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Abstract: Traditional DPIV (Digital Particle Image Velocimetry) methods are mostly based on area-correla- 
tion (Wiflert, C.E., 1991 ). Though proven to be very time-consuming and very much error prone, they are 
widely adopted because of they are conceptually simple and easily implemented, and also because there are 
few alternatives. This paper proposes a non-correlation, conceptually new, fast and efficient approach for 
DPIV, which takes the nature of flow into consideration. An Incompressible Affined How Model (IAFM) is 
int~oduced to describe a flow that incorporates rational restraints into the computation. This IAFM, combined 
with a modified optical flow method-named Total Optical How Computation (TOFC), provides a linear system 
solution to DPIV. Experimental results on real images showed our method to be a very promising approach for 
DPIV. 
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INTRODUCTION 

Fluid dynamics research relies on the experi- 
mental observation and visualization of fluid flow 
phenomena (Kawashima, G. et al. , 1995; Oh- 
In ,  K. et a l . ,  1995) .  Advances in computer 
technology allow for more accurate simulation 
and computation for this phenomenon. Digital 
Particle Image Velocimetry (Wil le r t ,  C. E . ,  
1991 ) (DPIV) is a well-known approach in this 
domain and still an active research area. 

Conventional algorithms of DPIV are mostly 
correlation-based methods ( O h b a ,  K. et a l . ,  
1995 ; Yamamoto, F.  et a l . ,  1996 ; Fuyuki,  M. et 
a l . ,  1995) ,  and others such as, the template 
match method, SSDA fast correlation method, 
FFF fast correlation method etc.  Athough effec- 
tive, these methods are very time-consuming and 
prone to errors inevitably due to the properties of 
the correlation. So many researchers then fo- 
cused on how to correct these erroneous vectors 
afterward ( Fujita, I.  et al. , 1995 ; Kimura, I. et 
al. , 1993).  A DPIV method using feature track- 
ing (Kaga ,  A. et a l . ,  1993) can produce more 
exact vectors but is too time consuming. (Ohba,  
K. et a l . ,  1993) proposed an approach based on 
optical flow computation ( O F C )  using a finite 
element method. The authors updated the veloci- 
ties estimation by means of a Kalman Filter for a 

sequence of images to be processed, which may 
not be available in some experiments. 

The above two methods regard two snapshot 
images as common images, and do not emphas- 
ize FLOW images. So they cannot utilize the na- 
ture (say ,  dynamics law) of flow in the comput- 
ing. This paper provides a faster and efficient 
solution to DPIV that combines an Incompress- 
ible Affined How Model (IAFM) with Total Op- 
tical Flow Computation (TOFC) .  In order to sat- 
isfy the conditions required by traditional OFC, 
three new ideas are introduced. They are Total 
Brightening Constancy Constraint, Muhiresolu- 
tion Processing and Gauss Filtering respectively. 
By using the proposed methods, the nature of 
flow is considered easily as an integral part of the 
computation. No further postprocessiug is need- 
ed in producing a smooth and plausible flow 
field. 

IAFM-INCOMPRESSIBLE AFFINED FLOW 
MODEL 

The mathematical models employed in this 
paper arise in the study of the geometric theory 
of differential equations and dynamic system 
analysis. 

Let Z (  x ,  y )  denote a two-dimensional (2D) 
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flow vector field, 

Z ( x , y )  = p ( x , y )  �9 i + q ( x , y )  . j  (1)  

Where p ( x ,  y ) ,  q ( x ,  y ) are components of Z 
( x , y )  along the direction of the x-axis and y- 
axis respectively, i , j  and are the unit vectors. 
In differential equation form, it becomes, 

dx 
d t  - p ( x , y )  (2)  

d t  = q ( x , y )  (3) 

According to fluid dynamics, p and q are the 
solutions of the 2-D Navier-Stokes Equations 

d i v ( Z )  a p 8q = 0 (4)  
= 3 x  + 3 y  

p d Z / d t  = v N + tz �9 7 Z + p . F (5) 

Where N,  p,  /~, F denote the pressure, densi- 
ty and coefficient of viscosity and external force 
respectively. Eq. (4)  describes the law of in- 
compressible fluids, and Eq. ( 5 ) is derived 
from Newton's Law. 

Generally speaking, these equations are not 
easy to solve because p ( x ,  y )  and q ( x ,  y )  are 
very complex, high order nonlinear functions of 
the image coordinates x and y .  The nature of 
fluid flow, especially when turbulence is present 
is still not well understood. Many problems are 
unanswered. In this work we limited our re- 
search to simple steady Stokes flow, and think 
this simplification is justified because many flow 
phenomena can be described by such a simple 
model (Rao, A, R . ,  1992) Steady Stokes flow is 
flow satisfying two conditions : (1)  The flow is 
steady or never changes in relation to time; (2) 
The Reynolds number is small enough. 

