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Abstract: We study the impact of the distance between two hubs on network coherence defined by Laplacian
eigenvalues. Network coherence is a measure of the extent of consensus in a linear system with additive noise. To
obtain an exact determination of coherence based on the distance, we choose a family of tree networks with two hubs
controlled by two parameters. Using the tree’s regular structure, we obtain analytical expressions of the coherences
with regard to network parameters and the network size. We then demonstrate that a shorter distance and a larger
difference in the degrees of the two hubs lead to a higher coherence. With the same network size and distance, the
best coherence occurs in the tree with the largest difference in the hub’s degrees. Finally, we establish a correlation
between network coherence and average path length and find that they behave linearly.
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1 Introduction

Complex networks are currently attracting an
enormous amount of attention in the scientific com-
munity and have proved to be a powerful tool
for characterizing complex systems (Newman, 2003;
Gao W et al., 2022a, 2022b). Among the network
models, deterministic networks (Comellas et al.,
2000; Barabási et al., 2001; Comellas and Sampels,
2002) are based on recursive techniques and can pro-
vide exact results for the studied network metrics,
e.g., degree distribution (Liu et al., 2022), random
walks (Gao L et al., 2021; Zaman, 2022; Yu XD et al.,
2023; Zaman and Ullah, 2023), spanning trees (Li
et al., 2020; Zaman et al., 2022), and synchroniz-
ability (Zhu et al., 2021). In the studies of deter-
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ministic network models, fractal networks have been
widely studied, such as Apollonian networks (An-
drade et al., 2005), Koch networks (Zhang ZZ et al.,
2009), Sierpiński networks (Imran et al., 2017), and
recursive trees (Peng et al., 2014).

As a typical collective behavior in multi-agent
systems, consensus problems have gained increasing
interest because of wide applications in diverse fields
(Olfati-Saber and Murray, 2004; Ren et al., 2007; Yu
WW et al., 2010; Lu and Liu, 2019; Hu X et al.,
2021; Zhang LZ et al., 2022). Consensus describes
the process by which groups of agents reach agree-
ment on a common value or state. For example,
the directions of a group of unmanned aerial vehicles
(Rao and Ghose, 2014) are consistent in a formation
problem. During the consensus of multi-agent sys-
tems, they may be subject to external disturbances
(Wang and Liu, 2009). In this setting, the agents
could not reach consensus. To characterize the sys-
tem resistance to the disturbances, Patterson and
Bamieh (2014) introduced the concept of network
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coherence. It was proved that coherence is wholly
determined by the Laplacian spectrum of the under-
lying network. Therefore, network coherence allows
investigation of the interplay between network struc-
tures and the consensus resistance to the noise (Liu
et al., 2021). For example, the fractal dimension of
Vicsek fractals is related to the scaling of network
coherence, but this result does not hold for a family
of recursive trees (Sun et al., 2014).

Because the eigenvalues of the Laplacian matrix
are often dominated by the network topology (Grone
et al., 1990), it is difficult to obtain exact network
coherence results quantified by the sum of the re-
ciprocals of all nonzero Laplacian eigenvalues. For
some deterministic networks (e.g., symmetric star
topology networks (Gao HP et al., 2022)), great ef-
fort has been made to obtain analytical solutions of
the network coherence. Hong et al. (2020) studied
the relationship between coherence and the number
of initial nodes and showed that a smaller number
of initial nodes leads to better coherence. Dai et al.
(2017) studied the first-order network coherence of
weighted Cayley networks by the mean first-passage
time and showed that the scalings of coherence re-
garding the network size obey four types of laws
based on the weight factor. Later, Jing et al. (2021)
chose a family of ring-trees networks and obtained
analytical network coherence solutions using the re-
cursive relations of the Laplacian eigenvalues. Yi
et al. (2022) showed that the second-order consen-
sus dynamics with random additive disturbances are
related to the concept of biharmonic distance.

It is known that the hub nodes play an impor-
tant role in dynamic behavior. For example, the hub
nodes inhibit the outbreak of epidemics on scale-free
networks (Zhang HF et al., 2010). Hu TC et al.
(2022) investigated the noise consensus dynamics in
a family of tree networks with two hubs and found
that a larger difference in the degrees of the hub
nodes leads to better coherence. In addition, Chen
et al. (2023) showed that the network with one hub
displays better leader-follower coherence than net-
works with two hubs. To our knowledge, few results
involve the impact of the distance between two hubs
on the studied coherence. Inspired by the above dis-
cussions, we choose a family of tree networks with
two hubs as our model and investigate the impact
of distance on coherence. The aim of the present
work is to obtain exact solutions of the coherence

regarding the distance and to further study the rela-
tionship between coherence and average path length
in an analytical form.

