
ISSN 1009 - 3095 doumal of Zhejiang University(SCIENCE) V. 1, No. 4, P. 381 - 383, Oct. - Dec., 2000
http://www, chinainfo, gov. cWpedodical; http://www, zju. odu. cn;

http: l/lib, zju. edu. crVEnglish; http:llwww.zjt4:)ress.com 381

EVOLUTION-BASED SOFTWARE DEVELOPING ENVIRONMENT"

YING Jing()-~ ~) , HE Zhi-jun(~,L~-J), WU Ming-hui(~la~tt~)

(Department of Computer Science, Zhejiang University, Hangztwu 310027)

Received Mar. 29, 1999 ; revision accepted Apr. 16,2000

Abstract: q]ais paper introduces the MHSC Methodology, and proposes an evolution-based integrated devel-
oping environment for MHSC; and addresses the eom4",onents and their interrelations in the /DE (Integrated
Developing Environment), based on which the evolutionary prototyping system development can be. supported
effectively.

Key words: 1DE, evolution, MHSC
Docmnent code: A CLC numl~r: TP311.52

INTRODUCTION

Due to the software system's natural com-
plexity, software development, especially large
scale and complex system development, usually
loses control of the plan. Current research indi-
cates that there exists requirements bottleneck in
the realm of software engineering (Hsia, 1993).
The traditional waterfall development methodolo-
gy cannot satisfy the customers' real needs be-
cause it assumes the users' requirements are
steady and frozen before it is implemented. In
fact, a software system can be validated only
when it is executable. Because it is too expens-
ive to fLx errors, especially requirement errors,
in later development stage, it is important to de-
tect potential errors in the early stage of software
requirements. The authors propose to use an ex-
ecutable specification language to construct the
intermediate result of system requirement analys-

Transformation knowledge bese

is, build an integrated development environment
for it, and use transformations and refinements
based domain knowledge to build an executable
prototyping system. Customers can participate in
the prototyping system demonstration, so the sys-
tem requirements can be validated, and the defi-
nition and design can be kept consistent.
Through the prototyping system evolution, it fi-
naUy meets the customer's real needs.

Aiming at the software system requirements
validated in early stage, we put forward MHSC,
a methodology for high-level specification con-
struction (Ying, 1995, 1997). MHSC supports
a software constructive procedure with regenera-
tion structure. The whole development procedure
is shown in Fig. 1.

Based on the MHSC methodology, we ad-
dress real-time domain system development and
build an integrated developing environment MH-
SC/IDE.

Reusable components base

Requirement]

analysis

Initial ~] Definition

requirement~ product

t

Definition ~[Synthesis model

No, new goal

Goal syste I optimize [-m

m product

Model

< ~ J ser validation

Fig. 1 MHSC development procedure

Transform&]

~" refine
J Prolotype

I Demonstrate

prototype

* Project supported by NSFC(69703005) and Zhejiang Provincial Natural Science Foundation(697006).

382 YING Jing, HE Zhijun et al.

MHSC/IDE

As an integrated developing environment,
MHSC/IDE supports software system requirement
analysis, design and configuration. The special
characteristics of MHSC methodology in software
evolution make requirements change and system
maintenance become easier and less expensive,
and decrease the probability of losing control in
project development.

1. Coordination support environment (CSE)

The requirements analysis and design process
for large scale and complex software systems is
fundamentally a conversation among the partici-
pators (customers, designer, manager, and so
on) to resolve the design issues, based on this
principle, Rittel proposed the Issue-Based Infor-
mation System (IBIS) model (Conklin, 1988) ,
which has now been extended and put into appli-
cations as the gIBIS model, for instance. Ac-
cording to the MHSC methodology, we extend
IBIS to: 1) Cooperative work support through
distributed network; 2) Multi-dimensional repre-
sentations (graphics , descriptive text, PSDL
code, e t c) ; 3) Import deductive mechanism,
provide reference to detect conflict and merge
override; 4) Permission and authority manage-
ment; 5) Components version control

The MHSC/IDE system is composed of a se-
ries of interactive roles (components of two
kinds: atomic and composed) . We design the
layer net architecture shown by Fig. 2. The
roles of system are stored in a database through
an interface that translates the component prop-
erties and methods to records. Client/Server is
used to provide distributed computing. The data
concurrency, consistency and security are con-
trolled by DBMS.

