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Abstract :  The robust stabilization problem for a class of uncertain linear time-delay systems containing sec- 
tor saturating actuator is considered in this paper. The uncertain time-delay systems under consideration m~. 
described by state differential equations with time-varying unknown-but-bounded uncertain parameters and de- 
layed state. The delay is assumed to be constant bounded but unknown. The new criterion of delay-dependent 
robust stabilizability for uncertain time-delay systems is presented and the corresponding robust memoryless 
state feedback controller is derived in terms of the solutions of several linear matrix inequalities (LMIs) .  Nu- 
merical example is presented to illustrate the obtained results. 
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INTRODUCTION 

Time-delays, due to transportation lags, fi- 
nite calculation times, measurements times, 
e t c . ,  appear in numerous industrial and natural 
processes, often leading to oscillations and 
sometimes instability. The stability and stabiliza- 
tion problems of time-delay systerrrs with or with- 
out uncertai~ies have been widely investigated 
during the past decades and numerous methods 
such as differential inequality techniques, finite 
spectrum assigrmaent, matrix measure tech- 
nique, Lyapunov theorem, Razumikhin theo- 
rem, quadratic cost optimal control, Riccati 
equation approach, etc. are presented to deal 
with the stability analysis or stabilization problem 
for time-delay systems with or without uncertain- 
ties (Yu et a l . ,  1996; Su et a l . ,  1 9 9 8 a , b , c ;  
Niculescu et a l . ,  1994) .  However, these re- 
suhs are given in terms of the solution of either a 
Lyapunov or Riccati equation and involve the 
tuning of scalars and/or positive definite symmet- 
ric matrices. To the best of our knowledge, no 
tuning procedure for such scalars and matrices is 
available, which makes the use of these methods 
somehow difficult and conservative. Recently,  

the linear matrix inequality (LMI) approach was 
proposed to treat the problem of robust stability 
analysis and robust stabilization synthesis for un- 
certain linear time-delay systems and less con- 
servation results dependent on the size of delays 
had been obtained (Li et a l . ,  1997) .  This ap- 
proach has the advantage that no tuning of pa- 
rameters and/or positive definite symmetric ma- 
trices is involved. 

In many practical situations, among some 
non-linearities introduced by the actuator dynam- 
ics, a common one is the saturation. Generally, 
the physical limitations of the actuator are un- 
avoidable in the operation of driving the actuator 
by the signals emitted from the designed control- 
lers, thus causing actuator saturation, which not 
only deteriorates the control system performance, 
but can also lead to undesirable stability effects. 
If such non-linearity saturation is not taken into 
account in the control system design, an integral 
wind up or limit cycle may occur. Recently, 
special interest has been devoted to the robust 
stabilization problem for uncertain time-delay 
systems containing ~turat ing actuator (Chou et 
a l . ,  1989; S u e t  a l . ,  1998d; Niculescu et a l . ,  
1996).  For example, sufficient conditions for 
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output feedback stabilization, independent of the 
size of delay, are given in Chou et al. (Chou et 
a l . ,  1989) using the concept of matrix measure 
and the comparison theory for an uncertain linear 
time-delay system with single state delay and 
saturating actuator in time domain. Niculescu et 
al. (Niculescu et a l . ,  1996) studied the prob- 
lem of robust stabilization for a class of uncertain 
linear time-delay systems containing a saturating 
actuator by using the Razumikhin theorem. A 
delay-dependent criterion for robust stabilization 
via linear memoryless state feedback control law 
was o[~tained and the upper bound on time-delay 
is givdn such that the uncertain system is robust- 
ly stabilizable. But the obtained results are also 
given in terms of the solution of the algebraic 
Riccati equation and still need the tuning of the 
scalar and positive definite symmetric matrix. 