2 Preliminaries

2.1 Network models

To study the effect of the distance between two
hubs on coherence, we introduce a parameter d mea-
suring the distance between two hubs. The asymme-
try of the trees is changed by the hub’s degrees. In
the following, we propose a family of tree networks
with two hubs where the distance between the two
hubs remains unchanged by adjusting the degrees of
the two hubs. The detailed operation of this tree
network model is summarized in Fig. 1.

nm

d

(a)
–

(b)
m–2 n–2

d

(c)

Fig. 1 A family of tree networks with the same dis-
tance d between two hubs: (a) T1; (b) T2; (c) T3. The
parameters m and n control the tree’s asymmetry,
and the network size is N = m + n + d + 1

2.2 Network coherence

Patterson and Bamieh (2014) proposed the con-
cept of network coherence, which characterizes the
extent of consensus resistance to external noise. The
governing equation of a consensus system with addi-
tive noise is given by

ẋ(t) = −Lx(t) + η(t), (1)
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where x(t) = (x1(t), x2(t), . . . , xN (t))T is the sys-
tem’s state, N is a positive integer denoting the
network size, and L = (Lij)N×N is the Laplacian
matrix where the elements are defined as follows:
off-diagonal elements Lij = −1 if node i is adjacent
to node j and 0 otherwise, and the diagonal elements
Lii are the nodes’ degrees. η(t) is a zero-mean, unit-
variance white noise process.

When there is no noise in system (1), the sys-
tem will asymptotically converge to consensus. Con-
versely, system (1) does not reach consensus due to
the existence of noise terms. To measure the ex-
tent of consensus around the average of current node
states, Patterson and Bamieh (2014) introduced the
concept of network coherence, which is defined by
the mean steady-state variance of the deviation from
the average of all node states, that is,

H := lim
t→∞

1

N

N∑

i=1

var

{
xi(t)− 1

N

N∑

k=1

xk(t)

}
.

It has been shown that the coherence H is
completely determined by the Laplacian eigenvalues
(Xiao et al., 2007; Bamieh et al., 2012), i.e.,

H =
1

2N

N∑

i=2

1

λi
, (2)

where λi (i = 1, 2, . . . , N) are the Laplacian eigen-
values, and 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN .
Lemma 1 Let p(x) = αnx

n + . . . + α1x+ α0 be a
real polynomial of degree n ≥ 2 with α0 �= 0. We
have

n∑

k=1

1

ρk
= −α1

α0
,

where ρk (k = 1, 2, . . . , n) are the roots of p(x)

(Karayannakis and Aivalis, 2018).

3 Exact calculations of network coher-
ence

In this section, we present a method for obtain-
ing the analytical expressions of network coherence
defined in Eq. (2) of trees T1, T2, and T3 in Fig. 1.
Hi (i = 1, 2, 3) represents the coherence of tree Ti.
According to the structure of T1, its Laplacian ma-
trix L1 reads as

L1 =

(
A(d+1)×(d+1) B(d+1)×(m+n)(
B(d+1)×(m+n)

)T
I(m+n)×(m+n)

)
,

where I is an identity matrix of order m+ n and

A(d+1)×(d+1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

m+ 1 −1 · · · 0 0

−1 2 · · · 0 0
...

...
...

...
0 0 · · · 2 −1

0 0 · · · −1 n+ 1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

B(d+1)×(m+n) =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1 · · · −1 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · 0 −1 · · · −1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

To obtain the solution to Eq. (2), we need to
calculate the characteristic polynomial P1(λ) for L1.
Using the elementary row operations on this deter-
minant, we transform P1(λ) into a tridiagonal deter-
minant and further expand P1(λ) by row expansion
of this determinant. The detailed operations are as
follows:

P1(λ) = |λI − L1|
= (λ− 1)m+nA(d+1)×(d+1)

= (λ− 1)m+n
[
a1b1Ud−1(λ)

−(a1 + b1)Ud−2(λ) + Ud−3(λ)
]

= (λ− 1)m+n−2

{[
λ2 − (m+ 2)λ+ 1

]

·
[
λ2 − (n+ 2)λ+ 1

]
Ud−1(λ)

−
[
2λ2 − (m+ n+ 4)λ+ 2

]
(λ− 1)Ud−2(λ)

+(λ− 1)2Ud−3(λ)

}
,

where a1 = λ−m− 1− m
λ−1 , b1 = λ− n− 1− n

λ−1 ,
and

A(d+1)×(d+1) =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 · · · 0 0

1 λ− 2 · · · 0 0
...

...
...

...
0 0 · · · λ− 2 1

0 0 · · · 1 b1

∣∣∣∣∣∣∣∣∣∣∣∣

.

The tridiagonal determinant Uk(λ) of order k

reads as

Uk(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− 2 1 · · · 0 0

1 λ− 2 · · · 0 0
...

...
...

