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Abstract:
anatomical membrane a priori. The prior distributions are based on the fact that the radiopharmaceutical activi-

In this paper a fully Bayesian PET reconsiruction method is presented for combining a segmented

ty is similar throughout each region and the anatomical information is obiained from other imaging modaliiies
such as CT or MRI. The prior parametiers in prior disiribution are considered drawn from hyperpriors for fully
Bayesian reconstruction. Dynamic Markov chain Monte Carlo methods are used on the Hoffman brain phantom
to gain estimaies of the posierior mean. The reconstruction resuli is compared o those obtained by ML, MAP.
Our results showed that the segmenied anatomical membrane a priori exhibit improved the noise and resolution

properties .
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INTRODUCTION

Positron Emission Tomography (PET) is a
powerful biological imaging tool capable of pro-
viding high quality functional images. A radioac-
tively labelled substance, designed to show the
physiological function of a particular tissue, is
injected inio a patient. The chosen substance is
known to become concentraied in the organ of in-
terest in a manner related to the phenomenon un-
der study. Afier the radiopharmaceutical is in-
jecied, positron emission occurs in the organ at a
rate varying spatially according to the concentra-
tion. Our purpose is to determine the radiophar-
maceutical concentration as a function of posi-
tion.

The emitted positrons’ collision with nearby
electrons generate two photons iraveling away
from each other in opposiie directions. The two
photons are detecied by a pair of opposed detec-
tor elements inside an array of discrete detector
elements surrounding the patient simultaneous.
The PET imaging procedure consists of the col-
lection of a set of number of coincidences by de-
tecior pairs. The positron emission is a Poisson

positron emission tomography, bayesian reconsiruction, markov chain monie carlo, segmenied
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process ( Vardi et al., 1985) and the photon
count is a linear process so that the measured
Whereins
the variance is equal to the mean, so the noise
property of PET is much poorer than MRI or CT.

Statistical methods for image reconstrucition

data also have Poisson distribution.

can provide improved spatial resolution and noise
properties over conventional filtered backprojec-
tion ( FBP) methods. The maximum likelihood
via expectation maximization method (MLEM) is
based on the realistic assumpiion that photon
counis follow a Poisson process, and is an ap-
propriate method PET reconstruction ( Vardi et
al.»1985). However, due to the ill-posed na-
MLEM is
known to be unstable and excessively noisy at

ture of the reconstruction problem,

higher iterations. Some prior constraints can be
placed on the estimaied image to overcome those
questions ( Levitan et al., 1987; Mumcuoglu et
al.,1994) . Most image priors assign low proba-
bilities as a pixel s intensity differs more from its
nearest neighbors, those may introduce smooth-
ing across true intensity changes. To alleviaie
this drawback, in this paper, we propose seg-
mented anatomical membrane prior and assume

*  Project supported by NSKFC of China( No.69872034) and Zhejiang Provincial Natural Science Foundation.



A bayesian PET reconstruction method

407

that the nearby pixels tend to have similar inien-
sities> unless they straddle a border between re-
gions of smoothly varying intensity. The specific
locations of these borders can be obtained from
high-resolution anatomical images. Dynamic
Markov chain Monte Carlo (MCMC) is used to
obtain fully Bayesain reconstruction and the pa-
rameters in the prior are themselves considered
drawn from appropriate hyperpriors. Thus, un-
like reconstructions using parameter point esti-
mates such as MAP,
such as variance

the statistic properties
of reconstruction results can
be easily obtained .

THE SEGMENTED ANATOMICAL MEMBRANE
PRIOR

Regardless of the method used for recon-
struction> a Bayesian method could be fatally
misleading with a bad choice of prior. The fully
Bayes formula is as follows:

p(X|Ya@)ocp(Y|X>p(X|6)p(0)(l)

where X, Y are density and measured data, re-
spectively. p( X 16) is the prior density distri-
bution, while @ is the hyper-parameters vecior
and p( @ )is its prior distribution. p(Y | X) is
the likelihood function.

The prior density of the image is generally
specified via Gibbs disiributions or Markov Ran-
dom Fields:

1

where U(C X, 8) is the Gibbs energy function
(potential function) . Z(8) = 2 UCX, ) is the
partition function which once as\signed, it relates
only to the hyper-parameters.