In this paper, we extend the linear matrix 
inequality (LMI) method to time-varying uncer- 
tain linear dynamic systems with sector saturating 
actuator and unknown-but-bounded time-delay in 
state variable. It is assumed that perfect infor- 
mation of plant states is available for feedback. 
The robust stabilization problem addressed is to 
get the robust stabilizability criteria and design 
memoryless state feedback control laws such that 
the closed-loop system is asymptotically stable 
for all admissible uncertainties. Based on the 
linear matrix inequality ( LMI ) approach, new 
robust stabilizability criteria and corresponding 
robust stabilizing control laws are presented in 
terms of several LMIs. The obtained criteria and 
design approaches in this paper depend on the 
size of delay but does not involve any tuning of 
parameters, as in the case of the robust stability 
and stabilization method (Li et a l . ,  1997),  and 
can be computed effectively (Boyd  et a l . ,  
1994).  

SYSTEM DESCRIPTION AND DEFINITIONS 

Consider the following uncertain time-delay 
systems described by 

$c( t )  = A ( t ) x ( t )  + A l ( t ) x ( t  - d )  

+ B ( t ) u ' ( t )  

u ' ( t )  = s a t ( u ( t ) ) ,  

s a t ( u ( t ) )  = [ s a t ( u l ( t ) )  s a t ( u 2 ( t ) )  --- 

sat( u,~ ( t ) ) ] 

x ( t )  = d p ( t ) , t  E [ -  v , 0 ]  (1)  

w h e r e x ( t ) E  R" is the state vector, u ( t ) E  
R m is the control input vector to the actuator 
( generated from the designed controller), u '  ( t ) 
E R m is the control input vector to the plant ; A 
( t ) = A + A A ( t ) ,  A l ( t )  =A1 + A A I ( t ) ,  B 

( t ) =  B + zSdB(t) and A E  R "• A~E  R "• 

B E R ~• are known constant matrices. The 
matrices A4 ( " ) ,  zflA 1 ( " )  and AB ( " )  are real- 
valued continuous matrix functions representing 
time-varying parameter uncertainties in the sys- 
tem model with appropriate dimensions. The 
nonlinear saturation function is considered to be 
inside the sector [ a 1 ] and is shown in Fig. 1. 

<J 
sat ( u ~  1 1(1+o) 

o 
u(o 

Fig. 1 Sector nonlinear satm~tlon function 

The d is unknown scalar denoting the delay 
in the state, and it is assumed that there exists a 
positive number z- such that 

0 ~ d <_ r (2)  

holds for all t ;  ~ ( t )  is a smooth vector-valued 
continuous initial function defined in the Banach 
space C" [ - r , 0 ]  of smooth functions 

a/r: [ _  r ,O]  ~ R" with t1 xp" II | ." 

= sup II , e ( , 7 ) I I  
- r <  t / _ < 0  

In this paper, the admissible uncertainties 
are assumed to be of the form 

z3A( t )  = H I F I ( t ) E 1 ,  

A A 1 ( t )  = H 2 F 2 ( t ) E 2 ,  

3 B ( t )  = H 3 F 3 ( t ) E 3  (3)  
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where Fi ( t ) E R'. • q, , i = 1 , 2 , 3  are unknown 
real timevarying matrices with Lebesgue measur- 
able elements, satisfying 

r r i ( t ) F i ( t )  < l , i  = 1 , 2 , 3  (4)  

and H i ,  Ei , i = 1 , 2 , 3  are known real constant 
matrices with appropriate dimensions which char- 
acterize how the uncertain parameters in F i ( t ) ,  

i = 1 , 2 , 3  enter the nominal matrices A,  A 1 and 

B .  
Throughout this paper,  we shall use the fol- 

lowing concept of robust stable and robust stabi- 
lization for the uncertain time-delay system of the 
form (1)  - ( 3 ) .  