...
0 0 · · · λ− 2 1

0 0 · · · 1 λ− 2

∣∣∣∣∣∣∣∣∣∣∣∣

. (3)
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According to Eq. (3), we obtain a recursive re-
lation in the form below:

Uk(λ) = (λ− 2)Uk−1(λ) − Uk−2(λ), k ≥ 3, (4)

where the initial conditions are U1(λ) = λ − 2 and
U2(λ) = λ2 − 4λ+ 3.

Using Eq. (4) yields

Uk(0) = −2Uk−1(0)− Uk−2(0) = (−1)k(k + 1),

Uk(1) = Uk−1(0)− 2Uk−1(1)− Uk−2(1)

= (−1)k+1 k(k + 1)(k + 2)

6
,

Uk(2) = Uk−1(1)− 2Uk−1(2)− Uk−2(2)

= (−1)k
(k − 1)k(k + 1)(k + 2)(k + 3)

120
,

where Uk(0), Uk(1), and Uk(2) are the coefficients of
the constant, first-order, and second-order terms of
λ, respectively.

Because there is a zero eigenvalue of the Lapla-
cian matrix L1, we need to introduce a new polyno-
mial P 1(λ) =

P1(λ)
λ to obtain all the nonzero eigen-

values. Based on Lemma 1, we determine the coeffi-
cients to obtain an exact solution of network coher-
ence. The coefficients are

P 1(0) = (−1)m+n+d(m+ n+ d+ 1)

= (−1)m+n+dN,

P 1(1) = (−1)m+n+d−1

[
1

6
(d− 2)(d− 1)d

+
1

2
(d− 1)d(m+ n+ 2) + (m+ 1)(n+ 1)d

+m+ n+ 2(d+ 1) +N(m+ n− 2)

]
.

Then, expression (2) of network coherence is

H1 =
1

2N

N∑

i=2

1

λi
= − 1

2N

P 1(1)

P 1(0)

=
φ1 − d(m− N−d−1

2 )2

2N2
, (5)

where

φ1 =
1

6
(d− 2)(d− 1)d+

1

2
(d− 1)d(N − d+ 1)

+
1

4
d(N − d− 1)2

+(N − d)(N + d− 1)− (N − 1).

For tree T2, we reduce the degree of the leftmost
hub to prevent the distance from changing. In the

same way, we obtain coherence H2 in the following
form:

H2 =
φ2 − d(m− N−d−1

2 )2

2N2
, (6)

where

φ2 =
1

6
(d− 2)(d− 1)d+

1

2
(d− 1)d(N − d+ 1)

+
1

4
d(N − d− 1)2

+(N − d)(N + d− 1)− 2.

Further, we reduce the degrees of both hubs to
form tree T3. Its Laplacian matrix is

L3 =

(
C(d+5)×(d+5) M(d+5)×(m+n−4)(
M(d+5)×(m+n−4)

)T
I(m+n−4)×(m+n−4)

)
,

where
C(d+5)×(d+5)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 · · · 0 0 0 0

−1 2 −1 0 · · · 0 0 0 0

0 −1 m −1 · · · 0 0 0 0

0 0 −1 2 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 2 −1 0 0

0 0 0 0 · · · −1 n −1 0

0 0 0 0 · · · 0 −1 2 −1

0 0 0 0 · · · 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
M(d+5)×(m+n−4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0

−1 · · · −1 0 · · · 0
...

...
...

...
0 · · · 0 −1 · · · −1

0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The corresponding characteristic polynomial
P3(λ) for matrix L3 becomes

P3(λ) = |λI − L3|
= (λ − 1)m+n−4

{{
a2b2γ

−(λ− 1)2
[
(λ− 2)(a2 + b2)− 1

]

+(a2 + b2)(λ− 1)
}
Ud−1(λ)

−{(a2 + b2)γ − [2(λ− 1)2(λ− 2)

−2(λ− 1)
]}
Ud−2(λ) + γUd−3(λ)

}
,

where γ = (λ−1)2(λ−2)2−2(λ−1)(λ−2)+1, a2 =

λ−m− m−2
λ−1 , and b2 = λ− n− n−2

λ−1 .
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Finally, we obtain a solution of coherence H3 as
follows:

H3 =
φ3 − d(m− N−d−1

2 )2

2N2
, (7)

where

φ3 =
1

6
(d− 2)(d− 1)d+

1

2
(d− 1)d(N − d+ 1)

+
1

4
d(N − d− 1)2

+(N − d)(N + d− 1) +N − 5.

4 Robustness of network coherence

This section presents our study of the robust-
ness of coherences H1, H2, and H3 regarding dis-
tance d and network parameters m and n. First, we
plot the distributions of coherences H1, H2, and H3

against distance d between two hubs in Fig. 2, which
shows that the network coherence is better with a
smaller distance. According to Eqs. (5)–(7), we fur-
ther obtain

H3 −H2 = H2 −H1 =
N − 3

2N2
.

