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Abstract: Since analog systems play an essential role in modern equipment, test strategy optimization for analog
systems has attracted extensive attention in both academia and industry. Although many methods exist for the
implementation of effective test strategies, diagnosis for analog systems suffers from the impacts of various stresses
due to sophisticated mechanism and variable operational conditions. Consequently, the generated solutions are
impractical due to the systems’ topology and influence of information redundancy. Additionally, independent tests
operating sequentially on the generated strategies may increase the time consumption. To overcome the above
weaknesses, we propose a novel approach called heuristic programming (HP) to generate a mixture of test strategies.
The experimental results prove that HP and Rollout-HP access the strategy with fewer layers and lower cost
consumption than state-of-the-art methods. Both HP and Rollout-HP provide more practical strategies than other
methods. Additionally, the cost consumption of the strategy based on HP and Rollout-HP is improved compared
with those of other methods because of the updating of the test cost and adaptation of mixture OR nodes. Hence,
the proposed HP and Rollout-HP methods have high efficiency.
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1 Introduction

With the rapid development of electronic tech-
nology, analog modules play significant roles in mod-
ern devices, such as spacecraft (Li ZW et al., 2013;
Liu G et al., 2017; Suryasarman et al., 2018) and
airplanes (Tang et al., 2018; Tian et al., 2018; Liu
HC et al., 2019). The maintenance and protection
of such equipment entail high costs and time limi-
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tations. Test strategy optimization (TSO) provides
automated diagnosis procedures, optimizes the de-
tection procedures during maintenance, and short-
ens the time consumed for location of faults (Mei
et al., 2022). Therefore, TSO has received consider-
able attention from both researchers and engineers.

Since TSO can be regarded as a type of multi-
objective optimization (MOO) problem, MOO-
based methods, such as non-dominated sorting ge-
netic algorithm-II (NSGA-II) (Wang et al., 2019),
multi-particle swarm optimization (MPSO) (Li MC
et al., 2021), many-objective evolutionary algorithm
(MOEA) (Zhang L et al., 2022), and evolutionary
algorithm (EA) (Mandaogade and Ingole, 2020), are
used to achieve feasible solutions. However, the TSO
problem has been proven to be a non-deterministic
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polynomial-time (NP)-hard problem, and the com-
putational complexity of MOO-based methods grows
exponentially with the increase of the size of the tar-
get systems (Ojstersek et al., 2020). Moreover, the
searching space of the TSO problem is nonlinear and
nonconvex with Boolean data structure. Such facts
increase the difficulty in reaching optimal solutions
with MOO strategies. Optimization problem is di-
vided into numbers of deterministic problems, and
existing methods focus primarily on solving single-
objective problems (Biswas et al., 2014). As a re-
sult, the optimization solution may lead to unsatis-
factorily obtained single-objective solutions. Finally,
MOO-based methods generate only a list of selected
test procedures as the optimized solution and require
all the selected tests to be operated to obtain the di-
agnosis results, which can influence the effectiveness
of the testability design.

To achieve efficient diagnosis solutions within
an acceptable number of search times, the AND/OR
(AO*) algorithm was adopted to achieve trade-off
between test performance and search complexity by
developing a heuristic search under the AND/OR
graph (Pattipati and Alexandridis, 1990; Boumen
et al., 2009). Since analog systems contain com-
plicated structures, three improvements have been
made to AO* algorithms to meet modern mainte-
nance requirements. One approach is optimizing the
heuristic mechanism of the search strategy. Con-
sidering modern test procedures and system devel-
opment, revisions to heuristic evaluations, such as
introducing execution costs (Zhang SG et al., 2013)
and hierarchical structures (Zhang SG et al., 2015),
are used to generate practical strategies for real ap-
plications. Such improvements enhance the real-
world efficiency of diagnosis for aircraft systems and
multimode systems. Additionally, heuristic estima-
tion was integrated with information theory, such as
entropy (Sun et al., 2019), which reduces the test
cost substantially.

In contrast to developing heuristic estimation
and search strategies, the other approach is to sim-
plify two procedures to achieve high search speed and
produce satisfactory results in highly complicated
situations. To avoid an excessive computational
burden, a rollout strategy was applied to provide
rapid multistep heuristic searching (Tu and Patti-
pati, 2003). Rollout policies enhance the generation
ability of test strategies. Furthermore, Kundakcioglu

and Unluyurt (2007) developed an approach to con-
struct a bottom-up decision tree with better perfor-
mance than that achieved by constructing AND/OR
top-down trees. However, this approach fails to gen-
erate a practical strategy with an ambiguous fault
set.