I)ef'mitlon 1: The class of uncertain time- 
delay systems ( 1 )  - ( 3 )  is said to be robustly 
stable if the trivial solution x ( t ) =-- 0 of the func- 
tional differential equation associated to (1 )  with 
u ( t ) ~ 0 is globally uniformly asymptotically 
stable for all admissible uncertainties AA ( t ) and 
LL41 ( t ) .  The class of uncertain time-delay sys- 

tems (1)  - (3)  is said to be robustly stabilizable 
if there exists a static linear state feedback con- 
trol law u ( t ) = Kx ( t ) such that the resulting 
closed-loop system is robustly stable. 

In this paper,  we shall develop delay-depen- 
dent conditions for robust stabilizability of the 
uncertain time-delay system with sector saturat- 
ing actuator (1)  - (3 )  and the corresponding ro- 
bust stabilizing control laws design approach. 
More specifically, we shall determine the bounds 
for the time-delay which ensure that the system 
( 1 )  - ( 3 )  is robustly stabilizable and suitable 
memoryless state feedback control law will be 
developed. It will be shown later that the above 
problems can be solved by using linear matrix in- 
equalities. 

We introduce some useful lemmas (Su  et 
a l . ,  1998d) ,  which will be essential for the 
proofs in the next section. 

L e m m a  1: Given any positive definite sym- 
metric matrix R ,  vector X ( t ) ,  Y( t ) and ma- 
trix F (  t ) with appropriate dimensions, and sati- 
sfying F r ( t )  F ( t )  ~< I ,  then 

2 X r ( t ) F ( t ) Y ( t )  ~ X T ( t ) R X ( t )  

+ y r ( t ) R - '  Y ( t )  (5)  

L e m m a  2: Let A,  D and E be real constant 
matrices with appropriate dimensions, matrix F 
( t ) satisfies F r ( t ) F ( t ) < I .  Then we have:  

(a )  For any scalar e > 0,  

D F ( t ) E  + E r F T ( t ) D  r <_ eDD r + e - f E t E  

(b)  For any matrix P > 0 and scalar e > 0 

such that e l -  E P E  r > 0,  then 

( A  + D F ( t ) E ) P ( A  + D F ( t ) E )  r < 

APA  r + A P E r ( e I -  E P E r )  -I E P A  r + eDD r 

( c )  For any matrix P > 0 and scalar e > 0 
such that P - eDD r > 0,  then 

(A + D F ( t ) E ) r P - 1 ( A  + D F ( t ) E )  <_ 

A r ( p  _ e D D r ) - I A  + e - I E r E  

DELAY-DEPENDENT ROBUST STABILIZING 
CONTROL LAW SYNTHESIS 

In this section, we shall establish a delay- 
dependent robust stabilization sufficient condition 
and corresponding synthesis approach for uncer- 
tain linear time-delay systems with sector saturat- 
ing actuator. Upper bound v on the time delay d 
is given such that the uncertain linear time-delay 
system is robustly stabilizable for any time delay 
0<__d___v. 

The main result is derived as follows: 
T h e o r e m  1: For the uncertain linear time- 

delay system (1)  - ( 3 ) ,  given scalar v satisfy- 
ing ( 2 ) ,  this uncertain linear time-delay system 
is robustly stabilizable if there exist positive defi- 
nite symmetric matrices X > 0,  TIj > 0, j = 1 ,2 ,  

3; Q > 0;  matrix Y, and positive scalars ai > 

0, i = 1 , 2 , 3 ;  flj > 0 , j =  1 , 2 , 3 ;  e > 0  and el 

> 0 satisfying the following linear matrix ine- 
qualities (LMIs) ,  

Q - B B  r _ e H  3 Hr3 

E 3 B r 

X 

A X  

E t X  

e l  - E 3 E~ >- 0 

X 

A ~ X  

E 2 X 

XA r XE~  

TI2 - /~2 H2 H2 r 0 1 _____ 0 
0 t32 

XA r X E  r ] 

