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Abstract:

The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hol-

low cylinder is considered. An analytical form of solution is proposed. For the case when the Young’ s modu-

lus and thermal expansion coefficient have a power-law dependence on the radial coordinate, explicit exact so-

lution is obtained. For the degenerated cases i.e. when the cylinder is homogeneous and isotropics no stress-

es will occur provided it is subjected to a uniform temperature. Numerical results are finally given and some

important inclusions are obtained .
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INTRODUCTION

The concept of functionally graded material
(FGM) was first introduced by a group of Japa-
nese scientists at the National Aerospace Labora-
tory in Japan. FGMs are spatial composites in
which material properties vary continuously.
This is achieved by gradually changing the vol-
ume fraction of the constituent materials usually
in one direction to obtain a smooth variation of
material properties.

The study of plates and shells of functionally
graded materials ( FGMs) has become an inter-
esting subject due to their increasing application
in industrial engineering ( Chen, 2000; Chen et
al.» 1999; Horgan and Chan, 1999; Rooney
2001). FGMs first appeared as
heat-shielding materials and the associated ther-
mal behaviors of FGM structures have attracted
much interest. Noda and Tsuji (1991) discussed

and Ferrari,

the steady-state thermal stresses and the thermal
deformations in an FGM plate. Obata and Noda
(1994) considered the one-dimensional steady-
state problem of an FGM hollow cylinder and a
hollow sphere. Tanigawa et al. (1997) investi-
transient thermal

gated the one-dimensional

stress problem of an FGM hollow cylinder.

thermoelastic stress, hollow cylinder, functionally graded material
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The axisymmetric thermoelastic problem of a
functionally graded isotropic circular hollow cyl-
inder was studied in this work. A solution having
the form suggested by Spencer et al. (1992) for
anisotropic laminates was adopted. An explicit
solution was derived for the case when the mate-
rial properties are power-law functions of the ra-
dial variable. Some useful discussions and nu-
merical examples are presented.

BASIC EQUATIONS

In cylindrical coordinates C r» 6, z ), the
stress 6, related to the infinitesimal strain e and
the excess temperature T above the reference
temperature in a stress-free state can be ex-
pressed by

T Av2p A s 0 0 0 ey —al
O A A+2u A 0 0 0 ey — al
o. | | 2 A A+2x 0 0 O [e.-al
o | 0 0 0 7z 0 0| 7| 2e,
o, 0 0 0 0 x O 2e,.
oy 0 0 0 0 0 u 2ey

(D

where, in terms of the displacement components
u,» ug» u, in the r, @, z directions,
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du, duy 1 du,
=9y 2 =92 Y 9
1[9uy du, Jdu,
ew =", ﬁ+u,] 2€,z=a—r 9z
du, 1 du, Jduy 1wy
==z Zen="7 36 ar T
2>

In Eq. (1), A and p are two Lame constants»
and a is the thermal expansion coefficient. All
these constants are assumed to be functions of
the radial coordinate r in this study.
The equations of equilibrium, in the absence
of body forces, are
1 doy Jdo. o, -
5 Tz T . =0
1 doy  Joy,
tSg vt v, < 0
1 aa@z aazz O

ar 790+9z+r

do,,

dr r
(70,0

dr r
Jdo,,

MATHEMATICAL DEVELOPMENT OF
SOLUTION

Spencer et al. (1992) suggested a special
solution for the thermoelastic distortion of a ho-
mogeneous or laminated anisotropic tube. For a
finite FGM cylinder of inner radius @, outer ra-
dius b, and length h, subjected to a uniform
temperature, we seek similarly the solution to
Eq. (17-(3) in the following form

u, = auC&) u, = Bal 4>

u0:0

where & = r/a and { = z/a are dimensionless
coordinates; B is a constant to be determined.
In Eq. (40, u, = au( &) represents a radial ex-
pansion or contraction, and w, = Ba{ is a uni-
form axial extension or contraction.