2. Reusable software base system (RSBS)

Reuse is an important part of MHSC. If pro-
vialed a relatively mature environment, software
development can be automated in special doma-
in. The reusable objects in MHSC include tradi-
tional functions, PSDL description modules,
components following CORBA or COM standard
and design patterns o r architectures. Focusing
on the PSDL description modules, we designed a
reusable software base system which sup ports

Prototype
1

1 I I

I

I

Fig.2 L a y e r n e t a r c h i t e c t u r e

I

I

components acquisition, classification, storage,
retrieve and integration. 3here are two classes of
components base in MHSC: public and private.
The components saved in public base are mature
and credible, and have passed strict testing.
They permit all members in a developing team to
share information. They are read-only informa-
tion, therefore, only the administrator has the
privilege to modify them. The private bases are
fully controlled by the owner independently.
When a designer thinks a component has reuse
value, he can put it into his private base and
recommend it to the public base administrator.
After the component passed test, it can be saved
in public base. Components classified as primary
facets, include using domain, application plat-
form, produce language, function description
and keywords. The components can be retrieved
by filling fields with conditions and setting prior-
ity, selecting query type (match whole or not) ,
then retrieval results will be listed by matching
degree. The system also supports retrieving by
relations between components through navigator.

3. Knowledge base mmmgen~nt system (KBMS)

System evolution procedure is achieved by
transformations and refinements based domain
knowledge, which is possible only if the domain
knowledge base is abundantly provided with suit-
able deductive mechanisms. In KBMS, domain
knowledge and deductive formulas are stored in a
DDB (Deductive Data Base) . Domain knowl-
edge is acquired by domain experts and designers
with previous experiences. With domain knowl-
edge accumulated, the decision support and au-

EVOLUTION-BASED SOFTWARE DEVELOPING 383

tomatic development will be better.

4. Procedure control system (PCS)

The PCS is composed of evolution control
system and configuration system. Software sys-
tem producing procedure is a component-evolu-
tion procedure through transformations. In this
procedure, each designer is responsible for one
or more components. For the relations between
components, for example, UsedBy, Evolve, and
ComprisedBy; the requirements change automat-
ically to induce a chain of activities to propagate
the changes down to the affected parts of the sys-
tem design and implementation, which is called
change propagation. Aiming at this problem, we
propose an evolutionary development model MH-
SC/DM, and establish the rules for components
transformation and version control. The model
uses data graph to record components and their
dependencies from system requirements analysis,
through AffectedBy, Scope and Induce rules,
and it can compute the set of components affect-
ed by the change to one component, and also
provide decision support for alternatives selec-
tion, project scheduling and system configura-
tion. On the basis of the model, prototype can
be produced automatically or semi-automatically
with the supports of domain knowledge.

5. Execution support system (ESS)

The execution support system of MHSC/IDE
includes two classes of translators (between PS-
DL graph and PSDL code module, PSDL lan-
guage to C + +) , C + + compiler and simula-
tion scheduler system. The description of the
system created by designers may be incomplete
or even conflicting, so the domain knowledg~ is
needed to help its translation. Through transla-
tion we can get executable cede frameworks, for
the system description is relatively mature and
complete, these cede frameworks can become
executable system after being compiled.

The simulation scheduler system plays an
important role in MHSC, especially in the real-

time domain. Generally, the PSDL description
of prototype is a high-level design, and the de-
tails of the process have not been filled in yet ex-
cept for the time and resource constrains. But if
these constrains cannot be satisfied, the detailed
design is meaningless, so it is necessary to pro-
vide schedule diagnostic information which can
assist design. We have implemented the simula-
tion scheduler system based on extended Petri
net, which is used to detect conflicts of compo-
nents and submit corresponding reports for diag-
nosis and referenced resolve alternatives. After
the high-level design passes the simulation
scheduling, it can be refined in details until the
prototype system is acceptable to the customers.

CONCLUSIONS

With regard to the evolutionary software sys-
tem development to support executable specifica-
tion, based on MHSC methodology, this paper
proposes a corresponding integrated developing
environment MHSC/IDE. A prototype environ-
ment has been built to put into practical applica-
tion for software development. Through the IDE,
large scale and complex software system develop-
ment become well supported. It also lets high-
level software construction and early validation
become realizable, and facilitates transformation
from requirements to implementation.

References
Gonklin, J . , Begeman, M., 1988, gIBIS: a hypertext tool

for exploratmy policy discussion, ACM Trans.
Inform. Syst., 6(10):303 - 331.

bIMa, 1~., 1993, Smttm Report: Requirement Engineering,
IEEd~ Softttm~, 10(6) :75 - 79.

Ying, J . , He, Z . , Wu, Z . , et a l . , 1995, A Methodology
for High-level Software Specification Construction. ACM
SEN, 19(2) :48 - 54.

Ying, J . , He, Z . , Wu, Z . , et a1.,1997. Building Exe-
cutable Specification To Support Software Development.
Journal ofSofiuxu'e, 7(5) ;350 - 359.