Tll - f l 1 H I H  r 0 ~ >  0 

0 fl~ -J 
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X 

B Y  

E 3 Y 

S 

MI 

M; 
w h e r e  

VB VE ] 
TI3 - fl3H3H~ O ~ 0 

0 /33 -J 

- 0 < 0 ( 6 )  

o No - N;  N4_j 
0 0 - 

1 
S = ' A X  + XA r + A I X +  XA r + 2 ( 1  + O') i 

2 
( B Y  + yrBr)  + ~ ,  aiH, H r 

i=l 
1 

+ ~-(1 + a )a3H3H r + Q + 2vX 

1 + -~(1 + a ) v X  + v ( A  1 TA r + e lH2H r) 

M, = [XEr~ X E r ] ,  N, -- d i a g ( a l l , a 2 I )  

M2 = I/rE3 r ,  N2 = 2(1 + a)-Za3 I 

M3 = vA, TE r ,  N3 = v ( e , 1 - E 2 T E  r)  

1 
M4 = ~ ( 1  - a ) ( 1  + r ) y r ,  N 4 = (1  + v ) I  

1 
T = Q + ~ TI] "F ~-(1 + at) TI3 

j~l 

Moreover, a suitable delay-dependent robustly 
stabilizing control law is given by 

u ( t ) =  YX- x(t) (7) 
Proof :  Introduce the control law u ( t )  = 

Kx ( t )  for the uncertain linear time-delay system 
(1)  ~ ( 3 ) ,  where the control law gain matrix K 
E R m• is to be found, the closed-loop system 
can be written as 

1 
X ( t )  = [ A ( t )  + ~ ( 1  + a ) B ( t ) K ] x ( t )  

+ A l ( t ) x ( t - d ) + B ( t ) r l ( t )  (8 )  

x ( t )  = q i ( t ) , t E  [ - r , O ]  

where r / ( t )  = s a t ( K x ( t ) )  - l ( 1  + ~r) K_x( t ) .  

Obviously, vector function 11/( t ) satisfies the 
following inequality 

1 ~ l r ( t ) r l ( t )  <_ ~-(1 - a ) 2 x r ( t ) K r K x ( t )  

Since x ( t )  is continuously differentiable for 
t ~  0,  using the Leibniz-Newton formula (Hale 
et a l . ,  1971),  we can write 

x ( t  - d) = x(  

= x(  

+ 

+ 

+ 

for t ~ d .  Then 

1 
. ~ ( t )  = [ A ( t )  + ~ ( 1  + a ) B ( t ) K  

+ A j ( t ) ] x ( t )  + B ( t ) ~ l ( t )  

fod A 1 ( 1 - _ t ) l [ A ( t  + s )  + - ~  " 

(1 + a ) B ( t  + s ) K ] x ( t  + s) 

+ aR( t  + s ) X ( t  - d + s) 

+ B ( t  + s ) t l ( t  + s ) t d s  

x ( t )  = q~( t ) ,  t E [ -  2 v , 0 ]  

fo! t) - ( t  + s )ds  

A l ( t  + s ) x ( t  - d + s) 

1 
~ ( 1  + a ) B ( t  + s ) K x ( t  + s) 

B ( t  + s ) r l ( t  + s ) ] d s  

the system (8)  can be written as 

(9)  

where ~ (  t ) is a smooth vector-valued continu- 
ous initial function. It is declared in (Hale  et 
a l . ,  1971) that the asymptotic stability of ( 9 )  
can assure the asymptotic stability of the closed- 
loop system ( 8 ) ,  since the system (8)  is only a 
special case of the system dynamics described in 
( 9 ) .  Therefore, for the sake of simplicity, we 
will use the system dynamics in (9 )  to obtain a 
bound r for the time delay d such that the 
closed-loop uncertain time-delay system (8)  still 
retains its asymptotic stability for any 0 ~ d _< v.  