Although existing methods have achieved high
performance in real-world applications, they assume
that all diagnosis decisions are made from a single-
signal operation and that the test procedure must
be sequential. Nevertheless, modern analog sys-
tems are equipped with sophisticated mechanisms
and are under variable operational conditions, and
have various impacts on stress in operational envi-
ronments (Hoffmann, 1992; Terry et al., 2004; Roy
et al., 2019), tolerance of component parameters
(Czaja and Zielonko, 2004; Guo and Savir, 2006;
Vallette et al., 2007), and complex circuit mecha-
nisms (Butzen et al., 2010; Shima and Kusaga, 2010;
Tsukahara et al., 2015). Hence, diagnosis for such
systems requires multiple signals based on the struc-
tures of the devices. Thus, existing methods have
the following weaknesses:

1. Existing methods provide impractical solu-
tions since multi-signal information is required for
many detection methods for fault conditions (Yang
et al., 2012).

2. Sequential solutions adopt unnecessary infor-
mation and waste test time due to test dependence
(Vasan et al., 2013).

3. The sequential strategy limits the efficiency
of parallel detections. Although a mixture strategy
optimization method called mixture AO* (MAO*)
method has been developed (Mei et al., 2015), the
performance of the generated solution is still limited
by information redundancy.

To the best of our knowledge, there are no ex-
isting methods to overcome these difficulties. Hence,
this study aims to apply the relationships between
test procedures to test strategy design to provide a
mixture test solution considering modern analog sys-
tem structures. The contributions of this study are
as follows:

1. We design a sequence matrix to depict the re-
lationships of tests and evaluate the dynamic cost of
the test based on the system topology. By initializing
the sequence matrix, we encode the topology of each
test procedure and the dependence of the potential
cost of test procedures into the structure information
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of target systems. The sequential strategy ensures
the test completeness of multi-signal information for
the diagnosis procedures, and the adjustment pro-
cess of the conditional cost enhances the flexibility
of the test design based on the dependence of the test
cost.

2. A novel heuristic estimator is developed to
estimate the cost of potential solutions based on a se-
quence matrix and dependence information to avoid
information redundancy when generating solutions.
The proposed method evaluates the heuristic esti-
mation function based on the decision graph and the
updated conditional test cost. As a result, the search
process not only considers the prior diagnosis results
from existing test strategies but also takes the prior
test information into account when designing further
test strategies. Hence, the generated diagnosis solu-
tions can improve the information usage of the test
procedures.

3. Heuristic programming (HP) and Rollout-HP,
which combine sequential extension and parallel ex-
tension during search tree generation and enhance
the diagnostic efficiency for real-world applications,
are proposed. HP and Rollout-HP generate both se-
quential test nodes and parallel test nodes for the
test strategy and consider the dependence of differ-
ent test procedures. Hence, the generated mixture
test strategies can save test time consumption and
unnecessary test cost compared to the sequential test
strategies of classic methods.

Experimental results and real-world applica-
tions reveal that the proposed method achieves a
lower diagnosis cost and provides final detections
within fewer layers than existing solutions. There-
fore, this study takes a step toward optimizing diag-
nosis strategies for modern analog systems under the
consideration of multiple information detection and
system structures.

2 Problem description

To achieve the most accurate fault location with
the minimum cost, there are two essential objects for
TSO: the fault state set S = {s1, s2, · · · , sM} and
the test point set T = {t1, t2, · · · , tN}. Additionally,
the fault probability set P = {p1, p2, · · · , pM} and
process test cost set C = {c1, c2, · · · , cN} represent
the evaluation elements of the solutions. N is the
number of test modules and M is the number of

fault states. The notations used in this paper are
presented in Table A1 in the Appendix.

Most AO*-based approaches (Pattipati and
Alexandridis, 1990; Boumen et al., 2009) provide
a diagnosis schedule via a generated diagnosis tree,
which separates each fault state based on the test
performance of the OR nodes. However, the tradi-
tional OR node arrangement includes a single test
operation during each procedure, causing informa-
tion redundancy and unnecessary costs for analog
system diagnosis. Hence, we introduce multiple OR
nodes with parallel test operations in each procedure
to generate mixture test strategies. The cost of the
root node in the diagnosis tree for the mixture test
strategy is calculated as follows:

Cost(S) = max(cj |tj ∈ T̃ )
K∑

k=1

Cost (Sk) , (1)

where Sk is the fault state set of the kth AND node
and T̃ is the test point set of the corresponding OR
nodes.

Similar to the sequential test strategy, the fault
isolation rate (FIR) is a significant issue for diagno-
sis, and is represented as

FIR =
Mdistinguish

M
, (2)

where Mdistinguish is the number of fault states that
can be successfully separated in the solution.

