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Abstract: To meet the challenge of widely existing and frequently changing network attacks, intrusion detection

systems (IDSs) are introduced to recognize intrusions and to protect computer networks. Among all these IDSs,

conventional machine learning methods rely on shallow learning and have unsatisfactory performance. Unlike

machine learning methods, deep learning methods are the mainstream methods because of their capability to handle

mass data without prior knowledge of specific domain expertise. Concerning deep learning, long short-term memory

(LSTM) and temporal convolutional networks (TCNs) can be used to extract temporal features from different angles,

while convolutional neural networks (CNNs) are valuable for learning spatial properties. Based on the above, this

paper proposes a novel interlaced and spatiotemporal deep learning model called Cnn Rnn Gated Tcn-self attention

(CRGT-SA), which combines the CNN with Gated TCN and RNN (LSTM) modules to learn spatiotemporal

properties, and imports the self-attention mechanism to select significant features. More specifically, our proposed

model splits the feature extraction into multiple steps with a gradually increasing granularity, and executes each

step with combined CNN, LSTM, and Gated TCN modules. Our proposed CRGT-SA model is validated using

the UNSW-NB15 data set and compared with other compelling techniques, including traditional machine learning

and deep learning models as well as state-of-the-art deep learning models. According to the simulation results, our

proposed model exhibits the highest accuracy and F1-score among all the compared methods. More specifically,

our proposed model achieves 91.5% and 90.5% accuracy for binary and multi-class classifications, respectively, and

demonstrates its ability to protect the Internet from complicated network attacks. Moreover, we conducted another

series of experiments on the NSL-KDD data set; the simulation results of comparison with other models further

prove the generalization ability of our proposed model.

Key words: Intrusion detection; Deep Learning; convolutional neural network; Long short-term memory;

Temporal convolutional network
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1 Introduction

A latest report from Juniper Research states

that there will be 84 billion network connections in

2024 (Oseni et al., 2023). Meanwhile, network at-

tacks are constantly evolving and pose a significant

threat to a wide variety of cutting-edge technologies,

such as smart hospitals, power, medical, and cam-
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puses (Lv et al., 2021). For example, attacks against

critical infrastructures used for power generation can

lead to loss of property or even personal safety (Cook

et al., 2020).

Intrusion detection systems (IDSs) are respon-

sible for identifying intrusions that evade security

techniques, and providing a vital second level of re-

sistance to protect computer networks (Fang et al.,

2021). Multiple recent IDS studies adopt machine
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learning and deep learning methods to solve se-

curity issues (Al-Garadi et al., 2020; Chen et al.,

2022). Conventional machine learning methods in-

clude logistic regression (LR), Gaussian Naive Bayes

(GNB), K-nearest neighbors (KNN), adaptive boost-

ing (AdaB), and random forest (RF), and almost all

the methods mentioned above use shallow learning

which relies on manual feature engineering to extract

features (Vasilomanolakis et al., 2015). Because of

the huge amount of data volume, shallow learning is

unable to solve real-time problems (Laghrissi et al.,

2021). As a result, these methods achieve unsatis-

factory performance in identifying different types of

cyber attacks (Wang Ket al., 2023).

Unlike machine learning methods, deep learn-

ing methods have become the most dominant roles

in the field of intrusion detection, because of its abil-

ity to deal with mass data without prior knowledge

on specific domain expertise. For instance, convo-

lutional neural networks (CNNs), long short-term

memory (LSTM) and temporal convolutional net-

works (TCNs), as standard deep learning technolo-

gies, can deal with network intrusions with different

degrees of difficulty, complexity, and distributivity

(Wang XFet al., 2020). To achieve high accuracy

in detecting and classifying different types of cyber

attacks, this study proposes a new network intru-

sion detection approach with a hybrid deep learning

model.

Among deep learning technologies, the recur-

rent neural network (RNN) is a kind of dynamic and

feed-forward neural network, and is capable of learn-

ing sequential data over timesteps (Aldweesh et al.,

2020). As an enhanced version of RNN, LSTM can

use a gating mechanism to learn long-term depen-

dencies. The TCN can be regarded as an alternative

to the RNN with the advantage of processing inputs

in parallel as well as extracting high-dimensional ab-

stract features from raw data (Fenghour et al., 2021).

As a result, we combine LSTM with a Gated TCN

to make full use of time series prediction of LSTM

combined with the feature extraction and fusion of

the TCN, which can finally improve the performance

of processing time series data.

On the other hand, the CNN comprises convo-

lutional layers, pooling layers, and (optional) fully

connected layers. Among these layers, convolutional

layers contain filters to extract features. The pool-

ing layer then selects features from the convolutional

layer through sub-sampling (Aldweesh et al., 2020).

In general, the CNN fits multi-dimensional data well

when extracting spatial features. Moreover, when

the input of the neural network is multiple vectors

of different sizes that are related to each other, the

self-attention mechanism can be used to make the

IDS notice relationships between different parts of

the input, and then select more important features.

In summary, this paper proposes a novel and

hybrid deep learning model called Cnn Rnn Gated

Tcn-self attention (CRGT-SA) to achieve network

intrusion detection. The proposed model uses a

CNN to learn spatial features, combines Gated TCN

with RNN to extract temporal characteristics, inter-

laces them to generate the integrated features, and

imports self-attention to select more important fea-

tures. The main contributions of this paper are sum-

marized as follows:

1. A novel IDS model that combines CNN,

LSTM, with Gated TCN is proposed to improve the

capability of learning spatiotemporal characteristics

from network traffic in a hierarchical manner.More

specifically, our proposed model splits the feature

extraction into multiple steps with a gradually in-

creasing granularity, and executes each step through

a combined CNN, LSTM and Gated TCN modules.

2. A self-attention mechanism is imported for

calculating the weight which reflects the importance

of each feature, and makes the neural network fo-

cus on the most important features, which finally

improves the IDS performance.