Let the following function be the Lyapunov 
functional candidate for the system (9)  

V ( x (  t ) , t )  = x r (  t ) P x (  t)  

+ IOd[f;+s,~T(O)glX(O) d~ 

f' + xr (O)R2x (O)dO]ds  
t-d+s 

(lo) 
where P ,  R I ,  R: are positive definite symmet- 
ric matrices. The derivative of V ( x ( t ) ,  t ) 
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along the trajectory of the system (9 )  with re- 
spect to time t is given by 

f ' ( x ( t ) , t )  = x r ( t ) l [ A ( t )  + 1 ( 1  + a ) B ( t ) "  

K+ A~(t)  JrP + P [ A ( t )  + 1 ( 1  

+ a ) B ( t ) K +  A 3 ( t ) ] } x ( t )  

+ f ( x ( t ) , t )  + g ( x ( t ) , t )  (11) 

where 
I'O 

f ( x ( t ) ' t ) = d x r ( t ) n ' x ( t ) -  J - d X r ( t  + s)" 

R l x ( t  + s )ds  + d x r ( t ) R 2 x ( t )  

o d + s ) R 2 x ( t  d - x r (  t - _ 
- d  

+ s)ds 

g ( x (  t ) , t )  = 2 x r ( t ) P B ( t )  I"1(t) - 2 x r ( t ) P  

{ f ~ a A ' ( t ) [ ( a ( t + s ) + l ( 1  

+ a ) B ( t  + s ) K ) x ( t  + s) 

+ A l ( t  + s ) x ( t - d  + s) 

+ B ( t  + s ) t l ( t  + s ) ] d s l  

By using Lemma 1 to (11 ) ,  we have 

r  ~ x r ( t ) W l x ( t )  + f ( x ( t ) , t )  

(12) + g ( x ( t ) , t )  

w h e r e  

Wi = Arp + PA + A r p  + PAl 

1 + (1 + a ) K r B r p  + ~ ( 1  + a ) P B K  

2 2 
1 + X~aa=,~ErEi + P( f f ]a iHi  Hr + ~ ( 1  

i=1 i - I  

1 + ~r)a3H3Hr)P + -~-(1 + a )  - 

a ~ l KrE r E3 K 

and 

g ( x ( t ) , t )  < x r ( t ) P B ( t ) s r ( t ) P x ( t )  

+ 1 ( 1  _ a ) 2 x r ( t ) Kr Kx ( t )  

2 0 
+ ~ f  x r ( t ) P A l ( t ) T i j A r ( t )  " 

j .~  d - d  

fo 
P x ( t ) d s  + J_dXr(t + s)AT(t  

+ s)Tf i lA(t  + s ) x ( t  + s)ds 

+ ~~ - d + s )Ar ( t  + s) �9 

T{I~AI(t + s ) x ( t  - d + s)ds 

1 ~~ x r ( t ) P A t ( t ) .  
+ + d 

Tl3Ar l ( t )Px ( t )ds+f :dXT( t  

+ s)KrBr( t  + s)T~131B(t + s) . 

Kx(t  + s )ds ]  + l ( 1  - a )  2 �9 

fOtxr( t  + s )KrKx( t  + s)ds 

+ f [ a x r ( t ) P A l ( t ) B ( t  + s ) "  

BT(t + s)A (t)Px(t)d  (13) 

Assume that there exist scalar e > 0 and pos- 
itive definite symmetric matrix Q > 0 such that 
the following inequality is satisfied 

BB r + BE r ( e l  E3E T)-I E3B T - 3 + ell3 Hr <-- Q 
(14) 

w h e r e  

e l  - E 3E r > 0 ( 1 5 )  

Then using I_emma 2 ( b ) ,  we have 

B ( t ) B r ( t )  <_ Q (16) 

B ( t  + s ) B r ( t  + s)  <_ Q (17) 

1 
Let T = Q + ~.= TIj + "~ ( 1 + a ) TI3 and as- 

sume that there also exists scalar el > 0 such that 
the following inequality is satisfied 

e l l -  E2TE r > 0 (18) 

Then using Lemma 2 ( b ) ,  we have 

A , ( t ) T A r ( t )  <_ A, TA r + A 1 T E r ( e , I  

_ E2TEr) - 'E2TA r + e ,H2H r 
(19) 