3 The proposed method

3.1 General framework

To solve the TSO problem, the general frame-
work of the proposed method consists of three proce-
dures: abstract model generation, search initializa-
tion, and HP.

First, we generate a sequence matrix and a de-
pendence matrix to depict the relationships between
tests and fault conditions. Second, the comprehen-
sive cost and corresponding decision graph provide
accurate heuristic estimate during the search pro-
cess. Third, HP is proposed to generate mixture test
strategies. Finally, the rollout strategy is adopted for
large-scale systems to provide available solutions.
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3.2 Abstract model generation

3.2.1 Sequence matrix generation

The sequence matrix, representing the relation-
ships between tests, is generated based on the bio-
graph of the system structures, which is denoted as
follows:

E ={(ti, sk)|ti is the input of the kth module or

ti is the output of the kth location},
(3)

where i is the index of the test procedure.
In the biograph, the weights of the edges repre-

sent the directions of the inputs and outputs:

w (ti, sk) =

{
−1, ti is the input of sk,

1, ti is the output of sk.
(4)

Based on the directions of the tests and fault
states, the relationships between tests can be divided
into two types: (1) one test is leading another test
and one test is behind another test; (2) two tests
are independent of each other. Hence, the elements
of the sequence matrix L = [lij ] are represented as
follows:

lij =

⎧
⎪⎪⎨

⎪⎪⎩

p, ti is p steps behind tj ,

q, ti is q steps ahead of tj ,

0, ti and tj have no orders.

(5)

According to the biograph of analog systems, L
satisfies three properties:
Property 1 For two arbitrary test points ti and tj ,
if there exists a location sk that satisfiesw (ti, sk) = 1

and w (tj , sk) = −1, then lij = 1.
Property 2 For three arbitrary test points ti, tj ,
and tk that satisfy lik > 0 and lkj > 0, the distance
between ti and tj is the sum of the distance between
ti and tk and the distance between tk and tj , which
means lij = lik + lkj .
Property 3 For arbitrary test points ti and tj, if
lij > 0, then lji = −lij .

Thus, the sequence matrix can be initialized
based on Property 1 and can be extended by Prop-
erties 2 and 3.

3.2.2 Dependence matrix generation

Based on the denotation of the dependence ma-
trix D = [dij ] (Pattipati and Alexandridis, 1990), it
can be concluded that dij = 1 when arbitrary fault

state sk and test point ti satisfy w (ti, sk) = 1. Ad-
ditionally, for an arbitrary module mi, if there exist
two test points tj and tk that satisfy dij = 1 and
lkj > 0, then dik = 1. Hence, the dependence matrix
can also be developed recursively from the previous
information.

3.3 Initialization and adjustment of cost

3.3.1 Initialization of cost

Since the cost of adding test points is related to
the test points, the process cost evaluation of each
test is initialized and adjusted based on the individ-
ual test costs and the assigned test sets. To initialize
the cost, the individual cost for test point ti is de-
noted as Δc (ti), and the process cost of the test
point is denoted as c (ti), which represents the price
increase when adding ti to the test strategy. On the
basis of the topology of the system, there are two
properties for c (ti):
Property 4 If point ti is directly linked to the
system inputs, the process cost of ti is equal to its
individual cost.
Property 5 For an arbitrary test point ti, the
cost is the combination of its individual cost and the
maximum process cost of the directly related test
points:

c (ti) = Δc (ti) + max (c (tj) |lij = 1) . (6)

3.3.2 Adjustment of cost

Because the test assignments change the cost
consumption of potential tests, the process cost is
adjusted during the TSO process, which satisfies the
following properties:
Property 6 If tk is assigned to the test strategy,
the conditional process cost of tk becomes zero.
Property 7 When tk is assigned to the test strat-
egy and ti is directly linked to tk, if and only if
max (c (tj) |lij = 1) = c (tk) , j = 1, 2, · · · , N , the
process cost for tj is adjusted as follows:

ĉ (ti|tk) = c (ti|tk) . (7)

Property 8 When tk is assigned to the test
strategy, for an arbitrary test point ti that satis-
fies lik = 0, the conditional process cost equals its
process cost.
Property 9 When tk is assigned to the test
strategy, for an arbitrary test point ti that satisfies
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lik > 1, the conditional cost can be calculated as
follows:

ĉ (ti|tk) = Δc (ti) + max (c (tj |tk) |lij = 1, j �= k) .