3. A series of experiments are conducted on

the UNSW-NB15 data sets. The simulation results

verify that our proposed model achieves superior

performance on intrusion detection compared with

other traditional machine learning and state-of-the-

art deep learning models. More specifically, our pro-

posed model achieves accuracy of 91.5% and 90.5%

in the binary and multi-class classifications, respec-

tively. To further prove the generalization ability

of our proposed model, we conducted another series

of experiments on the NSL-KDD data set, the sim-

ulation results show that our proposed model still

achieves the best performance of all the compared

models no matter in binary or multi-class

classifications.
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2 Related works

Artificial intelligence approaches have continu-

ously been applied to developing reliable IDSs. For

example, Francois et al. proposed a semi-supervised

ensemble approach based on random partitioning bi-

nary trees for intrusion detection. Moreover, detec-

tion when facing collective anomalies was improved

through taking into account the relative frequency of

visits to the leaves of the trees (Marteau, 2021). To

enhance the performance of single-learners, Ghada

et al. built an ensemble learning model which is

composed of principal component analysis (PCA),

a Support Vector Machine and a neural network to

detect attacks on the internet of things (IoT) (Ab-

delmoumin et al., 2022). Ali et al. presented an

IDS based on soft voting to select optimal super-

vised classifiers to maximize accuracy and minimize

false alarm rates. Furthermore, they adopted dif-

ferent sampling methods to solve the data imbal-

ance problem (Khan et al., 2023). Qi et al.(2022)

merged local sensitive hash (LSH), isolated forest

and PCA together to efficiently detect attacks in

Industry 4.0; these components operate on multi-

aspect data, catch group anomalies, and reduce di-

mensionality for correlations between different at-

tributes. However, these classical machine learning

methods can only learn shallow features, which limits

learning ability and detection accuracy.

Unlike traditional machine learning methods,

deep learning has received extensive attention in the

domain of intrusion detection because of its pow-

erful learning ability and independence from feature

engineering, which can further improve the accuracy.

For instance, Diro et al. proposed a distributed deep

learning-based attack detection architecture for fog

computing in IoT, which exchanged parameters and

models between worker and master nodes. In terms

of the deep learning models, the stacked autoencoder

and softmax regression are used for feature engineer-

ing and attack classification, respectively (Abeshu

and Chilamkurti, 2018). Kumar et al.(2022) inte-

grated blockchain with a deep learning technique to

realize the privacy-preserving intrusion detection in

the Internet of Vehicles (IoV). More specifically, the

blockchain and LSTM modules are used to transmit

data securely and identify cyber-attacks. Ayodeji et

al. designed a CNN-based IDS for IOV and employed

the SHapley Additive exPlanations (SHAP) mecha-

nism to interpret how a feature value increases or de-

creases a model’s prediction (Oseni et al., 2023). Nie

et al.(2022) constructed an intrusion detection model

based on a generative adversarial network (GAN) to

detect a single attack and multiple attacks for se-

cure social IoT . Taking the data and concept drifts

into consideration, Wahab et al. presented drift de-

tection and outlier detection methods to study the

change in the variances of the features over time and

identify the outliers that diverge both from histor-

ical and temporally close data points, respectively.

To counter drifts, this paper discussed an online

deep neural network (DNN)-based model to adjust

the sizes of hidden layers and to realize intrusion

detection dynamically (Wahab, 2022). FatimaEz-

zahra et al. first used PCA and mutual information

(MI) for dimensionality reduction and feature selec-

tion, respectively. On that basis, they implemented

a LSTM-based model to realize intrusion detection

(Laghrissi et al., 2021). Because of the small number

of labeled IoT traffic records, Abdel-Basset et al.

introduced a hierarchical semi-supervised training

model to realize intrusion detection. Moreover, this

paper imported a multi-scale residual temporal con-

volutional model and an improved attention mech-

anism to fine-tune the network capability in learn-

ing spatiotemporal representations and estimate the

importance score of different features, respectively

(Abdel-Basset et al., 2021). Vinayakumar et al. es-

tablished a hybrid network IDS using a DNN with

five hidden layers that can handle mass data in real

time. To prove the universality of the DNN-based

model, contrast experiments were conducted on mul-

tiple public datasets including KDDCup 99, NSL-

KDD, UNSW-NB15, Kyoto, WSN-DS, and CICIDS

2017 (Vinayakumar et al., 2019).

On the basis of machine learning and deep learn-

ing methods, multiple hybrid learning models have

been proposed for intrusion detection that combined

multiple machine learning or deep learning algo-

rithms to make full use of each one’s advantage.

Mehedi et al. combined deep CNN with LSTM to

create an effective network intrusion detection ap-

proach for big data scenarios, in which CNN and

weight-dropped LSTM are used for extracting mean-

ingful features and retaining long-term dependen-

cies, respectively (Hassan et al., 2020). Ashfaq et

al. built a convolutional RNN-based IDS to predict

and classify malicious cyber-attacks. In this sys-
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tem, the CNN and RNN modules are responsible for

capturing local features and temporal features, re-

spectively (Khan, 2021). Cao et al.(2022) designed

a network intrusion detection approach merging a

CNN with GRUs to solve the issue of low classifi-

cation accuracy. After solving the data imbalance

and realizing the feature selection, the CNN and

GRU modules were used to extract spatial features

and long-distance dependent information features,

respectively . Mambwe et al. adopted multiple dif-

ferent RNN types, including LSTM, GRU, and RNN

to compose a network intrusion detection framework

and compare the performance of these RNN models.

Moreover, an XGBoost-based algorithm was imple-

mented for feature selection to reduce the feature

space of data sets (Kasongo, 2023). Jian et al.(2019)

presented a multi-path IDS composed of two models:

coupled data embedding (CDE) and coupled outlier

scoring of high-dimensional data (COSH) for clus-

tering and outlier detection, respectively .