In order to provide a suitable model of such 
kind of flow for processing, we need to liberalize 
by decomposing Eq. (4)  and Eq. (5) into their 
Taylor series at point ( x0, Y0 ) up to the first or- 
dered components, which result in 

p ( x , y )  = p ( x o , Y o )  + a ( x  - Xo) + 

b(  y - Yo)  

q ( x , y )  = q ( x o , Y o )  + c ( x  - Xo) + 

d (  y - Yo)  

Where 

[a 
c d @ aA 

3 x  c3y x= ~0'Y= Y0 

(6) 

(7) 

Thus, the flow is described by ordinary differen- 
tial equations whose coefficients are equivalent to 
the partial derivative and constant terms. Eqs. 
(6) (7)  are called Affined Flow Models ( AFM ) 
in flow research. 

The AFM has many applications in fluid dy- 
namics research, in Flow Visualization (Hel-  
man,J .  , 1989), for example, which proved to 
be an acceptable simplified model for fluid flow. 
Similar models, with other names such as linear 
phase portraits ( R a o , A , R . ,  1992), were intro- 
duced by other researchers for analyzing oriented 
texture ( Rao, A, R. , 1992; Shu, C. , 1993) or 
flow pattern classification (Zhang,  J. et a l . ,  
1994; Nogawa, H. et. a l . ,  1997). But most of 
their works mainly (in some senses) focused on 
how to smooth, describe, or estimate a given 
flow field, which differ from ours, say, by fo- 
cusing on how to obtain flow vector data from ob- 
servation and measurement. 

In this paper, we adopt the AFM model be- 
cause the nature of the underlying flow can be 
embedded in a natural way in the computation of 
velocity vectors. Substituting Eq. (4) into Eqs. 
(6) and ( 7 ) ,  yielded the following new model: 

p ( x , y )  = p ( x o , y o )  + - + 

b ( y  - y0) (8)  
q ( x , y )  = q ( x o , Y o )  + c ( x  - Xo) - 

a (  y - Yo) (9) 

Please note that the difference between Eqs. (6) 
(7) and Eqs. (8)  ( 9 ) ,  of the new model has, 
the constraint of incompressibility[ Eq. (4) ] em- 
bedded in it. That is why we called it IAFM 
(Incompressible Affined Flow Model ) .  By 
introducing another constraint of DPIV imaging, 
say, the TOFC (total brightening constancy 
equation), we then relate this flow model with 
the observation equation. 

TOFC-TOTAL OPTICAL FLOW COMPUTATION 

A basic assumption of DPIV is that the expo- 
sure time (the interval between two successive 
frames) is short enough to consider the images as 
instantaneous snapshots of-the velocity field. 
Based on this assumption, we regard the 
graylevel value at every point of every particle in 
the flow does not change. In other words, the 
perceived changes in image brightening must be 
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entirely due to motion. This is called brightening 
constancy constraint in traditional optical flow 
computation ( O F C )  (Horn ,  B, K, P . ,  1986) ,  
and is written as 

d G ( x ,  y ,  t ) = 0 (10)  

Where G ( x ,  y ,  t ) represents the image func- 
tion of the flow field and x ,  y ,  t the space and 
time parameters, and d denotes differential oper- 
ator. 

Unfortunately, because most DPIVs are illu- 
mined by a flash lamp whose intensity cannot be 
controlled precisely, Eq.  ( 1 0 )  should not hold 
if we consider the change of illumination. So, 
let the change of illumination be denoted by d i ,  
and introduce a total brightening constancy con- 
straint as 

d G ( x ,  y ,  t , / ) = 0 (11)  

By substituting p and q in Eq.  ( 11 ) ,  we get 

di  
Gx " p + Gy �9 q + Gt + Gi ~ t  t = 0 (12)  

di  Ai  
dt  - A t '  k =  Based on differential concept,  let 

1 
Ai , so (13)  replaces (12)  
- - + 1  At 

G~ �9 p + Gy �9 q + Gt + ~ - G i  = 0 (13)  

Where k = i l lumination ( t ) / i l l umina t i on  ( t + 

A t ) ,  means that the change of illumination is 
linear. We call Eq. ( 11 ) TOFC (Total Optical 
Flow Computation). 

Two conditions required to ensure the validi- 
ty of the TOFC. are: 

( i )  The estimation is valid as long as the 
slope of the brightening function of the pattern 
does not exceed the pattern displacement. Multi- 
resolution Processing according to our method 
can assure this, by smoothing and sub-sampling 
of the source image, such as a Gaussian Pyra- 
mid; ( i i )  the intensity profile of image G ( x ,  
y )  must be differentiable, otherwise gradients in 
Eq. (13)  cannot be calculated. We satisfied this 
condition by smoothing the sub-sampled image 
by Gaussian Filtering. 

Eq. (13)  is an equation in three unknowns 
p ,  q and k.  We showed in Eq.  ( 8 ) ( 9 )  that 
( p ,  q ) can be decomposed into finite linear 
terms. By combining Eq. ( 8 ) ( 9 )  with Eq. 