(8)
Property 10 When T̃ = {tk1 , tk2 , · · · , tkm} is
added to the test strategy and ti is directly linked
to tkm , if and only if max

(
c
(
tj |tk1 , tk2 , · · · , tkm−1

) |
lij = 1) = c

(
tkm |tk1 , tk2 , · · · , tkm−1

)
, then the con-

ditional process cost for ti is adjusted as follows:

c
(
ti|T̃

)
= Δc (ti) + c

(
tkm |tk1 , tk2 , · · · , tkm−1

)
. (9)

Property 11 When T̃ = {tk1 , tk2 , · · · , tkm} is
added to the test strategy, for an arbitrary test
point ti that satisfies likm < 0, the conditional pro-
cess cost equals its conditional process cost with
{tk1 , tk2 , · · · , tkm−1}.
Property 12 When T̃ = {tk1 , tk2 , · · · , tkm} is
added to the test strategy, for an arbitrary test point
ti that satisfies likm > 1, the conditional process cost
can be calculated as follows:

c
(
ti|T̃

)
=max(Δc(tj |tk1 , tk2 , · · · ,tkm)) , lij=1, j �=k.

(10)
Thus, for test point tkm added to the assigned

test point set T̃ , the cost of the directly linked test
point with tkm is checked and updated. Then, other
test points have their costs updated based on the
conditions of their linked points.

The proofs of Properties 1–12 are given in the
supplementary materials.

3.4 Initialization and adjustment of decision
graph

In addition to the cost evaluation, we develop
a decision graph G = (V,E) to represent a further
relationship between tests and the diagnosis for each
state, represented as follows:

V = {si|i = 1, 2, · · · , N}, (11)

E = {(si, sj) |i �= j}, (12)

where E is the set of edges. The weight of an edge
represents the cost of the optimal test assignment:

w (si, sj) = argmin{c (tk) |dik ⊕ djk = 1}, (13)

where “⊕” represents the XOR operation.

According to Eq. (6), the weight of each edge
represents the best decision for testing si and sj con-
sidering the cost of the tests and the relationships
between faults and tests. Hence, the heuristic esti-
mation of the search process is as follows:

hS∗ =
∑

sj∈S∗
pj max

sk∈S∗
(w (sj , sk)) , (14)

where S∗ is the set of potential fault states.
For T̃ = {tk1 , tk2 , · · · , tkm} added to the test

strategy, if and only if min{c (tk) |dik ⊕ djk = 1} =

c (tkm), the weight between two faults is adjusted as
follows:

w (si, sj)=argmin
{
c
(
tk|T̃

)
|dik⊕djk=1, k �=km

}
.

(15)

3.5 HP and Rollout-HP

3.5.1 HP method

To overcome the obstacles of sequential test
strategies, we develop the HP mixture search
method, which combines parallel extension and se-
quential extension in the search process.

The first approach is to extend the current
OR nodes and multiply the corresponding substrate
AND nodes. The conditional heuristic function for
the candidate point is estimated based on the as-
signed test set for the OR nodes as follows:

hS∗
(
ti|T̃ ∗

)
=argmax

(
ci|ti /∈ T̃ ∗

) ∑

sj∈S∗
pj

+

m2∑

r=1

hS∗
m1,r

, (16)

where S∗
m1,r is the exclusive sub fuzzy set of the test

set {ti}
⋃
T̃ ∗ calculated with Eq. (8). T̃ ∗ is the set

of assigned test procedures.
The second approach is to extend the sub AND

nodes and deepen the fault tree, which ends the gen-
eration of the current OR node and starts search-
ing for the optimal solution to the extended AND
nodes and the corresponding initialized estimation
with Eq. (9).

The HP process combining two types of exten-
sion works as follows: to avoid search redundancy,
the proposed method continues the extension pro-
cedure until the parallel extension has an estimated
value which is lower than that of the serial extension.
For each procedure, the proposed method selects the
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optimal test point as the target and adds it to the
strategy. In addition, for each update of the poten-
tial solutions, the cost of the selected tests on the
extension nodes is set to 0, and candidate tests are
updated based on Property 2. From above, the pro-
cedures of HP are as follows:

Step 1: the sequence matrix L = [lij ] is built
based on (E,W ) with Eq. (5). W is the set of weights
with respect to E.

Step 2: the candidate test point set Tcandi is
initialized as T , and the selected set T̃ is set as null.
The target fault state set is assigned as S.

Step 3: the estimate of the conditional heuristic
function hS∗,seq(ti|T̃ ∗) is calculated for Tcandi with
Eqs. (15) and (16).

Step 4: the test point topt ∈ T̃ is taken with the
optimal conditional heuristic function estimate.