Even though existing related works have com-

bined CNN with RNN modules for intrusion detec-

tion, most of them simply structure these networks in

tandem, leading to the loss of temporal or spatial in-

formation. Unlike the methods mentioned above, our

proposed model divides the feature extraction into

multiple steps with gradually increasing granular-

ity, and performs each step using a combined CNN,

Gated TCN, and LSTM block, which can maintain

the spatiotemporal characteristics of network traffic

effectively. Moreover, this paper introduces the self-

attention mechanism to select the most significant

features.

3 Proposed model

3.1 Overview

As mentioned before, most existing related

works that combine CNN with RNN modules for in-

trusion detection simply structure them in tandem.

For instance, in the hierarchical spatial-temporal

features-based IDS (HAST-IDS) architecture (Wang

Wet al., 2018) (as shown in Fig. 1), only after the

CNN block has learned low-level spatial features

from network traffic, will it be handed over to the

RNN module for subsequent processing. It can be in-

ferred that a loss of temporal information may exist

due to the CNN module, which degrades the perfor-

mance of the following RNN module and the whole

system.

Fig. 1 Diagram of the HAST-IDS model. HAST-

IDS, hierarchical spatial-temporal features-based

IDS; IDS; intrusion detection system

In consideration of the above issues, this paper

proposes a novel and hybrid deep learning model

called CRGT-SA, which integrates CNN, RNN,

Gated TCN and self-attention into an entirety, as

shown in Fig. 2. Instead of allowing CNN to achieve

full learning, our proposed model intertwines the

CNN with Gated TCN and RNN (LSTM) modules,

that is, feature extraction is divided into multiple

steps with gradually increasing granularity, and each

step is executed through a combined CNN, Gated

TCN, and LSTM block. Moreover, the self-attention

mechanism is introduced to measure the importance

of the input features, so the network will emphasize

the most significant features.

As can be seen from the dashed lines labeled “in-

crease granularity”, the learning begins with coarse-

grained learning, hence the output of the CNN mod-

ule will still reserve the temporal information for

the following Gated TCN and LSTM modules. The

learning granularity becomes more fine-grained as

the learning continues. However, at each level, CNN,

Gated TCN, and LSTM learn spatiotemporal char-

acteristics at the same granularity. Consequently,

these modules can learn to their full extent indepen-

dently. Moreover, the batch normalization, dimen-

sion reshaping, and dropout are useful for handling

covariance shift, data reshaping, and over-fitting,

respectively.

3.2 Batch normalization

When the DNN is adopted, the range of input

value varies dynamically from layer to layer in the

training stage, which makes learning efficiency be

highly dependent and leads to unstable learning out-

comes. To make the sample data more stable and

accelerate the convergence rate of the DNN, batch

normalization is adopted to modulate the output of
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Fig. 2 Diagram of the CRGT-SA model. CRGT-SA,

CNN RNN Gated Tcn-self attention

the CNN to satisfy the requirement of the Gated

TCN requirement in our proposed model, and the

corresponding formula is shown as follows:

x̂ =
x− µB
√

δ2B + ε
, (1)

where x is data, and µB and δB correspond to the

batch mean and batch standard deviation, respec-

tively. Note that ε is used to ensure a nonzero de-

nominator, which can be ignored. Based on x̂, the

normalization generates the output ŷ through the

formula:

ŷ = γx̂+ β, (2)

where both γ and β are trained for a better learning

effect.

3.3 Gated temporal convolutional network

(TCN)

The TCN can be used to solve a time series pre-

diction problem, which is composed of a 1D convo-

lution layer with the same input and output lengths.

Fig. 3 shows a diagram of the dilated casual con-

volution with the kernel size to be 2. The inputs

are selected every d steps and a standard 1D con-

volution is applied to the selected inputs. Given a

one-dimensional sequence of inputs x ∈ RT and fil-

ter f ∈ RK, the representation of the dilated casual

convolution operation of x with f at step t is shown

Fig. 3 Dilated causal convolution

in the following formula:

x ∗ f (t) =

K−1
∑

s=0

f (s)x (t− d× s) , (3)

where d is the dilation factor. As the name suggests,

the dilated causal convolution is a combination of di-

lated convolution and causal convolution. In dilated

convolution, interval sampling is allowed, whereas in

causal convolution, data at time t of layer i only de-

pends on the effect of time t of layer i−1 and previous

values, which is a strict time-constrained model that

discards the influence of future data during training.

Moreover, the residual network is adopted to trans-

mit data across layers and ensure the consistency of

input and output.

On that basis, we import the Gated TCN in

this paper to extract complicated temporal features,

where only an output gate is involved in our proposed

model. Given the input X ∈ RN×D×S, it takes the

following formula:

h = g (θ1 ∗X + b)⊙ σ (θ2 ∗X + c) , (4)

where θ1, θ2, b, and c are model parameters, ⊙ is the

element-wise product, g(·) is an activation function

of the outputs, and θ(·) is the sigmoid function.

3.4 Convolutional neural network (CNN)

A CNN can handle dense connections between

layers of deep neural networks, and consists of convo-

lutional layers, pooling layers, and optional fully con-

nected layers. Convolutional layers directly receive

multi-dimensional inputs, and convolve between the

inputs to generate feature maps. Pooling layers per-

form sub-sampling for feature maps to reduce the

dimensionality (Gan et al., 2022). Because a packet

is stored in a one-dimensional format, we use the fol-

lowing formula to process the input vector g with a

filter f of size m:

(f ∗ g) (i) =
m
∑

j=1

g (i) · f (i− j +m/2). (5)
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Fig. 4 Diagram of LSTM. LSTM; long short-term

memory

Moreover, the rectified linear unit (ReLU) is chosen

as the activation function in consideration of its high

speed convergence.

f(z) = max(0, z). (6)

3.5 Long short-term memory (LSTM)

LSTM belongs to the gated RNN, which con-

trols the feedback with multiple gate functions to re-

serve long-term instead of short-term dependencies.