From Egs. (2) and (4), we obtain

e, =u epy=ulé e,=B

2ep, =2e, =2¢,49 =0 (5

where a prime denotes differentiation with re-
spect to &. Obviously all the strains and stresses
depend only on the variable r. We have also o,
=6,y = oy, =0 from Eq. (1). Thus the equilib-

rium equations, Eq. (3), become

dow (6>

dr r

Substituting Eqs. (1) and (5) into Eq. (6)
yields

X +2p0u” + [(/\ +2p) + (A +2/¢)%]u’ +

& -2 “;22 u=[BA+2alT-XNB (D

We consider the case when the Young’ s
modulus £ and the thermal expansion coefficient
a have a power-law dependence on the radial
coordinate, while the Poisson’s ratio v is a con-

stant ( Horgan and Chan, 1999). Since

FEv E

T+ =2 #=2(1+v)(8)

A

we know that the two Lame constants A and u
also have a power-law dependence on the radial
coordinate. We thus can take

A= AOSH, a = aosn (9)

_ , 0en
pn=p &
where 1%, 1” and o are constants, and n is the

inhomogeneity parameter. In view of Eq. (9),
we obtain from Eq. (7)

A0 +2,08W + Cn+ DAY + 2, & +
LCn—1O2% =2, u=2n(32° +2,° )" TE" !
- nA’ BE (100
It is obvious that the homogeneous solution to
Eq. (10) can be obtained by assuming

uw=C&

where C is an arbitrary constant. Substituting
Eq. (11) into Eq. (100 and omitting the right-
hand side, we obtain

1o

Bz+nﬁ+(A0MO 1):0 (12>

+ 2/10 -
Thus

8 = —n+vn?—4ln Q% +2,° - 1]
1= 2

==V P =4l (X + 2% — 1]
BZ— 2

(13>

By virtue of Eq. (8), we can verify that the dis-
criminant of Eq.(12)

A=n? -4l /(2% +2,° - 1] =n? —4m/
(1-v)+4
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is always greater than zero for a given Poisson’ s
ratio O v < 1/2. That is to say,> the two roots in
Eq. (13D are real and distinct.

The particular solution to Eq. (10) is easy
to obtain, and the complete solution to it is as
follows:

u = C] Sﬂ' + 02882 + C3€"’+1 + C4€ (14>
where C; and C, are two arbitrary constants,
and

_ 2(1 + v)
3T +3) -+

C T C,= —vB

(15>

Note that if n = O the right-hand side of Eq.
(10) vanishes which results in C; = C, =0.

FURTHER INVESTIGATION

1. The homogeneous case

We first consider the homogeneous case for
which n =0 and all material constants are inde-
pendent of the radial coordinate. In this case,
we have 8, =1, 8, = -1, C3=C,=0. Thus
the solution takes the form u = C,& + C,&7".
The boundary conditions at the cylindrical sur-
faces r = a> b are
( r=a- b)

(16>

c,=0 069y=0 o0,=0

where the last two conditions have been automat-
ically satisfied at both surfaces as shown earlier
in the paper. The first condition in Eq. (16)
gives
200 + ) Cy =2pCy + AB = (3X +2p0aT
a7

200 + p)Cy = 2pCyl 9 + AB = (3X +2p)aT
(18>

where 1 = b/a is the outer radius-to-inner radius
ratio. Apart from the boundary conditions at r =
as> b, we should also consider the conditions at

the two ends z =0 and z = h as follows:

(Z=O’ h)
19

Uzzzo 502=0 U,Z=O

The last two conditions in Eq. (19) are auto-
matically satisfied and the first condition gives

2AC, + (X +2p)B = (34 +2,)aT (20)

From Eqs. (170, (18) and (20), we obtain C,
=B =al and C, = 0. Now it is immediately
shown that for a homogeneous hollow cylinder, a
well-known conclusion can be achieved, i.e. all
stress components vanish everywhere when it is
uniformly heated .