Step 5: topt is added into T̃ , and the adjusted
conditional cost is calculated with respect to T̃ with
Eqs. (8) and (9).

Step 6: the extended heuristic function
hS∗,ext(ti|T̃ ∗) is estimated with the sub AND nodes
based on Eq. (16).

Step 7: if the optimal extended function esti-
mate is lower than the sequential estimate, the test
point t

′
opt is taken into T̃ and is removed from Tcandi.

S is divided into subsets Sk. Then turn to step 3, and
the optimal cost is calculated for providing the diag-
nosis of Sk ⊂ S. The heuristic function is updated
with the real value.

Step 8: if the optimal extended function esti-
mate is higher than or equal to the sequential esti-
mate, topt is removed from Tcandi and S is divided
into subsets Sk. Then turn to step 3, and the opti-
mal cost is calculated for providing the diagnosis of
Sk ⊂ S. The heuristic function is updated with the
real value.

Step 9: if the updated solution is still the opti-
mal corresponding to the estimation, take topt and
the diagnosis solution for Sk as the optimal solution.
Otherwise, turn to step 3 for searching for other po-
tential solutions.

3.5.2 Rollout-HP

Although HP improves the search strategy com-
pared to heuristic search, the time consumption of
heuristic search is likely to be high when applied to
large-scale systems. To address this weakness, we
introduce a rollout mechanism (Tu and Pattipati,

2003) into heuristic programming to generate avail-
able solutions.

The rollout algorithm can be regarded as a finite
step of the classic policy iteration method. To con-
strain the search process, the policy considers only
immediate successor nodes for fault tree construc-
tion. Therefore, for each AND node with fault state
set S∗, the potential test points likely to be added
are estimated as follows:

Tpotential = {Topt,1, Topt,2, · · · , Topt,K}. (17)

According to the rollout strategy, the proposed
Rollout-HP is as follows:

Step 1: the sequence matrix L = [lij ] is built
based on (E,W ) with Eq. (5).

Step 2: the candidate test point set Tcandi is
initialized as T , and the selected set T̃ is set as null.
The target fault state set is assigned as S.

Step 3: the estimate of the conditional heuristic
function hS∗,seq(ti|T̃ ∗) is calculated for Tcandi with
Eqs. (15) and (16).

Step 4: Tpotential is generated according to
the K-best conditional heuristic function estimation
based on Eq. (17).

Step 5: Topt is taken from Tpotential with the
minimum hS∗,seq estimate.

Step 6: the conditional cost of Tcandi is adjusted
with respect to Topt.

Step 7: the extended heuristic function
hS∗,ext(ti|T̃ ∗) is estimated with the sub AND nodes
based on Eq. (16).

Step 8: if the optimal extended function esti-
mate is lower than the sequential estimate, the test
point t

′
opt is taken into Topt and is removed from

Tcandi. S is divided into subsets Sk. Then turn to
step 3, and the optimal cost is calculated for provid-
ing the diagnosis of Sk ⊂ S. The heuristic function
is updated with the real value.

Step 9: if the optimal extended function esti-
mate is higher than or equal to the sequential esti-
mate, Topt is removed from Tcandi, and S is divided
into subsets Sk. Then turn to step 3, and the opti-
mal cost is calculated for providing the diagnosis of
Sk ⊂ S. The heuristic function is updated with the
real value.

Step 10: if the updated solution is still the op-
timal corresponding to the estimation with respect
to Tpotential, Topt and the diagnosis solution for Sk
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are taken as the optimal solution. Otherwise, turn
to step 3 for searching for other potential solutions.

3.5.3 Computational cost analysis

Different from MOO techniques which search
for complexity depending on the population and
the number of generations, HP and Rollout-HP use
heuristic search mechanisms, and the search space
is determined by the scale of the target system, the
number of potential test procedures, and the rela-
tionships between test procedures and fault states.
As a result, for the target system with M fault states
and N potential test procedures, the maximum com-
putational complexity of HP is O(N2log2M). The
computational complexity of the proposed HP is an
order lower comparing with the computational com-
plexity of the classic AO*, which is O(N log2M),
since the conditional costs are adjusted during the
heuristic search processes. To further reduce the
search cost, Rollout-HP limits the search amount by
constraining Tpotential and improves the maximum
computational complexity as O(NKlog2M), where
K < N .

4 Experiments

4.1 Subject

4.1.1 Dataset

Six datasets were adopted for the performance
estimation: amplifier (Mei et al., 2022), anti-tank
system (Tu and Pattipati, 2003), Apollo aircraft
(Pattipati and Alexandridis, 1990), bus system
(Wang et al., 2019), filter (Liu HC et al., 2019),
and horizon system (Zhang SG et al., 2015). The
structure topologies were built based on the block
diagram of the experimental systems, and the cost
of the system was marked considering the time con-
sumption of each test point and their related tests
based on the system topologies.