Fig. 4 shows a diagram of LSTM, which is composed

of four connected subnetworks (represented as p-net,

g-net, f-net, and q-net), multiple control gates, and

a memory component.

All the subnetworks have a unified structure, as

shown in the following formula:

b+ U × x (t) +W × h (t− 1) , (7)

where x(t), h(t−1), and b are current input, previous

output and bias, respectively; U and W are the

weight matrix for the current input and recurrent

weight matrix for the previous output, respectively.

Note that four subnetworks are different in b, U , and

W . The outputs of four subnetworks are executed

by two types of controlling gates, i.e., σ and tanh, to

calculate the feedback s(t) from the previous learning

and the current output h(t):

s (t) = σ (f (t))∗s (t− 1)+σ (p (t))∗tanh g (t) , (8)

h (t) = tanh s (t) ∗ σ (q (t)) . (9)

3.6 Self-attention

The function of the self-attention mechanism is

to enable the model to learn to assign weights for

input signals on its own, i.e., the different dimen-

sions of the input signal are scored and features are

Fig. 5 Diagram of the self attention mechanism

weighted according to scores, which can emphasize

the influence of significant features. As shown in

Fig. 5, the self-attention mechanism can generate

weights for different connections dynamically, which

can be used as a layer in a neural network, as speci-

fied in the following formula:

Attention(Q,K,V) = softmax
KTQ
√
Fk

V, (10)

where Q, K, and V represent the matrices of query

vectors, key vectors, and value vectors, respectively,

and
√
Fk is the vector length.

3.7 Output

On one hand, due to the variation in learning

granularity among different steps, the possibility in

which the output size of one step (each step is per-

formed by a combined CNN, Gated TCN, and LSTM

block) does not match the anticipated input size of

the next step exists. Therefore, the dimension re-

shape layer is added to adjust the data for the fol-

lowing module. On the other hand, a typical prob-

lem of learning mass data with a DNN is overfitting,

where the network learns too well from the training

data, which limits the capability of recognizing vari-

ables from new data samples. In this situation, the

dropout layer is added to randomly remove multiple

connections from the DNN to reduce the possibility

of overfitting problem.

4 Experimental setup and evaluations

4.1 Data set

The evaluation of an intrusion detection model

is strongly associated with the chosen data set. Mul-
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tiple data sets for intrusion detection contain a large

amount of superfluous data, making experimental

results untrustworthy (Zhuo et al., 2017). To en-

sure the effectiveness of experiments in our study,

we choose the UNSW-NB15 data set (Moustafa and

Slay, 2016) without any redundancy, which was pro-

duced by the australian center for cyber security

(ACCS) in 2015. The data samples were first col-

lected from the Internet, and then simulated in a

lab to generate the data set. There are 9 UNSW-

NB15 attack types: denial of service (DoS), Ex-

ploits, Generic, Shellcode, Reconnaissance, Back-

door, Worms, Analysis, and Fuzzers, and the cor-

responding proportions are 6.35%, 17.28%, 22.85%,

0.59%, 5.43%, 0.90%, 0.07%, 1.14%, and 9.41%, re-

spectively. The remaining samples belong to normal

traffic. Table 1 illustrates the specific description of

each attack type.

4.2 Data preprocessing

Before inputting data to our proposed model,

the raw data should be cleaned, labeled, and anno-

tated first. More specifically, the data preprocessing

stage contains three steps: conversion, standardiza-

tion, and cross validation.

1. Conversion: To make the experiments more

effective, we need data to agree with the input for-

mat required by the neural network. The original

network traffic data contains classification features

in the form of text information, which cannot be di-

rectly processed by our proposed model. As a result,

the text information needs to be transformed to nu-

merical values, which can be implemented through

the use of “get dummies” in Pandas.

2. Standardization: The means and standard

derivations of input data may differ, which can lead

to inefficient learning. As a result, we zoom the

input data to ensure that the means and standard

derivations are 0 and 1, respectively.

3. Cross validation: UNSW-NB15 contains

2, 540, 044 samples, and we employ the Stratified K-

Fold Cross Validation strategy to split all these sam-

ples into k groups, with k − 1 groups and one group

for training and validating, respectively.

4.3 Experimental setup

For the sake of proving the effectiveness of

our proposed CRGT-SA model, we implement this

model with PyTorch, Keras, and Scikit-Learn pack-

ages, and run the CPU @ 3.20 GHz and 16.0 GB

RAM on the HP EliteDesk 800 G2 SFF desktop

equipped with Intel (R) Core (TM) i5-6500. Table 2

displays a summary of our proposed model. More-

over, RMSprop is applied to optimize the weight and

bias when training our proposed model, with the

learning and dropout rates set as 0.001 and 0.5, re-

spectively. The pseudocode of the training procedure

is shown in Algorithm 1.

Algorithm 1 Training Procedure of CRGT-SA

Require:

Training data set, learning rate, training epochs,

batch size, testing data set.

Ensure:

Classification results of testing data sets.

1: Preprocess training data set, including the com-

pletion of missing values, the label coding of dis-

crete features, the matrix of reshaping the input

vector;

2: for i in number of training epochs do

3: for j from 1 to n do

4: Start: K = N/Batch;

5: Split training data set into K-groups;

6: Load proposed model;

7: Fit model with K − 1 group;

8: Validate model with remaining Kth group;

9: end for

10: end for

11: Test model on testing data set;

4.4 Evaluation metrics

To measure the performance of the CRGT-SA

model, and to compare with other machine learn-

ing and deep learning models, we need to compute

the accuracy, precision, recall and F1-score for each

model, which are explained and derived below.

1. Accuracy: this corresponds to the ratio of the

number of correctly identified traffic records to the

total number of traffic records.