(13)  and taking measurements at many points, 
an over-detemfined linear system solution of 
these unknowns are obtained. A Least Square 
method ( I S )  is then used to solve this problem. 

ALGORITHM AND IMPLEMENTATION 

This section gives a brief description of the 
algorithm using IAFM and some experiments to 
show the efficiency of the provided approach. 
The DPIV images shown in Fig. 1 were captured 
in a real experiment on fluid dynamics. The size 
of each raw image was 1024 x 1024. 

Fluid field in port Fluid field in port 
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DPIV images used in our experiment 
(a)  image ~ ; (b )  image [[ 

1. Preprocessing 

According to the first condition of TOFC, we 
must first smooth and sub-sample the source im- 
ages obtained from DPIV because the aim and 
function of DPIV is to record a very. short time 
exposure photograph of the particles in the flow. 
If the average flow velocity is much greater than 
the average panicle diameter, then Eq. ( 1 1 )  
does not hold. A classical muhi-resolution tech- 
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nique-Gaussian Pyramid was applied. The ratio 
of sub-sample is due to the maximum velocity in 
the flow. In our experiment, we re-sampled the 
size 256 x 256 raw images. A Guassian filter of 
(cr = 3 . 0  was applied to assure the validity of 
the gradient computation of the images. 

2. Divide into patches 

An IAFM is a good approximation of the flow 
field within small local patches. According to 
this, we divided the images into overlapped 
square patches. That is to say that only the ve- 
locity at each point inside a small patch has 
IAFM property. The size of each patch is deter- 
mined according to the velocity the field resolu- 
tion. Here we wanted to obtain a 32 x 32 veloci- 
ty field, so the size of 16 x 16 or 24 x 24 of each 
patch are preferred. 

1 0 - 1  1 2 1 

2 0 - 2  0 0 0 

1 0 - 1  - 1  - 2  - 1  

F i g . 2  Nobel masks 

3. Select feature points 

Referring to Verri and Poggio' s work (Ver- 
ri,  A . ,  1989 ) ,  the brightening constancy 
equation is more accurate at the point where the 
magnitude of G is large enough. So we first com- 
puted the gradient by a Sobel mask (Fig .  2)  at 
each points inside a patch, then sorted them by 

the magnitude of gradients: I G I = a/-G2~ + G 2 , 

selected several points with largest I G I,  and 
called them feature points. We selected the first 
64 points that were enough for over-determining. 

4. Least square estimations 

Consider the linear system of equations (8 )  
(9)  and (13)  at selected feature points inside 
each patch. Let the lower left comer of a patch 
be at (x0 ,  Yo ) and substitute Eqs (8)  and (9 )  

in Eq. ( 1 3 ) .  Then we get six unknowns X = 
{Po, qo, k,  a ,  b ,  c t  with one equation. If 

there exist 64 feature points, it will be 64 
equations with 6 unknowns, then the problem 
can be solved by an LS (Least Square) method 
by means of a pseudo inverse operator 

X = (A T-  A) -i �9 A T �9 B (14)  

5. Experimental Results 

Following the steps mentioned above, the 
global flow field of images of Fig. 1 was recon- 
structed piecewise by an LS method. The result- 
ant 2D flow field is shown in Fig. 4 .  For compar- 
ison, we also show the resultant flow field( Fig. 
5 ) obtained from a conventional eon'elation- 
based method. It took 2 . 7  seconds using our 
method to produce a 32 x 32 flow field when our 
program was run on a Pentium/166MHz PC, as 
compared to 3 5 . 0  seconds by a correlation based 
method. Notice that Fig. 5 has many erroneous 
vectors while Fig. 4 is rather smooth, and has 
very delicate structures. For example, our ob- 
servation in the experiment confirmed the exist- 
ence of the small vertex denoted by an arrow in 
the left part of Fig. 4.  Furthermore, we could 
measure the local properties of the resultant flow 
in an analytic way, for example, by consider- 
ing, the small vortex structure at the left of Fig. 
4 as the origin of the local coordinates system 
with the vortex as its center. 

p = 0 .012x  + 0 . 0 6 4 y  (15) 
q - 0 . 0 1 2 x  - 0 . 0 1 2 y  
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CONCLUSIONS 

Most conventional methods of DPIV follow 
the scheme of area-correlation, and often regard 
the DPIV images as two common images, and do 
not make use of the nature of FLOW, and as a 
result,  are not only very time consuming but also 
very error prone. 

In this paper, we aim to provide a unified 
approach that takes advantage of both an IAFM 
model and TOFC computation. By introducing 
three new preprocessing techniques (Total Opti- 
cal Flow Computation, Muhiresolution Process- 
ing and Gauss Filtering) we solved the problem 
of DPIV by solving an over-determined linear 
system. Experiments on real images showed the 
proposed algorithm to be a fast and efficient ap- 
proach for DPIV. 

Further researches will include hardware 
( e .  g . ,  DSP chips) implementation. We believe 
our algorithm is much promising for the realiza- 
tion of Real-time Flow Reconstruction and Visu- 
alization. 
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