
sults demonstrate that MOCL3 can pass all the 125 test
cases, covering those of kernel compilation, runtime,
workgroups, and regression. This shows that MOCL3
respects the OpenCL programming specification.

6.2 Design tradeoffs
6.2.1 Memory and code layout

1. Memory layout

The placement of stack has a significant impact
on performance. As for MT-3000, the stack can be
placed on DDR, GSM, or SM. We have compared

their performance using a micro-benchmark (i.e., a
variant of vector addition) in hthreads. Fig. 10a
shows the execution time of the three policies, i.e.,
corresponding to placing the stack on SM, GSM, or
DDR. We see that placing the stack on SM yields the
best performance, with an average performance im-
provement of 14% over DDR. Given that the micro-
benchmark is simple, we believe that this placement
policy can achieve a larger performance speedup for
large real-life codes.

On the other hand, using the SM buffer is often
beneficial for applications’ performance by exploit-
ing data locality. Thus, we should use this on-chip
buffer carefully, i.e., using it as a stack or data cache.
To this end, we provide programmers with an envi-
ronment variable HT_MEM_LAYQOUT_P0S={0, 0.2, 0.4,
0.6, 0.8, 1.0} in the production environment. When
it equals 0.2, we use 20% of SM per core as the stack
space, and programmers can use the remaining 80%
space. When HT_MEM_LAYOUT_P0S=1.0, we choose
to use 100% of SM per core as the stack space, and
programmers have no access to this buffer. In this
way, programmers can fully use SM buffers according
to their applications.

2. Code layout

We evaluate the impact, in terms of perfor-
mance, of choice of the location in which the code seg-
ments are stored. In MT-3000, we can map the code
segments on either DDR or GSM. Fig. 10b shows
the improvement obtained in terms of performance
as a result of placing code on GSM rather than DDR.
We see that the incremental performance benefit ob-
tained is within 5%. This is because the acceleration
core of MT-3000 has an instruction cache, and the
location of code segments has little impact on the
overall performance. Note that the GSM buffer can
also be used as the on-chip data buffer to exploit data
locality. Therefore, we provide programmers with
an environment variable HT_CODE_LAYOUT_P0S={0,
1}. When HT_CODE_LAYOUT_POS=0, the code seg-
ments of hthreads kernels are mapped onto the
DDR space; otherwise, they are mapped onto the
GSM space.

6.2.2 Launching overhead

One of the design goals of hthreads is to mini-
mize its management overhead, and hereby we eval-
uate the kernel launching overhead.
two ways to launch a kernel:

There are
one is to fire the

518 Fang et al. / Front Inform Technol Electron Eng

1200

(a) DDR GSM SM
1000~

©

o

o
T

Execution time (us)
[e2]
o
o
T

400
200
0 1 | L 1 L
1024 2048 4096 8192 16384 32768
Vector length
1200
(b) DDR GSM
__ 1000
12}
2
o 800
£
& 600f
=]
(5]
% 4001
|
200
1 I I I 1
1024 2048 4096 8192 16384 32768
Vector length
Fig. 10 Performance comparison of different de-

sign choices: (a) memory layout (the performance
obtained from placing stack on SM over DDR and
GSM); (b) code layout (performance comparison be-
tween placing code on DDR and GSM). SM: scalar
memory; DDR: double data rate; GSM: global shared
memory

acceleration cores directly, and the other is to use
interrupt to wake them up. Accordingly, there are
two ways to check kernel completion: one is to use
query flags, and the other is to use interrupts. In
1ibMT, users can start the kernel only by firing the
acceleration cores one by one, and then query the
flags of each core. In hthreads, users can start
the kernel by firing the acceleration cores with the
hthread_group_create API, or start it using inter-
rupt with the hthread_group_exec API. Checking
kernel completion in hthreads is implemented by
interrupts.