ACC =
TP + TN

TP+ TN+ FP + FN
. (11)

2. Precision: this corresponds to the ratio of the

number of correctly detected network attacks to the

total number of traffic records identified as network

unedited
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Table 1 Description of attack types in the UNSW-NB15 data set

Attack type Description

Denial of Service (DoS) Disguise as real hosts to access resources

Exploits Control resources through vulnerabilities

Generic Hash collision based on block cipher

Shellcode Exploit vulnerabilities in software to execute code

Reconnaissance Collect information illegally

Backdoor Bypass security mechanisms to access data or control resources illegally

Worms Spread through media

Analysis Infiltrate web programs through scripts

Fuzzers Input unexpected data and observe the output to find the vulnerabilities

Table 2 Summary of the CRGT-SA model

Layer Name Type Number of parameters

1

CNN

CRGT-SA-Block 254.6K

Batch normalization

TCN

LSTM

Self-Attention

2

CNN

CRGT-Block 1.3M

Batch normalization

TCN

LSTM

Self-Attention

3

CNN

CRGT-Block 9.0M

Batch normalization

TCN

LSTM

Self-Attention

4 conv Sequential 262.0K

5 avg_pool AvgPool1d 0

6 drop_out Dropout 0

7 out Sequential 65.0K

Trainable params 10.3M

Total params 10.3M

Total estimated model params size 41.249M
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attacks.

Precision =
TP

TP + FP
. (12)

3. Recall: This corresponds to the ratio of the

number of correctly detected network attacks to the

total number of network attacks.

Recall =
TP

TP+ FN
. (13)

4. F1-score: This corresponds to the harmonic

mean of the precision and recall.

F1− score = 2×
(

Precision× Recall

Precision + Recall

)

. (14)

In these formulas, TP is the number of network

attacks correctly detected as intrusions, TN is the

number of normal traffic records correctly classified,

FP is the number of normal traffic records wrongly

classified as network attacks, and FN is the num-

ber of network attacks wrongly classified as normal

traffic.

4.5 Baseline methods

To demonstrate the validity of the CRGT-SA

model, we implemented a set of the most advanced

machine learning and deep learning models for com-

parison. Machine learning models include LR, GNB,

KNN, AdaB and RF, which are introduced as follows

in brief:

1. Logistic regression (LR): this model esti-

mates the probability of an event according to a given

data set with independent variables. Considering

that the result is a probability, then the dependent

variables are in the range of 0 to 1.

2. Gaussian naive bayes (GNB): this model as-

sumes that the conditional probability of each fea-

ture dimension is subject to Gaussian distribution,

calculates the posterior probability for the new sam-

ple under a certain feature distribution according to

the Bayes formula, and finally determines the cate-

gory of the sample by maximizing the posterior prob-

ability.

3. K-Nearest neighbors (KNN): to find the cat-

egory for a new input instance with a given training

data set, the model firstly finds K instances closest

to the target instance, and then classifies the tar-

get instance into the class to which most of these K

instances belong.

4. AdaB: this model is an iterative algorithm

that trains different classifiers on a unified training

data set, and then combines these classifiers into a

stronger classifier to generate final results.

5. Decision tree (DT): this model is a method

of approximating to discrete function values. The

model processes the data by inductive algorithm,

generates rules and DTs, and finally analyzes the

new data according to the decision. In essence, a DT

uses multiple rules to classify data.

6. Random forest (RF): this model is a super-

vised learning method that can summarize rules from

a series of characterized and labeled data and repre-

sent these rules through the structure by a tree dia-

gram. In the tree, each internal node, branch, and

leaf node correspond to a judgment on an attribute,

an output of a judgment result, and a classification

result, respectively.

5 Experimental results and analysis

In this section, we describe our implementa-

tion of our proposed CRGT-SA model, and measure

the corresponding loss trend and confusion matrix.

Moreover, we conduct a comparative experiment and

an ablation experiment against recent standard and

state-of-the-art methods to prove the effectiveness of

our proposed model.

5.1 Loss trend

The loss curves over the number of steps for our

proposed CRGT-SA model is depicted in Fig. 6, and

the relationship between steps and epochs is shown

in Fig. 7. As shown in Fig. 6, the left and right sub-

figures depict the loss curves for binary and multi-

class classifications, respectively. When the number

of steps reaches 550, the loss tends to converge. As

shown in Fig. 7, the number of steps is in linear re-

lation to the number of epochs, and 550 steps corre-

sponds to 100 epochs. Therefore, we set the number

of epochs to be 100 in the following experiments.

More specifically, in terms of the binary classifica-

tion, the difference between the model’s predicted

value and the true value stabilizes at 0.1, while in

terms of the multi-class classification, the difference

stabilizes below 0.4. It can be explained because the

latter is more difficult than the former,; especially,

the sample size of several cyberattacks is too small

to detect accurately in the multi-class classification.
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Fig. 6 Loss curve on binary classification (a) and

multi-class classification (b)

5.2 Comparative analysis with traditional

machine learning models

In this subsection, we compare the performance

of our proposed CRGT-SA model against traditional

machine learning models, and the comparative re-

sults of the binary and multi-class classifications are

shown in Tables 3 and 4, respectively. As shown in

Table 3, the accuracy of traditional machine learn-

ing algorithms is between 71.6% and 87.7%, and the

F1-score is between 79.2% and 91.2%. Among these

algorithms, LR and GNB have poor effects, the accu-

racy and F1-socre of KNN and AdaB are acceptable,

and RF has the best performance. It can be inferred

that the ensemble learning involved in RF makes it

more tolerant to noise and outliers. In contrast, the

accuracy and F1-score of the CRGT-SA model are

91.5% and 91.6%, respectively. In other words, the

accuracy and F1-score of our proposed model are

better by at least 3.8% and 0.4%, respectively, which

indicates that this model achieves the best perfor-

mance on binary classification among all the models.