4.1.2 Real-world applications

We applied the proposed methods to the test
strategy design for an intermediate frequency (IF)
signal conditioning circuit. Details of the IF signal
conditioning circuit are presented in the supplemen-
tary materials. Details of the real-world applications
are also given in the supplementary materials.

4.2 Existing methods

We compared the proposed method with the
classic AO* method (Boumen et al., 2009) and three
other advanced methods: AO leaf (AOL) method
(Pattipati and Alexandridis, 1990), MAO* method
(Mei et al., 2015), and dynamic programming AO*
(DP-AO*) (Lu et al., 2018). Additionally, we com-
pared the proposed method with Rollout-AO* (Tu
and Pattipati, 2003) to compare the performance un-
der a greedy search operation.

4.3 Implementation details

All algorithms were implemented in MATLAB
2016b on a laptop with a 2.90 GHz central process-
ing unit (CPU) and 4 GB random access memory
(RAM). The function of each test of the IF signal
conditioning circuit was summarized by the mea-
surement with GPD-330D, PPE-3323 power supply,
R&S ESP17 spectrum analyzer, and R&S SMB200A
vector signal generator.

5 Results

5.1 Performance on the experimental
datasets

Table 1 presents the number of search times and
the total cost for the experimental datasets of the
seven methods. HP and Rollout-HP reduce the cost
consumption by 10.13% to 70.59% for amplifier, bus
system, filter, horizon system, and Apollo aircraft,
compared with the sequential methods (AO*, AOL,
DP-AO*, and Rollout-AO*). HP reduces the cost
consumption by 17.95% for filter and by 40.54% for
horizon system compared to MAO*. HP reduces
the number of search times by 76.60% for ampli-
fier, 16.22% for bus system, and 42.46% for horizon
system comparing with Rollout-AO*. Rollout-HP
reduces the number of search times by 80.85% for
amplifier, 16.22% for bus system, and 43.84% for
horizon system compared with Rollout-AO*. In par-
ticular, the number of search times of HP is 18.18%
higher for amplifier, 83.87% higher for bus system,
43.75% higher for filter compared with AOL. The
number of search times of HP is 2.48% higher for
anti-tank, 83.87% higher for bus system, 21.25%
higher for filter, and 14.28% higher for horizon sys-
tem compared with DP-AO*. Also, the number of
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Table 1 Performance comparison on the experimental datasets

Method
Number of search times

Amplifier Anti-tank system Bus system Filter Horizon system Apollo aircraft

AO* 20 133 7 74 47 178
AOL 9 187 5 45 15 169
DP-AO* 15 118 5 63 36 167
Rollout-AO* 47 85 37 80 73 39
MAO* 9 84 5 48 29 44
HP 11 121 31 80 42 81
Rollout-HP 9 100 31 66 41 65

Method
Total cost

Amplifier Anti-tank system Bus system Filter Horizon system Apollo aircraft

AO* 47.4 3.4 0.236 7.8 8.4 3.4
AOL 47.4 3.4 0.236 7.8 8.4 3.4
DP-AO* 47.4 3.4 0.236 7.8 8.4 3.4
Rollout-AO* 47.4 3.4 0.236 7.9 9 3.4
MAO* 42.6 1 0.236 3.9 7.4 1
HP 42.6 1 0.1 3.2 4.4 1
Rollout-HP 42.6 2.6 0.1 4.5 6.4 2.6

search times of HP is 77.42% higher for bus sys-
tem and 7.50% higher for filter compared with AO*.
However, the total cost of HP is lower for those cases
above.

The time consumption of the search process is
analyzed in Table 2. HP and Rollout-HP obtain
comparable time consumption compared with AO*,
AOL, and DP-AO*. In addition, the time consump-
tion of Rollout-HP is lower than that of the other
methods except for Rollout-AO* for anti-tank sys-
tem, and lower than that of all the other methods
for bus system. However, HP has higher time con-
sumption of 0.0567 s on filter compared with all the
seven methods except for MAO*, and Rollout-HP
complete the strategy for filter generation within
0.5000 s.