Since interrupts can either be implemented by
hardware or be simulated by querying flags, we
have evaluated the performance of both approaches.
Fig. 11 shows the launching overheads of using hard-
ware interrupt over the querying approach. We see
that the overhead can be reduced by up to 50% by
starting the kernel with interrupt compared with
firing cores one by one. The interrupt mode can
be supported only by our OS-like runtime. Us-
ing query flags to simulate interrupts increases the

2023 24(4):509-520

1233 == create_hw == exec_hw libmt_query
— create_query == exec_query
¢ 800
% 700F
8
o 600
£
< 500
>
£ 400
g 300}
< 200

100

0 M TR - P P T
1.2 4 6 8 10 12 14 16 18 20 22 24
Number of ACC control cores

Fig. 11 Invoking cost of using hardware interrupt

over querying

overhead by 14% compared to using hardware in-
terrupts. Compared to 1ibMT, we can lower the
launching overhead of using 24 cores from 700 to
400 us. When porting applications to Matrix-3000,
programmers need to make sure that the kernel
execution time is much larger than the launching
overhead; otherwise, they cannot obtain any perfor-
mance benefit. They should fire the ACC zone once
with the hthread_group_create API, and use the
hthread_group_exec API to launch their kernel to
minimize the launching overhead.

6.3 Performance optimization

General matrix multiplication (GEMM) is a
fundamental building block for HPC applications,
from traditional scientific simulations to emerging
deep learning workloads. GEMM is a matrix-
multiply-accumulate operation, defined as C = oA -
B + BC, where A and B are matrix inputs, « and
B are scalar inputs, and C' is a pre-existing matrix
that is overwritten by the output. Here, matrix
A € RMXE matrix B € REXN and C € RMXV,
As a case study, we have implemented matrix multi-
plications in hthreads and MOCL3.

6.3.1 Optimizing GEMM with hthreads

As a case study, we have implemented and op-
timized matrix multiplications with the hthreads
APIs. The performance speedups of using various
optimizations are shown in Fig. 12a. We take the
naive parallel implementation with hthreads as the
baseline. Based on this, we have performed mainly
loop tiling (1D or 2D) and used on-chip memory (SM
or AM). 1D represents tiling the loop on one dimen-
sion, whereas 2D represents tiling the loop on two di-
mensions. To achieve data locality, we stage the tiled

Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520 519

(a) 1000
Qo

2 100
[
(5]
Q.

9?10

1

1D+SM 2D+SM 1D+AM 2D+AM
Optimization scheme

b) 5.0

(b) 4.5

o 4.0

3 35

B 30

a 25

? 20

B\ N
+ A
6\1 ,\Q’LM.

Matrix input

Fig. 12 Speedup over baseline implementations for
matrix multiplications: (a) with various optimizations
in hthreads; (b) with local memory in MOCL3

data on SM or AM. The usage of on-chip buffers is
achieved by exploiting hthreads DMA APIs to move
data between off-chip memory and on-chip memory.
On MT-3000, we see that the achieved speedups of
the four optimizations are 9.4x, 33.04x, 15.98 %, and
392.29x.

6.3.2 Optimizing GEMM with MOCL3

We have also implemented matrix multiplica-
tions with MOCL3. Fig. 12b shows the performance
improvement of using local memory over the case
without local memory on MT-3000 for various inputs
(M =N=K={512,1024, 1536, 2048}). We see that
by mapping the local memory to the on-chip memory
of MT-3000, MOCL3 can run matrix multiplications
around 2.8x faster on average. By moving data into
the on-chip memories of MT-3000, we can improve
the memory bandwidth by exploiting the fast on-
Note
that we use the async_work_group_copy builtins to

chip buffers and reusing the data elements.

move data from global memories to local memories.
To summarize, we have used matrix multiplica-
tions as a case study to demonstrate the performance
of hthreads and MOCL3. We find that the program-
ming model developed for MT-3000 performs well in
terms of both performance and programmability.