0
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80

100

0 100k 200k 300k 400k 500k

Fig. 7 Relationship between epochs and steps

Table 3 Comparative analysis with traditional ma-

chine learning models of binary classification

Methods Accuracy F1-score

LR 0.753 0.792

GNB 0.716 0.818

KNN 0.829 0.869

AdaB 0.839 0.884

RF 0.877 0.912

CRGT-SA 0.915 0.916

Table 4 Comparative analysis with traditional ma-

chine learning models of multi-class classification

Methods Accuracy F1-score

LR 0.561 0.428

GNB 0.085 0.13

KNN 0.652 0.638

AdaB 0.631 0.557

RF 0.736 0.695

CRGT-SA 0.905 0.743
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As shown in Table 4, the accuracy of traditional

machine learning algorithms is between 8.5% and

73.6%, and the F1-score is between 13% and 79.5%.

When compared to the binary classification, the ac-

curacy and F1-score of multi-class classification obvi-

ously decrease. Among these algorithms, GNB cor-

responds to the poorest performance, which may be

attributable to the fact that the GNB assumes that

features are independent of each other. When the

number of features is large or features are in cor-

relation with each other, the classification effect of

the GNB may not perform well. Because this study

does not adopt the feature dimension reduction, and

features may be relative to each other in the UNSW-

NB15 data set, then the GNB obviously lags behind

other algorithms. In contrast, the accuracy and F1-

score of the CRGT-SA model are 90.5% and 74.3%,

respectively. In other words, the accuracy and F1-

score of our proposed model are better by at least

16.9% and 4.8%, respectively, indicating that this

model achieves the best performance on multi-class

classification among all the models.

In addition, it can be observed that the differ-

ence between the accuracy and F1-score of our pro-

posed CRGT-SA model in the multi-class classifica-

tion is 16.2%, which cannot be ignored. The F1-score

is a harmonic average of precision and recall, which

indicates that this metric is more sensitive to class

imbalances. In the chosen UNSW-NB15 data set, as

the Backdoor, Analysis, and Worm attacks make up

only 1.41%, 1.63%, and 0.11% of all the abnormal

traffic, it is difficult for models to detect these three

types of cyberattacks. As a result, the poor per-

formance on minority classes results in a reduction

of F1-score, which should be improved in our future

works.

5.3 Comparative analysis with state-of-the-

art deep learning models

To further prove the superiority of our proposed

CRGT-SA model, we compare it with state-of-the-

art deep learning models, including HAST (Wang

Wet al., 2018), LuNet (Wu and Guo, 2019), and

MSCNN-LSTM (Zhang et al., 2020), because all

these models (including our proposed model) uti-

lize the CNN and RNN to learn spatial and tempo-

ral features, respectively. More specifically, both the

HAST and MSCNN-LSTM combine CNN with RNN

in tandem. By contrast, LuNet intertwines the CNN

and RNN modules, and is used as a reference of our

proposed model. The simulation results are shown

in Table 5, where it can be observed that the HAST

model corresponds to the poorest performance, the

performances of the LuNet and MSCNN-LSTM are

acceptable, and the CRGT-SA has the best perfor-

mance; and the reason analysis is summarized as

follows:

5.3.1 Comparison of HAST with MSCNN-LSTM

Although both two models stack all LSTM lay-

ers after CNN layers, they differ in the convolu-

tional kernels of each layer. The HAST model always

adopts the same scale, while the MSCNN-LSTM uti-

lizes the multi-scale convolutions effectively. As a

result, the MSCNN-LSTM is better than the HAST

model in the aspect of accuracy and F1-score.

5.3.2 Comparison of HAST, MSCNN-LSTM with

LuNet, CRGT-SA

The architecture of the HAST and MSCNN-

LSTM models may cause the CNN layers to drop

out the temporal information, leading to ineffective

learning for LSTM layers. However, the LuNet and

CRGT-SA intertwine CNN with LSTM layers to cap-

ture both spatial and temporal features sufficiently.

As a result, the LuNet and CRGT-SA are better

than the HAST and MSCNN-LSTM due to dividing

the feature extraction into multiple steps and the

combined CNN+RNN block in each step.

5.3.3 Comparison of LuNet with CRGT-SA

On the basis of LuNet, our proposed CRGT-

SA integrates CNN, RNN, Gated TCN, and self-

attention into a single model. Similarly, our pro-

posed model can retain spatiotemporal properties at

each step to ensure that all layers learn to full capac-

ity. To better capture the temporal information, our

proposed model combines Gated TCN with LSTM

modules to extract features from different angles,

which can exploit the advantages of both. Moreover,

our proposed model imports the self-attention mech-

anism to select significant features from network traf-

fic data to help recognize network attacks. As a

result, our proposed model improves the accuracy

by 10.3% when compared with LuNet. However, our

proposed model decreases the F1-score by 2.5%when

compared with LuNet. The reason can be explained
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as follows, Because the architecture of our proposed

model is more complicated than LuNet, with the

Gated TCN and self-attention mechanism involved,

then the probability of over-fitting increases. Over-

fitting means that the model performs well on train-

ing data, but poorly on previously unseen test data.

To reduce the risk of over-fitting, larger data sets

are required. However, because minor classes exist

in the UNSW-NB15 data set, then the overfitting

may be unavoidable. As a result, the severity of

overfitting for our proposed CRGT-SA model may

be larger than LuNet, leading to poorer performance

on the F1-score of our proposed model, although the

difference is still acceptable.