Assume that there exist scalars/3 i > 0 , j  = 1, 
2 ,3  satisfying the following inequalities 
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A r ( T l l  - f l l H t H r ) - 1 A  + f l~ lErE l  < P 

(20)  

Ar( T12 - f l2H2Hr)-1A~ + fl~l Er E2 < P 

(21)  

KrB r ( T13 - ~3 H3 Hr ) -I B K  + ~1  KrE r E3 K 

< P (22)  

where 

Tij - fljHiH f > 0 , j  = 1 , 2 , 3  (23)  

Then using Lemma 2 ( c ) ,  we have 

A r ( t  + s ) T 5 1 A ( t  + s )  <_ P ,  V t  >~ 0 

A r ( t  + s ) T ? z ~ A , ( t  + s )  < P ,  V t  >_ 0 

K r B r ( t  + s )TF31B( t  + s ) K  ~ P ,  V t >_ 0 

Then applying ( 1 6 ) ,  ( 1 7 ) ,  (19) and (24)  
to (12)  and letting 

1 
RI = P + 5 ( 1  

1 + a ) P  + ~ - ( 1  - a ) 2 K r K ,  

R2 = P ( 2 5 )  

we obtain 

V ( x ( t ) , t )  < x r ( t ) [ W i  + P W 2 P  

+ W 3 ] x ( t )  

= x r ( t )  W4X(t)  

where 

w 2 =  

(26)  

Q + z-[A1 TA r + A 1 T E r ( e t  I 

- E z T E r ) - ' E 2 T A  r + e 1 H z H  r] (27)  

1 
W3 = 2 v P  + ~-(1 + a ) v P  

1 + ~-(1 - a ) z (1  + v ) K r K  (28)  

W4 = A r p  + PA + Ar p + PAl 

1 1 + ~-(1 + a ) K r B r p  + (1 + a ) P B K  

2 2 1 
--~ 1 1" P (  ~ aiHi Hr  + ~ ( 1  + ~ a a ?  EiEi + 
i=1 i=l 

+ a ) a 3 H 3 H ~ ) P  + 1 ( 1  + a )  �9 

a ~ ' K r E r E 3  K + P{ Q + v [AI  TA r 

+ A, r E r ( e l  I - E2 T E r )  -1 E2 TA r 

1 

+ e 1 H 2 H r ] } P  + 2 r P  + 2 ( 1  + a ) v P  

+ 1 ( 1  _ a )2(1  + T) KTK (29) 

Then if for some scalar v > 0,  there exist 
positive definite symmetric matrices P ,  T U , j = 

1 , 2 , 3 ,  Q; matrix K and positive scalars ot i > O ,  

i = 1 , 2 , 3 ;  ~ - > 0 , j = 1 , 2 , 3 ;  e > 0 a n d  el > 0  
satisfying the inequalities ( 1 4 ) ,  ( 1 5 ) ,  ( 1 8 ) ,  
(20) - (23) and W4 < 0,  then for any 0 < d 
r ,  we have 

V ( x ( t ) , t )  <_-  a II x ( t )  II 2 

where a = - ~ max ( W4 ) > 0 and )'max ( W4 ) de- 
notes the maximum eigenvalue of matrix W4. 
Therefore, it follows from Lyapunov theorem and 
Definition 1 that the system (9)  is asymptotically 
stable for any 0 < d < r and for any admissible 
uncertainties Fi ( t )  satisfying ( 4 ) .  This implies 
that the closed-loop system (8)  is robustly stable 
and the original uncertain time-delay system (1)  
- (3)  is robustly stabilizable for any 0 ~ d ~ v 

and for any admissible uncertainties Fi ( t ) saris- 

fying ( 4 ) .  
Introduce the new variable X,  let 

X = p - I  (30) 