The potential functions of Gibbs distributions
are defined on some kinds of neighborhood sys-
tems. Most of them assign higher potentials to
big intensity differences, which result in global
smoothness: such as that of the quadratic poten-
tial. These priors can’ t model larger intensity
changes that may occur between different re-
gions. Alternately, some potential functions that
increase at a slower rate than quadratic func-
tions, or saturaie at a maximum value, have
been proposed as means of trading off the desire
for local smoothness with the competing require-

ment that the image not be over smoothed at re-
gion boundaries ( Mumcuoglu et al., 1994) . But
none of these methods directly model the pres-
ence of image boundaries. The compound Mark-
ov random fields (Lee et al.> 1995) introduce
line process between pixels. The line-site ran-
dom variables might have two discrete values, 0
and 1, or might be contimiously valued from O
io 1. As choosing the line process type is diffi-
culi> the additional computation.

In PET imaging, anatomical tissue type is
one of the most influential factors affecting radio-
pharmaceutical concentration. because different
tissue types have different physiological proper-
ties. Consequently, a segmentation of the region
of interests ( ROIs) into different tissue types
may sirongly resemble its segmentation into dif-
ferent levels of radiopharmaceutical uptake. An
anatomical segmentation can be obtained from
MRI or CT. However, a significant difference
between the PET ROls and anatomical ones is
the partial pixel effect relating to the finite axial
and transaxial resolution of PET images. In the
reconstruction practice> we also assign some
continuity constraints on the density. The prior
must ensure the following requiremenis:

On the interior of each region, the pixels in-
tensities are similars

On the boundary of different pure regions,
the prior must allow interrupted intensity
change:

When the boundary is beiween a pure region
and a region of partial pixels, the prior allows a
ramp change of image intensity.

Considering the brain imaging, we assume
that the tissues can be pariitioned into four class-
es: gray matter (GM), white matter ( WM,
cerebral spinal fluid ( CSF) and partial pixels.
The partition information is estimated from some
other image segmeniation and regisier process.
To modify the partial pixel effect> we first define
a selection function for a pixel Ci, j) for its
nearest neighborhood pixels in potential value
calculation:

si,j(x(m’ n)):

{x(m,n),l(i,j>:l(m,n)

xCi,j), otherwise

(3

where x(i, ), (i, ) stand for the density val-
ue and the label of pixel (i, j), respectively;
the same is the case of x(m>n), [Cm,n).
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With the selection function, the intensity
value at pixel (m» n) is replaced by that at (i,
j) when their types are different. But we only
use the selection function for the calculation of
potential value for those pixels in one region.
Otherwises the intensity value of a pixel keep
unchanging . Then we define a modified quadrat-
ic prior distribution of pixels in a region,

UCx,B)= - ,6’(”)?" ”)[xi,j -5, (xCms n))
(4>

where (i, j) ~ Cm, n) denotes the 8 neighbor-
hood pixels of (i,j), B, is the hyper-parame-
ter. For the pixels on the boundaries between the
pure region or partial region,

Ulx)= — > B(xi,j—x(m,n))z(S)

o) —Cme )

Bowsher et al. (1996) introduced a hierar-
chy prior model using anatomical information.
Their method has to segmeni and reconstruct si-
multaneously, but does not directly incorporate
the anatomical information, and is very com-
plex.

MARKOV CHAIN MONTE CARLO POSTERIOR
ESTIMATION

The prevalent method of PET reconstruction
is maximum a posteriori estimate (MAP), which
is in proper balance between prior expectation
and fidelity to the measured data. In the Bayes-
ian paradigm, MAP estimators are the Bayes
point estimators for O — 1 loss funciion. We used
a hierarchical fully Bayesain model as it is diffi-
cult for MAP methods to deal with the hyper-pa-
rameters problem. At the same time, the point
estimator can’ t be used to obtain the statistical
properties of reconstruction resulis directly.

The Markov chain Monte Carlo simulation
method ( MCMC) based on the full conditional
posterior distribution can resolve these questions
(Smith et al., 1993; Wain, 1997). The MCMC
method is a fully Bayesian process that we can
use to update hyperparameters in each iteration
as well as the pixel iniensities. As the final esti-
mate is the mean of sampling images, the vari-
ance of the reconstruction results and the credit
intervals are also obtained.

The basic idea of Markov chain Monte Carlo
simulation is to sample from a fully posterior

conditional distribution. In our application, the
fully posterior conditional distribution is p Cx; |
X _;» YB) for pixel intensity, where X_; =
{x,,m » except x; }. Sampling procedures esti-
mate the joint postenor distribution by iterations
of sampling for both pixel intensities and hyper-
parameters from its conditional distribution given
the current values of all other random variables.
There are two kinds of sampling algorithms:
Gibbs sampler and Meiropolis-Hasting sampler.
Their updating methods are different. Here we
use Metropolis- Hasting sampler.