2. The inhomogeneous case

By virtue of Eq. (14), the expressions of
the radial, circumferential and axial stresses are
derived as follows:

o, =LA +2,0B, + A°]C, &A1 4
LAY +24°8, + A°1C, 6 A1 4
LA +2u4DCn + D+ A°]C;8" +
20A°% + "y - (3R° +24).
o’ TE" + 2° Bg"

o =LA’B + (A° +2,°]1C, &+ ~!
+LA%8, + (X0 + 2,0 ]C, A1
+LACn+ D+ A+ 2,78 21D
+2A% + 40,8 — (B +2u0).
a® TE*" + A0 Be"
o, =2A%B +DC, EATT L AR, + 1.
C, el 1 4 A% n+2)C,68" +
220C, 8 — (B0 42,20 T8 +
A%+ 2, Be
Then from the boundary conditions Eq.(16), we
have
LRA% +2,°) +2°0C, + LB (A% + 2% +
A00C, +LCn+ D% +2,° + 2215 +2CA°
+p"C—BA% +2p"a’ T+ 2°B=0 (22D

[BCA% +2,°) + A€, " T + [ B (A° +

24 + A0 1C, 77 + L+ DA% + 2% +
A01C 7 + 2020 + 100 C, — (3A° + 242040
Ty +A°B=0 (23

As pointed out by Spencer et al. (1992) the
form of solution considered does not permit the
point-by-point specification of traction at the two
ends z =05 h. Only certain resultant forces and
moments can be specified on the basis of Saint-
Venant” s principle. For the problem consid-
ered, we have

b
211[ o.rdr = 0 24

v a
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which gives rise to

B +1
n+p+1

A0C,Coprt Bl

1+ Pot 1

0 n+ B +1 _
ATC Gy n+ G +1

n+2 0 2n+2
Do aad GO -

2)° 2 30 +24° oo

20 +24° >

(" *2 -1+ B(yt? —1)=0 (25
n+2

It is noted that Eq. (25) is not valid for n = —

B —1(j=1,2), —2and —1. If, for example

n= -2, Eq. (25) should be modified to

B] +1 0 B Bz +1 B
A0C G -1+ AC,Cpfm! -
Br—17 7 B—17 72 4
0 0

1) +22°Cylny + waoﬂ 772 -1)+
(A +24°)Blnyp=0 (26>
For n=-3-1(=1,2) and n= — 1, simi-
lar equations can be derived and are omitted here
for brevity .

With Eq. (15), the three unknowns C,
C, and B can be determined from Eqs. (22),
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Fig.1 Curves of R versus for & a thin cylinder
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Fig.3 Curves of Z versus & for a thin cylinder

(23D, and (25) or Eq. (26).
NUMERICAL EXAMPLE

The distributions of nondimensional stresses
R=0,/CE°Q"T), @ =0y/(E°2°T) and Z =
0, /CE a° T are shown in Figs. 1-3 for a thin
hollow cylinder with » = b/a = 1. 05, while
those for a thick hollow cylinder with » = b/a =
1.5 are given in Figs.4-6 for comparison. Sev-
eral combinations of Poisson’ s ratio and inhomo-
geneity parameter n are considered.

It is seen that the Poisson’s ratio, the inho-
mogeneous parameter and the outer radius-to-in-
ner radius ratio all have significant influence on
the distributions of the thermoelastic stresses. In
particular, a negative n will lead to compressive
radial stress and vice versa. Also, for a negative
n»> both the circumferential and axial stress com-
ponents change from negative at the inner surface
to positive at the outer surface and vice versa. It
is also seen that the distributions of oy and o,
are very similar and the difference of magnitude
between them is very small. But the magnitude
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Fig.2 Curves of @ versus & for a thin cylinder
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Fig.4 Curves of R versus & for a thick cylinder
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Fig.5 Curves of @ versus & for a thick cylinder

of o,, is much smaller than that of o4 and o,
even in the thick cylinder. The distributions of
o and o, in the thin cylinder are almost linear
along the radial direction, while in the thick cyl-
inder they are no longer linear.

CONCLUSIONS

The two-dimensional axisymmetric problem
of a functionally graded isotropic circular hollow
cylinder subjected to a uniform temperature field
was investigated in the paper. An analytical so-
lution was obtained when the material properties
are power-law functions of the radial coordinate .
It was shown that for a homogeneous hollow cyl-
inder; no stress occurs when it is uniformly heat-
ed.

Numerical results showed that the inhomoge-
neity parameter n has great effect on the distri-
butions of thermoelastic fields. For example, a
negative n will yield compressive circumferential
stress at the inner surface and tensile circumfer-
ential stress at the outer surface, while a positive
n gives a contrary result. Thus by selecting a
proper value of n, it is possible for engineers to
design a cylinder that can meet some special
requirements .

Fig.6 Curves of Z versus & for a thick cylinder
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