and let W5 = XW4 X,  then equation (29)  can be 
rewritten as 

1 W5 = XA r + A X  + XArl + AI X + - ~  �9 

1 (1 + a ) X K r B  r + ~-(1 + a ) B K X  

2 2 

+ ~t~71XEfEi  X -4- ~r  f 
i=1 i=1 

1 1 
+ 5 ( 1  + o-)a3H3 HT + 5 ( 1  + a )  " 

a~I XKrEr  E 3 K X  + Q + v i a l  Ta r 

+ A, T E r ( e ,  I - E2 r E r )  -' E2 TA r 

1 
+ e1H2H r]  + 2 v X  + 5 ( 1  + a ) v X  

1 + ~-(1 - a )2 (1  + v)XKrK-X (31) 

Let Y = KX and using schur complements, 
we obtain that inequalities ( 1 4 ) ,  ( 1 5 ) ,  ( 1 8 ) ,  
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(20)  - (23)  and W5 < 0 are equivalent to those 

LMIs in ( 6 ) .  
R e m a r k  1: Theorem 1 provides a delay-de- 

pendent condition for the robust stabilizability of 
the uncertain linear t ime-delay system ( 1 ) - (3 )  
with sector nonlinear saturating actuator and the 
corresponding delay-dependent  linear memory- 
less state feedback control law synthesis ap- 
proach based on LMI technique.  Since the ro- 
bustly stabilizing control law design approach is 
dependent  on the size of the t ime-delays,  in gen- 
eral, it is expected to be less conservative than 
the delay-independent  robust stabilizing control 
law design methods.  In contrast with the results 
of Niculescu et al.  ( 1 9 9 6 ) ,  who developed de- 
lay-dependent robust stabilization method for un- 
certain time-delay systems with constrained input 
in terms of the solution of Riccati equations,  the 
obtained results in Theorem 1 is given in terms of 
the solutions of linear matrix inequalities,  does 
not need any tuning of parameters,  and can be 
calculated very effectively by using interior point 
algorithms. On the other hand,  since the satu- 
rating actuator considered in Niculescu et al. 
(1996)  is inside the bound of + 1 while in this 
paper it is inside the sector [ a ,  1 ] ,  the ob- 
tained results in Theorem 1 must  be less conser- 
vative than the results in Niculescu et al. 
( 1 9 9 6 ) .  

R e n m r k  2: Based on the Theorem 1, the I l (A + At ) X  + X ( A  + A~ ) r  + -~-(1 + a ) ( B Y +  yrBr )  + Q 

1 " - ~ ( 1 - a ) ( l  + v ) Y  

2 1 
where T = Q + ~ TIj + -~ (1 + a) TI3 . More- 

j=l 
over, a suitable delay-dependent  robustly stabi- 
lizing control law is given by u ( t ) = YX-l X 
( t ) .  

NUMERICAL EXAMPLE 

Consider an uncertain time-delay system (1)  
( 3 ) ,  whose saturating actuator is inside the 

sector [ 1/3,  1 ] and whose dynamics are de- 
scribed as follows, 

[ 2 ~ A, _- [ - '  0 ]  
A = 1 - - 0 . 8  - ' 

B = [  1 2 
- 1 4 ] 

upper  bound v for time delay d which ensures 
that the uncertain linear t ime-delay system ( 1 )  
~ (3)  is robustly stabilizable for any 0 ~ d < r 

can be determined by solving the following quasi- 
convex optimization problems : 

v Subject to LMIs (6 )  and X 
>0,  T I j > O , j = I , 2 , 3 ;  Q > 0 ; m a t r i x  Y, and 

positive scalars, O' i > 0 ,  i = 1 , 2 , 3  ; ~. > 0 ,  j = 
1 , 2 , 3 ;  r 1 6 2  > 0 .  