The Meiropolis-Hasting algorithm is as fol-
assuming only one random variable, whose
posterior distribution is pCm | nJ,, we get the
new candidate m’for m from a generation proba-
bility distribution, wherein the candidate is ac-
cepted with the probability:

lows:

p(m |n)g(m,m )}

p(mln)g(m ) (6)

mm{
the second item is called acceptance probability .

In PET images reconstructions the sieps in
one iteration can be described below:

1. For each pixel, a candidate intensity val-
ue based on the current value is obtained from an
appointed generation distribution. With the prin-
ciple of conjugate prior; we use Gamma distribu-
tion Ga(£;>1) to get the proposed value, where
£ denotes current value and Ga for Gamma dis-
tribution;

2. Calculate the accepted probability and the
update pixel iniensity if needed;

3. Updaie the hyper-parameters after fully
updating the image pixels.

We denote the estimator as X = {x; }, the
measured data ¥ = {y, }, and the system proba-
bility array as P = {pj }. Thqe procedure of a
posterior sampling can be performed in two stag-
es. First> we updaie the pixel values, which we
Each
time only one pixel is updated while the others
are unchanged. Then for the pixel at coordinates
(i,j), the acceptance probability is Eq.(7):

X Vp( 1z
pCa; | ,»,Y)p(x "D~
p(Ylx';» X, )p(xL],X,L_llﬁ)p(‘@)
p(Ylx;» X OpCxr X ;1 80p(BD
Ga(xj,qul)

Ga(xq,x 1D

may do according to row or column order.

e
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Second, we update the hyper-parameter (3.
Here we assume that 3 is drawn from a uniform
distribution on an interval centered at the current
value and that the lengths of all intervals are
equal. The new candidate value is also generat-
ed from the same uniform distribution: then the

acceptance probability is:

pCBX, Yp(XIB)p(BIR) _
p(BX> Y p(XIB) p(BIB)~
PLIX £, )\‘(ﬁ—ﬁ’)lf(X)z

p(YIX)Z(B) +

Z(B )«
iy SB-FOUCO

(8

To calculate this value, we must know the ratio
of partition function at these two points: these

Fig.1

(a) hoffman head photon:

(d) the MAP result with quadratic prior:

(104}

(b) the Poisson noised image:

ratios
1997) .

The last question that must be carefully con-

can be computed in advance ( Weir,

sidered is the detection of convergence. There

are many parameters, such as the relative fre-
quency of acceptance of pixels per sweep, sever-
al pixel estimates, the hyperparameters, the
norm of the increment in image space between
successive sweeps, and the total posterior energy
that can be monitored. For our practice in the
next section» we keep tracing the change of the
hyper-parameter.

RESULTS AND DISCUSSION

We performed a reconstruction experiment on
one slice of Hoffman head phantom with a size of
128 * 128. The ratio of pharmaceutical concen-
tration in white matter. gray matter and cerebral
spinal fluid was 4: 1: 0. Poisson noise were add-
ed to the phantom with a Poisson random vari-
ables generation process, c.f. Fig. la. b. The
segmented prior information was obtained from
noise-free data. The project was implemented on
360° with 192 views and 192 projections.

To compare the property of vary methods, we
also performed reconstruction with MLEM, MAP

The photon and reconstruction results

Ce) the result of Ml method;

Ce) the MAP result with segmented membrane

priors (f) the end of MCMC with segmented result
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with quadratic priori> MAP with the segmented
membrane prior distribution (the hyper-parame-
ter was select by the MCMC method) and the
MCMC sampler. The four reconsiruction results
are shown in Fig. 1. The system probability array
was precomputed and siored. Both the ML and
MAP estimator were calculated by the restarted
Fletcher-Reeves conjugate gradient method and
the iteration number was limited to 50 times Cin
general the iteration will converge before 50
times) .

For quantiiative analysis, we computed the
average root mean squared errors (RMSE) of re-
consiruction images for each method by using the
following formula:

9

-2,

n

RMSE:N/ 21 >,

pixel "

The resulis are listed below:

Table 1 RMSE of each reconstruction methods

MAP of membrane

prior

Quadratic prior

ML MAP

MCMC

13.4 11.28 8.2 6.4

From the computed results; we can see the
improvement of our method was phenomenal.
The main drawback of MCMC is that it is very
time-consuming. In our practice on PC, both the

ML and MAP methods converged in several min-
utes . But the convergence of hyper-parameters in
MCMC required several hours; although we ex-
pect much faster reconstruction resulis with the
use of more powerful workstations or parallel
computations.
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