It then follows that H3 > H2 > H1, becacuse
N = m+ n+ d+1 > 3, meaning that the coherence
of tree T1 is the best.

Second, we investigate the effect of parameters
m and n on the coherence with a fixed network size
N and distance d. Expression (5) gives

H1 =
φ1 − d(m− N−d−1

2 )2

2N2

=
φ1 − d(m−n

2 )2

2N2
.

Because φ1 > 0, coherence H1 achieves the max-
imum value φ1

2N2 when m = n. On the other hand,
H1 reaches the minimum when |m − n| is the max-
imum. It then shows that the larger the difference
between the degrees of the two hubs, the higher the
coherence. In Fig. 3, we plot the coherence change
regarding parameter m, verifying the effectiveness of
the above analysis.

Finally, we show the phase diagrams of coher-
ences H1, H2, and H3 in a two-dimensional space
(m,n) in Fig. 4. In summary, a larger difference of
parameters m and n leads to a better coherence.
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d

H�
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H�

Fig. 2 Distributions of coherences H1,H2, and H3

against distance d with m = 30 and n = 20
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H
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Fig. 3 Distributions of coherences H1,H2, and H3

against parameter m with N = 100, d = 49, and
n = 50−m

5 Relationship between coherence and
average path length

We identify a relationship between the coher-
ence and average path length. In network science,
the average path length (APL) is defined as the av-
erage distance between any two nodes, which is a
measure of the efficiency of information transfer on
a network. It is defined as

APL =
2

N(N − 1)

∑

i≤j

dij ,

where dij is the shortest distance between two
nodes. Using the tree’s regular structure, the exact
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Fig. 4 Phase diagrams for coherences H1 (a), H2 (b),
and H3 (c) in a two-dimensional space (m, n) with
d = 49

expressions of APL are given by

APL1 =
2

N(N − 1)

[1
2

d∑

k=1

k(k + 1)

+
1

2
(d+ 1)(d+ 2)(m+ n)

+ (m− 1)m+ (n− 1)n+ (d+ 2)mn
]

=
2

N(N − 1)

[
ξ1 − d

(m− n

2

)2]
,

(8)

APL2 =
2

N(N − 1)

[
ξ2 − d

(m− n

2

)2]
, (9)

APL3 =
2

N(N − 1)

[
ξ3 − d

(m− n

2

)2]
, (10)

where

ξ1 =
1

6
d(d+ 1)(d+ 2) +

1

4
d(N − d− 1)2

+
1

2
(d+ 1)(d+ 2)(N − d− 1)

+(N − d− 2)(N − d− 1),

ξ2 =
1

6
(d+ 2)(d+ 3)(d+ 4) +

1

4
d(N − d− 1)2

+
1

2
(d+ 1)(d+ 2)(N − d− 3)

+(N − d− 3)(N − d+ 1),

ξ3 =
1

6
(d+ 4)(d+ 5)(d+ 6) +

1

4
d(N − d− 1)2

+
1

2
(d+ 1)(d+ 2)(N − d− 5)

+(N − d− 1)(N − d)− 4(d+ 5).

From the expressions of the coherences (Eqs.
(5)–(7)) and the average path lengths (Eqs. (8)–
(10)), we find that the coherence value increases with
the increase of the average path length at a linear
rate. When the parameters are the same (m = n),
the average path length is the largest, which means
that the coherence is the worst. Conversely, when
there is a larger difference in the hub’s degrees (i.e.,
|m − n|), the average path lengths become smaller,
showing that the trees display better coherence. In
Fig. 5, we plot the linear relationship between co-
herence H1 and average path length APL1. Similar
results hold for trees T2 and T3.

10 15 20 25
0

1

2

3

4

5

6

 0  5
APL�

H
�

Fig. 5 Relationship between coherence H1 and av-
erage path length APL1 with N = 100,m = 30, and
n = 69− d
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6 Conclusions

In this study, we investigated the impact of the
distance between two hubs on network coherence and
chose a family of tree networks as an example. The
main feature of this kind of tree is that the degrees
of two hubs are adjusted using two parameters to
maintain the same distance between the hubs. We
then obtained the analytical solutions of the coher-
ence based on the tree’s structure and found that
the coherence robustness is significantly affected by
the distance and the degrees of the hubs. A smaller
distance between two hubs and a larger difference
between the degrees will result in a higher coher-
ence. We also studied the relationship between the
coherence and average path length and showed that
the tree displays higher coherence when the average
distance is smaller. Because the Laplacian eigen-
values are related to the network topology, how to
obtain generalization results for real-world networks
is an interesting problem with technical challenges,
leaving some related work to be carried out in the
future.
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