7 Related works

The parallel programming model acts as a
bridge between programmers and parallel architec-

tures. To use shared memory parallelism on multi-
core CPUs, parallel programming models are often
implemented on threading mechanisms such as the
POSIX threads (Alfieri, 1994). For programming
heterogeneous many-core processors, Fang et al.
(2020) summarized the family of parallel program-
ming models for heterogeneous many-core architec-
tures. Based on the performance—programmability
tradeoff, the programming models/languages were
categorized into low- and high-level programming
models. The expected application performance in-
creases from high- to low-level programming models,
whereas the programmability decreases.

Low-level programming models are closer to
many-core architectures, and expose more hard-
ware details to programmers through data struc-
tures and/or APIs. These models are typically
bound to specific hardware architectures, and are
also known as native programming models. The
representative models are libSPE for STI Cell/B.E.
(Arevalo et al., 2000) and CUDA for NVIDIA GPUs
(https://developer.nvidia.com/cuda-downloads). In
contrast, high-level programming models raise the
languages’ abstraction level, and hide more ar-
chitecture details than low-level models. Thus,
high-level models often enable better programmabil-
ity. The representative models are SYCL (https://
www.khronos.org/sycl/), Kokkos (Trott et al., 2022),
OpenACC (https://www.openacc.org/), and Py-
Torch (https://pytorch.org/).

To achieve high performance, high programma-
bility, and high portability, we argue that a holistic
solution of programming systems is required for fu-
In this
paper, we share our experience on the development
of programming systems for our home-grown hetero-
geneous processor. At the low level, we present a
close-to-metal programming interface (hthreads) to
tap the hardware potentials. At the high level, we
present a customized implementation of the standard
programming interface (MOCL3). This holistic solu-
tion aims to achieve a balance among performance,
programmability, and portability.

ture heterogeneous many-core processors.

8 Conclusions

We have presented the design and implementa-
tion of the programming and compiler tools for the
Matrix-3000 accelerator. Given the complex memory

520 Fang et al. / Front Inform Technol Electron Eng 2023 24(4):509-520

hierarchy and processor core organization of Matrix-
3000, the use of microarchitecture design in a way
that enables complete realization of potential hard-
ware performance depends on the effectiveness of the
customized software employed on the device. We
share our experience on how a low-level threading-
based programming interface can be developed to
support the high-level OpenCL programming stan-
dard. We hope that the experience shared in this
paper can support the design and implementation
of system software for future specialized computing
hardware.

Contributors

Chun HUANG, Kai LU, and Ruibo WANG designed
the research. Jianbin FANG and Peng ZHANG processed
the data. Chun HUANG, Tao TANG, and Zheng WANG
drafted the paper. Jianbin FANG helped organize the paper.
All the authors revised and finalized the paper.

Compliance with ethics guidelines
Jianbin FANG, Peng ZHANG, Chun HUANG, Tao
TANG, Kai LU, Ruibo WANG, and Zheng WANG declare

that they have no conflict of interest.

Data availability
The data that support the findings of this study are
available from the corresponding author upon reasonable

request.

References

Alfieri RA, 1994. An efficient kernel-based implementation
of POSIX threads. Proc USENIX Summer Technical
Conf, p.59-72.

Arevalo A, Matinata RM, Pandian M, et al., 2000. Pro-
gramming the cell broadband engine examples and
best practices. ACM Workshop.
https: //www.autodesk.com /research /publications/
programming-the-cell-broadband [Accessed on Aug. 25,
2022].