In the case when the t ime-delay system (1 )  
~ ( 3 )  does not involve uncertainties,  i . e .  H i 
= 0 and E i = 0 ,  i = 1 , 2 , 3 ,  we have the follow- 

ing result.  
Co ro l l a ry  1: For the uncertain time-delay 

system ( 1 ) -  (3 )  with Hi = 0 a n d  E i = 0 ,  i =  
1 , 2 , 3 ,  given scalar v satisfying ( 2 ) ,  this linear 
time-delay system is robustly stabilizable if there 
exist positive definite symmetric matrices X > 0,  
Q > O, Ttj > 0 , j  = 1 , 2 , 3  and matrix Y satisfy- 
ing the following linear matrix inequalities 
(LMIs ) ,  

Q - B B  T ~ 0 

[ X XA r ] [ X XArl] 
AX T11 I >- O, A1X T12 j >- O, 

[x  r BT 1 
BY TI 3 I >- 0 

~ 

- (1 + 3)1 J 

Hi = [002  0.2 '0]  Ei = [10 0]1 ' i = 1 , 2 , 3  

Fi ( t ) [ s in (  t ) 0 = ] i = 1 , 2 , 3  
0 c o s ( t )  ' 

and F r ( t ) F i ( t ) < _ I ,  i = 1 , 2 , 3 .  
Applying Theorem 1 to this uncertain time- 

delay system, it is found,  using the software 
package LMI Lab, that this system is robustly 
stabilizable for any time-delay d ~< 0.  2961.  If 
there are no uncertainties in this system, i . e .  
Hi = 0 and Ei = 0 ,  i = 1 , 2 , 3 ,  the system is ro- 
bustly stabilizable for any time-delay d ~ 0 .  6317 
by using the software package LMI l.qh based on 
Corollary 1. 

In the sequel ,  the results in Niculescu et al. 
(1996)  will be applied to this uncertain time-de- 
lay system. We note that these results are based 
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on the solution of a Riccat i  equat ion and involve 

the tuning of posit ive real  sca lars  and 2 • 2 posi -  
t ive defini te  symmetr ic  ma t r i ce s .  In view of the 
difficulty in tuning such mul t ip le  pa ramete r s  
( s ca l a r s  and  mat r i ces )  in order  to maximize the 

bound for the t ime-de l ay ,  sca la r  1 and an ident i -  
ty matr ix  are  used .  H o w e v e r ,  we cannot  find the 
u p p e r  bound of t ime-de lay  such that the uncer -  
tain t ime-de lay  sys tem with sa turat ing ac tuator  is 

robust ly  s tabi l izable  via memory less  state feed-  
back  by using the Theo rem  1 in Niculescu et a l .  
( 1 9 9 6 ) .  When  the sys tem has  no uncer ta in t ies ,  

it is robust ly stabil izable for any t ime-de lay  d ___ 
0 . 3 8 1 9  by using R e m a r k  2 in Niculescu  et a l .  
( 1 9 9 6 ) .  Observe  that this bound  for the t ime- 
delay is not necessar i ly  the opt imal  one ;  howev-  
e r ,  to the best  of our  knowledge ,  no optimizat ion 
procedure  is ava i lab le .  From compar i son  with the 
previous  resul ts ,  the robust  stabil ization ap-  
p roach  p resen ted  in this p a p e r  is less conserva-  
t ive than the method  in Nicu leseu  et a l .  ( 1 9 9 6 ) .  

CONCLUSION 

This  p a p e r  deals  with the p rob lem of robust  
s tabil izat ion synthesis  for a c lass  of  uncer ta in  l in- 
ear  t ime-de lay  sys tems with sec tor  nonl inear  sa tu-  
rat ing ac tua tor ,  LMI based  methods  for analyzing 
the robust  stabil izabil i ty and  designing l inear  
memory tes s  state f eedback  control laws have  been  

deve loped .  New cri terion of de l ay -dependen t  ro-  
bust  stabil izabil i ty for uncer ta in  t ime-de lay  sys-  
tems is g iven in terms of l inear  matrix inequali ty 
( L M I ) .  Numer ica l  example  shows that the pre-  
sented method  is feas ible  and  less conservat ive  

than the repor ted resul ts .  
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