To estimate the performance of the generated
strategies, FIR improvement and test assignment of
each strategy on the anti-tank system are shown in
Fig. 1. HP builds strategy with three levels, while
Rollout-HP builds strategy with four levels. In com-
parison, the sequential and MAO*-based strategies
obtain the final diagnosis with five levels. Addition-
ally, all four algorithms take same number of test
points to build strategy. The HP-based strategy
reaches 25%, 75%, and 100% of FIR in the first three
levels respectively, while Rollout-HP achieves 8.3%,
33.3%, and 66.67% of FIR in the first three levels
respectively. However, the sequential and MAO*-

based strategies achieve <60% of FIR in the first
three levels. Hence, HP and Rollout-HP accelerate
the improvement of FIR during diagnosis.

5.2 Performance on real-world applications

Table 3 shows the performance of existing and
the proposed methods in real-world applications.
Similar to the experimental results, all the algo-
rithms reach the highest FIR. The number of search
times of HP is 4.14% greater than that of AO*,
37.24% greater than that of AOL, and 34.48%
greater than that of Rollout-AO*. HP reduce the
number of search times by 48.21% compared with
MAO* and Rollout-HP reduce the number of search
times by 49.29% compared with MAO*. In particu-
lar, HP and Rollout-HP reduce the cost consumption
by 41.67% compared with sequential strategies and
47.31% compared with Rollout-AO*.

The sequential strategy with AO* and the de-
veloped strategy with HP are depicted in Figs. 2 and
3, respectively. According to the sequential strategy,
V6pp is measured before V4dc, which causes incor-
rect detection during diagnosis. The test points for
the HP-based strategy are assigned after the anal-
ysis of all related tests. Meanwhile, 53.85% of the
fault states require fewer levels of test procedures
than the sequential strategy. Therefore, the HP-
based strategy is practical and efficient for real-world
applications.
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Table 2 Time consumption for the experimental datasets

Method
Time consumption (s)

Amplifier Anti-tank system Apollo aircraft Bus system Filter Horizon system

AO* 0.0460 0.0632 0.0432 0.0234 0.0322 0.0183
AOL 0.0200 0.0543 0.0422 0.0234 0.0543 0.0342
DP-AO* 0.0320 0.0465 0.0415 0.0253 0.0473 0.0132
MAO* 0.1030 0.1540 0.0231 0.0184 0.0824 0.0678
Rollout-AO* 0.0300 0.0345 0.0182 0.0232 0.0314 0.0120
HP 0.0350 0.0453 0.0345 0.0230 0.0567 0.0342
Rollout-HP 0.0210 0.0421 0.0232 0.0120 0.0345 0.0213

Table 3 Performance comparison on real-world applications

Method Number of search times Number of tests Fault isolation rate (%) Total cost

AO* 139 10 69.23 8.4
AOL 91 10 69.23 8.4
DP-AO* 120 10 69.23 8.4
MAO* 280 9 69.23 8.4
Rollout-AO* 95 13 69.23 9.3
HP 145 9 69.23 4.9
Rollout-HP 142 9 69.23 4.9
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Fig. 1 Fault isolation rate (FIR) improvement and test assignment on the anti-tank system dataset: (a)
sequential strategy; (b) MAO*-based strategy; (c) HP-based strategy; (d) Rollout-HP-based strategy
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Fig. 2 Sequential strategy for real-world applications by AO* (FIR: fault isolation rate)

Finally, the cost comparison for each fault state
is shown in Fig. 4. The HP-based strategy achieves
lower cost and requires a smaller number of layers
than sequential strategy for s2 and s4–s9.

6 Discussion

This research aims to improve the efficiency of
diagnosis strategies for modern analog systems con-
sidering multiple information requirements. There-
fore, HP and Rollout-HP are proposed to use a se-

quential matrix that considers the system’s topol-
ogy during the search process. Additionally, the
proposed methods combine sequential and parallel
strategies for solution generation to fully use the test
procedures. The results reveal that HP and Rollout-
HP are practical to test strategies and can enhance
the detection efficiency of diagnosis strategies.

First, the real-world applications demonstrate
that HP and Rollout-HP based solutions avoid in-
correct detection during analysis, in contrast to se-
quential solutions. Different from sequential strategy
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Fig. 3 The developed strategy for real-world applications by the HP algorithm (FIR: fault isolation rate)
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this figure)

optimization, which assumes that the diagnosis is
concluded based on single test analysis, the proposed
HP and Rollout-HP methods adapt a sequential ma-
trix to depict the relationships among the test points.
The heuristic estimation is calculated and updated
based on the sequential matrix and guides the search
process. Therefore, the generated solutions obey the
system structure, and are practical for modern ana-
log systems.

In addition, the proposed HP and Rollout-HP
methods significantly decrease the cost of the gener-
ated strategies compared to existing methods. For
most fault states, the diagnosis cost of HP and
Rollout-HP based methods is lower than that of the
sequential strategy and MAO*. By generating mix-
ture strategies, the efficiency of most fault states is
improved compared with that of other methods.