Table 5 Comparative analysis with state-of-the-art

deep learning models

Method Accuracy F1-score

HAST 0.814 0.530

LuNet 0.802 0.768

MSCNN-LSTM 0.898 0.668

CRGT-SA 0.905 0.743

5.4 Ablation studies

In this subsection, ablation experiments are ex-

ecuted to analyze the contributions of different com-

ponents of our proposed CRGT-SA model for recog-

nizing different types of network attacks. To investi-

gate the function of components involved in our pro-

posed CRGT-SA model, which contains CNN, TCN,

LSTM blocks, and a self-attention mechanism, we

compare it with CNN, CNN-TCN, CNN-LSTM, and

CNN-TCN-LSTM models. We evaluate these mod-

els, and calculate the corresponding accuracies and

F1-scores for binary and multi-class classifications as

shown in Tables 6 and 7, respectively.

Among all the models, our proposed CRGT-

SA model achieves the best performance on accu-

racy in both binary and multi-class classifications.

This can be explained because our proposed model is

composed of multiple interlaces modules, with each

module learning one type of feature. In general, a

more complicated model typically has stronger rep-

resentation and can learn more complex patterns and

functions, which is useful for capturing subtle data

set differences, leading to an improvement in accu-

racy. In terms of the F1-score, our proposed model is

2.5% lower than the CNN-LSTM model. The reason

was explained in the previous subsection, i.e., minor

classes of the data set results in overfitting. However,

the difference between two models on the F1-score is

still acceptable.

To explore the function of the self-attention

mechanism, we compared the performance of our

proposed CRGT-SA model with and without the

self-attention module and recorded the achieved per-

formance. It can be observed that inclusion of the

self-attention module improves the performance by

8.3% on accuracy in binary classification, and im-

proves the performance by 15.7% and 4.6% on ac-

curacy and F1-score in multi-class classification, re-

spectively. This explains the importance of the self-

attention mechanism in selecting significant features.

Table 6 Ablation studies of binary classification

Method Accuracy F1-score

CNN 0.841 0.885

CNN-TCN 0.821 0.895

CNN-LSTM 0.848 0.903

CNN-TCN-LSTM 0.832 0.916

CRGT-SA 0.915 0.916

Table 7 Ablation studies of multi-class classification

Method Accuracy F1-score

CNN 0.772 0.732

CNN-TCN 0.761 0.694

CNN-LSTM 0.802 0.768

CNN-TCN-LSTM 0.748 0.697

CRGT-SA 0.905 0.743

5.5 Confusion matrix

The confusion matrices of using our proposed

CRGT-SA model used on the UNSW-NB15 data set

for binary and multi-class classifications are shown in

Figs 8 and 9, respectively. As shown in Fig. 8, our

proposed model can correctly detect most normal

and abnormal traffic, specifically, 99.34% of normal

traffic is correctly classified. As shown in Fig. 9, our

proposed model can correctly detect most of the nor-

mal traffic, as well as Reconnaissance, DoS, Exploits,

Fuzzers, and Generic attacks. However, it is dif-

ficult for our proposed model to discover Backdoor,

Analysis, Worms, and Shellcode attacks, and most of
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these attacks are classified as Exploits attacks. This

can be explained because the five attacks mentioned

above all rely on exploiting security vulnerabilities in

the target system or software, and hence Backdoor,

Analysis, Worms, and Shellcode attacks are simi-

lar to Exploit attacks in signature. Moreover, the

Backdoor, Analysis, Worms, and Shellcode attacks

make up only 0.90%, 1.14%, 0.07%, and 0.59% of all

the traffic in the data set, respectively, and provide

insufficient data for the training stage. Therefore,

the Backdoor, Analysis, Worms, and Shellcode at-

tacks are wrongly recognized as Exploit attacks by

the CRGT-SA model.

As one of our future directions, we plan to im-

prove the accuracy of our proposed CRGT-SA model

in detecting four minor classes of cyber-attacks,

which will require us to master their differences

more precisely at first. In terms of Backdoor and

Exploits attacks, the former focuses on embedding

backdoors in the system for long-term access and

control, whereas the latter focuses on exploiting the

vulnerability itself to perform malicious actions. In

terms of Analysis and Exploits attacks, the former

aims to improve the security of the system and pro-

tect the privacy of users, wherear the latter aims to

perform malicious actions. In terms of Worms and

Exploits attacks, the former type primarily infects

the system by replicating and spreading itself and

forming a worm network, whereas the latter primar-

ily exploits specific vulnerabilities to perform mali-

cious operations. In terms of Shellcode and Exploits

attacks, the former can be considered as a subset or

special case of the latter. On that basis, we plan to

import the GAN module into our proposed model to

generate realistic data and expand the diversity of

samples for these minor classes.

Fig. 8 Confusion matrix on binary classification

Fig. 9 Confusion matrix on multi-class classification

5.6 Experimental results and analysis on the

nsl-kdd data set

To demonstrate the generalization ability of our

proposed CRGT-SA model, we conducted experi-

ments on the NSL-KDD data set to compare the per-

formance of our proposed model with traditional and

state-of-the-art machine learning and deep learning

models.

5.6.1 Comparative analysis with traditional machine

learning models on the nsl-kdd data set

Similar to Subsection 5.2, we conducted exper-

iments to compare the performance of our proposed

CRGT-SA model with traditional machine learning

models including LR, GNB, KNN, AdaB, and RF

on the NSL-KDD data set, and the comparative re-

sults of the binary and multi-class classifications are

shown in Tables 8 and 9, respectively. It can be

observed that our proposed model achieves the best

performance in all the compared models in both bi-

nary or multi-class classifications. On the contrary,

the GNB model has the poorest performance on both

scenarios among all the models. This can be ex-

plained because the NSL-KDD data set contains a

large amount of network traffic data that is highly

correlated and redundant. However, the GNB model

assumes that all features are independent, which vi-

olates the characteristics of this data set, leading to

a low accuracy and F1-score. Moreover, the AdaB

model performs poorly on the multi-class classifica-

tion, because it is a method based on weak classi-

fier integration, which relies on the predictive per-

formance of a weak classifier. In the multi-class

classification scenario, weak classifiers have limited

ability to distinguish complex patterns and multi-
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categories, which finally results in low accuracy and

F1-score by this model.