Fang JB, Varbanescu AL, Sips H, 2011. A comprehensive
performance comparison of CUDA and OpenCL. Int
Conf on Parallel Processing, p.216-225.
https://doi.org/10.1109/ICPP.2011.45

Fang JB, Huang C, Tang T, et al., 2020. Parallel program-
ming models for heterogeneous many-cores: a compre-

Available from

hensive survey. CCF Trans High Perform Comput,
2(4):382-400.
https://doi.org/10.1007 /s42514-020-00039-4
Jadskeldinen P, de la Lama CS, Schnetter E, et al., 2015.
pocl: a performance-portable OpenCL implementation.
Int J Parall Program, 43(5):752-785.

https://doi.org/10.1007 /s10766-014-0320-y
Kudlur M, Mahlke S, 2008. Orchestrating the execution of

stream programs on multicore platforms. Proc 29th
ACM SIGPLAN Conf on Programming Language De-
sign and Implementation, p.114-124.
https://doi.org/10.1145/1375581.1375596

Liao XK, Lu K, Yang CQ, et al., 2018. Moving from exas-
cale to zettascale computing: challenges and techniques.
Front Inform Technol Electron Eng, 19(10):1236-1244.
https://doi.org/10.1631/FITEE.1800494

Lu K, Wang YH, Guo Y, et al., 2022. MT-3000: a heteroge-
neous multi-zone processor for HPC. CCF Trans High
Perform Comput, 4(2):150-164.
https://doi.org/10.1007 /s42514-022-00095-y

Owens JD, Luebke D, Govindaraju N, et al., 2005. A survey
of general-purpose computation on graphics hardware.
Proc 26*" Annual Conf of the European Association for
Computer Graphics, p.21-51.
https://doi.org/10.2312/egst.20051043

Owens JD, Houston M, Luebke D, et al., 2008. GPU com-
puting. Proc IEEE, 96(5):879-899.
https://doi.org/10.1109/JPROC.2008.917757

Patterson D, 2018. 50 years of computer architecture: from
the mainframe CPU to the domain-specific TPU and
the open RISC-V instruction set. IEEE Int Solid-State
Circuits Conf, p.27-31.
https://doi.org/10.1109/ISSCC.2018.8310168

Perez JM, Bellens P, Badia RM, et al., 2007. CellSs: making
it easier to program the cell broadband engine processor.
IBM J Res Dev, 51(5):593-604.
https://doi.org/10.1147 /rd.515.0593

Shen J, Fang JB, Sips H, et al., 2012. Performance gaps
between OpenMP and OpenCL for multi-core CPUs.
Proc 415t Int Conf on Parallel Processing Workshops,
p.116-125. https://doi.org/10.1109/ICPPW.2012.18

Trott CR, Lebrun-Grandié D, Arndt D, et al., 2022. Kokkos
3: programming model extensions for the exascale era.
IEEE Trans Parall Distrib Syst, 33(4):805-817.
https://doi.org/10.1109/TPDS.2021.3097283

Zhai JD, Chen WG, 2018. A vision of post-exascale program-
ming. Front Inform Technol Electron Eng, 19(10):1261-
1266. https://doi.org/10.1631/FITEE.1800442

Zhang P, Tang T, Fang J, et al., 2018. MOCL: an efficient
OpenCL implementation for the Matrix-2000 architec-
ture. Proc 152 ACM Int Conf on Computing Frontiers,
p.26-35. https://doi.org/10.1145,/3203217.3203244

	Introduction
	Matrix-3000 architecture
	Heterogeneous multi-zones
	Hybrid memory hierarchy
	Acceleration array organization
	Combined very long instruction word (VLIW) and acceleration array
	On-chip memory design

	MT-3000 programming stack
	The m3cc compiler
	Low-level software interface
	High-performance math library

	The hthreads programming interface
	Design overview
	Implementation
	Memory layout
	Communication between GP and ACC zones
	ACC zone runtime
	Vector extension
	Debugging supports

	MOCL3
	OpenCL kernel compiler
	MOCL3 runtime system

	Results
	Conformance test
	Design tradeoffs
	Memory and code layout
	Launching overhead

	Performance optimization
	Optimizing GEMM with hthreads
	Optimizing GEMM with MOCL3

	Related works
	Conclusions