Meanwhile, HP-based strategies are proven to
isolate most faults with higher speeds than exist-
ing solutions and to achieve the final diagnosis with
lower levels of tests. On one hand, the improve-
ment is likely to be a function of the combination
of the sequential strategy and parallel strategy dur-
ing generation, which increases the flexibility of the
test solution and the detection speed of diagnosis.
On the other hand, updating the dependent cost for
each test eliminates the assigned cost and prevents
information redundancy during detection, which also
improves test efficiency.

Moreover, the time consumption of HP is higher
than that of existing methods on several datasets be-
cause the search space of the mixture test strategies
is extended compared to the search space of sequen-
tial test strategies. However, taking advantage of
HP, the overall time consumption of the proposed
HP and Rollout-HP methods is comparable to that of
state-of-the-art methods, and is acceptable for most
real-world applications.

In summary, this study has taken a step toward
optimizing diagnosis strategies for modern analog
systems under the consideration of multiple informa-
tion detection and system structures. Additionally,
the study provides an efficient approach to diagnosis
by generating mixture test procedures.

However, it considers only the stable situation of
analog systems and ignores dynamic characteristics
of reliability maintenance, such as changes in failure
probabilities and the adjustment of test consump-
tion. The approaches proposed here should be repli-
cated with dynamic adjustment of the test strategies
during the entire lifetime of analog systems.
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7 Conclusions

This study focuses on the TSO problem with
multiple analog system diagnosis information re-
quirements. Although heuristic search methods,
such as AO*, AOL, and DP-AO*, balance between
test performance and search complexity, the sequen-
tial test strategies adopt unnecessary information
and waste test time since they consider the test pro-
cedure as an independent event. Furthermore, the
generated methods may provide impractical solu-
tions when multi-signal information is required for
many detection methods of fault conditions.

To overcome the information redundancy and
correlation, we develop mixed search strategies called
HP and Rollout-HP to generate the optimal test
strategy considering the relationship between test
procedures for diagnosis. In addition, the sequence
matrix is introduced to heuristic estimation based on
a decision graph to guarantee the information usage
efficiency during solution construction. The sequen-
tial strategy ensures the test completeness of multi-
signal information for the diagnosis procedures, and
the adjustment process of the conditional cost en-
hances the flexibility of the test design based on the
dependence of the test cost. We also design a novel
heuristic estimator based on the sequence matrix and
dependence information. As a result, the search pro-
cess not only considers the prior diagnosis results
from existing test strategies but also takes the prior
test information into account when designing further
test strategies. Combining sequential and parallel
extensions in the search process, HP and Rollout-HP
consider the dependence of different test procedures
that save the number of tests and unnecessary test
cost compared to the sequential test strategies of the
classic methods.

Both experimental results and real-world appli-
cations prove that the generated solutions of the pro-
posed methods decrease the global cost by enhancing
the efficiency of each test procedure of the corre-
sponding OR nodes in the fault tree. Taking advan-
tage of the parallel extension during the search pro-
cess, HP achieves the comparable number of search
times with other methods and generates optimal so-
lutions within an acceptable time duration. Addi-
tionally, the search efficiency of HP is competitive
with that of the sequential methods when applying
rollout strategies. Therefore, the proposed HP and

Rollout-HP methods provide more efficient diagno-
sis solutions for analog systems than state-of-the-art
approaches.
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Appendix: Notations used in this paper

Table A4 Notations used in this paper

Notation Description

C Process test cost set
Cost(S) Cost of the root node in the

diagnosis tree
c(ti) Process cost of the test

point ti
Δc(ti) Individual cost for the test

point ti
c(ti|T̃ ) Conditional process cost for ti
D Dependence matrix
E Edge set of the biograph

of the system structures
FIR Fault isolation rate
G Decision graph
hS∗ Heuristic estimation of the

search process
hS∗(ti|T̃ ∗) Conditional heuristic function

for the candidate point
L Sequence matrix based on the

biograph of the system structures
Ndistinguish Number of fault states that

can be successfully separated
in the solution

P Fault probability set
S Fault state set
Sk Fault state set of the

kth AND node
T Test point set
T̃ Set of the corresponding OR nodes
Tpotential Potential test point set
w(ti, sk) Weights of the edges of (ti, sk)
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5 Proof of Property 5
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11 Proof of Property 11
12 Proof of Property 12
13 Details of the real-world applications
Fig. S1 System board of the real-world applications
Fig. S2 System structure of the real-world applications
Fig. S3 Signal topology of the real-world applications
Table S1 Dependence matrix of the real-world cases
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