Table 8 Comparative analysis with traditional ma-

chine learning models of binary classification on the

NSL-KDD data set

Method Accuracy F1-score

LR 0.753 0.742

GNB 0.565 0.387

KNN 0.775 0.769

AdaB 0.776 0.773

RF 0.780 0.767

CRGT-SA 0.907 0.918

Table 9 Comparative analysis with traditional ma-

chine learning models of multi-class classification on

the NSL-KDD data set

Method Accuracy F1-score

LR 0.750 0.706

GNB 0.442 0.461

KNN 0.754 0.720

AdaB 0.468 0.405

RF 0.758 0.716

CRGT-SA 0.867 0.866

5.6.2 Comparative analysis with state-of-the-art

deep learning models on the nsl-kdd data set

Similar to Subsection 5.3, we conducted exper-

iments to compare the performance of our proposed

CRGT-SA model with state-of-the-art deep learn-

ing models including HAST, LuNet, and MSCNN-

LSTM on the NSL-KDD data set, and the compar-

ative results are shown in Table 10. It can be ob-

served that our proposed model achieves the best

performance among all the compared models. When

compared with the UNSW-NB15 data set, our pro-

posed model obtains a higher accuracy and F1-score

on the NSL-KDD data set, because this data set

only contains four categories of network attacks and

three of them belong to major classes, and are easier

to classify.

5.6.3 Ablation studies on the NSL-KDD data set

Similar to Subsection 5.4, we conducted abla-

tion experiments to compare the performance of our

proposed CRGT-SA model with CNN, CNN-TCN,

Table 10 Comparative analysis with state-of-the-art

deep learning models on the NSL-KDD data set

Method Accuracy F1-score

HAST 0.799 0.771

LuNet 0.813 0.774

MSCNN-LSTM 0.849 0.786

CRGT-SA 0.867 0.866

CNN-LSTM, and CNN-TCN-LSTM models on the

NSL-KDD data set, and the comparative results of

the binary and multi-class classifications are shown

in Tables 11 and 12, respectively. It can be observed

that our proposed model achieves the best perfor-

mance of all the compared models. Moreover, CNN-

LSTM always has a high accuracy and F1-score when

compared with CNN-TCN in binary and multi-class

classifications. Even though both LSTM and TCN

models are used for capturing temporal characteris-

tics, they are different in learning long-term depen-

dencies. The LSTM model designs a special gating

mechanism to selectively remember or forget past in-

formation, which is effective in capturing long-term

dependencies. However, the TCN model relies on the

extended convolution operations to learn temporal

characteristics, because a simple convolution cannot

effectively capture the long-term dependencies.

Table 11 Ablation studies of binary classification on

the NSL-KDD data set

Method Accuracy F1-score

CNN 0.813 0.816

CNN-TCN 0.843 0.743

CNN-LSTM 0.824 0.828

CNN-TCN-LSTM 0.840 0.847

CRGT-SA 0.907 0.918

Table 12 Ablation studies of multi-class classification

on the NSL-KDD data set

Method Accuracy F1-score

CNN 0.779 0.807

CNN-TCN 0.781 0.787

CNN-LSTM 0.836 0.851

CNN-TCN-LSTM 0.794 0.822

CRGT-SA 0.867 0.866

Confusion matrix on the NSL-KDD data

set
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The confusion matrices of using our proposed

CRGT-SA model on the NSL-KDD data set for bi-

nary and multi-class classifications are shown in Figs

10 and 11, respectively. It can be observed that our

proposed model can correctly classify normal traffic

as well as three abnormal traffic types including dos,

probe and r2l attacks, because all of them belong to

majority classes of the data set. However, most u2r

traffic is recognized as normal traffic by our proposed

model. This is because in the NSL-KDD data set,

only 119 of 148, 517 pieces of data are labeled as u2r

attacks, a proportion of 0.08%. In terms of the cat-

egory with less data, our proposed model cannot be

trained enough, resulting in poor classification.

Fig. 10 Confusion matrix on binary classification of

the NSL-KDD data set

Fig. 11 Confusion matrix on multi-class classification

of the NSL-KDD data set

6 Conclusions and future works

This study designs a novel and hybrid deep

learning model called CRGT-SA to achieve network

intrusion detection. To extract sufficient spatiotem-

poral properties from network traffic data, our pro-

posed model intertwines the CNN with Gated TCN

and LSTM modules. More specifically, we divide the

feature extraction into multiple steps with gradually

increasing granularity, and execute each step using

combined CNN, LSTM, and Gated TCN modules.

On that basis, the self-attention mechanism is intro-

duced to select significant features from network traf-

fic data. In the experiments, we evaluate and com-

pare our proposed CRGT-SA model with traditional

machine learning models and state-of-the-art deep

learning models. According to the simulation re-

sults, our proposed model achieves the highest accu-

racy and F1-scores among all the models, achieving

accuracy of 91.5% and 90.5% for binary and multi-

class classifications, respectively. Moreover, the gen-

eralization ability of our proposed model is further

demonstrated through another series of experiments

on the NSL-KDD data set in comparison with other

models.

However, as can be seen from the structure of

our proposed CRGT-SA model, the computational

complexity cannot be ignored. To enhance the com-

putational efficiency, we plan to import the process

of feature selection into the data preprocessing stage

in future works, such as adopting the genetic algo-

rithm to reduce dimensionality. Moreover, as can be

observed from the confusion matrix, our proposed

CRGT-SA model cannot detect Backdoor, Analysis,

Worms, and Shellcode attacks efficiently because of

insufficient data in the training stage. To cope with

this problem, we plan to import the GAN module

into our proposed model to generate samples of rare

attack categories to expand the data set between the

data preprocessing and intrusion detection stages.
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