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Abstract:

Mehrotra’ s recent suggestion of a predictor-corrector variant of primal-dual interior-point

method [or linear programming is currently the interior-point method of choice for linear programming.
In this work the authors give a predictor-corrector interior-point algorithm f[or monotone variational in-
equality problems. The algorithm was proved to be equivalent to a level-1 perturbed composite Newton
method. Computations in the algorithm do not require the initial iteration to be feasible. Numerical re-

sults of experiments are presented.
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INTRODUCTION

Let K" be a nonempty closed convex sub-
set of R” and let F: R"—R" be a continuous
mapping. A variational inequality problem

(VIP) is

Find x* € K such that (x —x* DF(x)”
=0 for all x€ K.

This problem widely appeared in the study of
various equilibrium models in economics, op-
erations research and transportation. There
are many available iterative methods for VIP,
such as projection methodss nonlinear Jaco-
bian methods,
methods and generalized gradient methods
(Harker et al. » 1990). Several recently pro-
posed interior-point algorithms for VIP in-
clude the primal scaling path-following algo-
rithm ( Tseng, 1992), the nonpolynomial
long-step primal path-following algorithm
(Wus 1993), the entropy-like interior- prox-
imal algorithm C Auslender and Haddous
1995), the modified path-following algorithm

successive  overrelaxation

CLC number:

Variational inequality problems( VIP), Predictor-corrector interior-point algorithm, Nu-

0242.2

(Wus 1997, the long-step interior-point al-
gorithm (Sun et al. » 1998) and the potential
reduction interior-point algorithm ( Liang et
al.» 2000). Mehrotra introduced a remark-
able predictor-corrector algorithm for linear
programming ( Mehrotra, 1990). The pre-
dictor step was a damped Newton step for
solving the KKT conditions and producing a
new strictly feasible iteration. The subsequent
corrector step was a centered Newton step, in
which the choice of centering parameter was
based on the predictor step. Numerical results
indicated that this method represented a sig-
nificant computation advance for linear pro-
gramming, and is to date the most computa-
tionally efficient method for solving large-
scale linear programming.

For nonlinear mapping F: R"— R", the
level-m perturbed composite Newton method
for F(x) =0 takes m simplified Newton
steps between every two Newton steps and
has a QQ-convergence rate of 72 + 2 under the
standard Newton method assumptions (Orte-

ga and Rheinboldt, 1970). This method cov-
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ers the middle ground between the extremes
of the Newton method and simplified Newton
method, and is of value when » is large and
the mapping F can be evaluated cheaply. In
this paper, we will give a predictor-corrector
interior-point algorithm for the monotone
variational inequality problem VIP ( K, F)
under the predictor-corrector motivation,
where K= {x € R"| Ax<<b, x=01} is a poly-
hedral, A is a given m X n matrix and b is a
given vector in R”. It is proved that the algo-
rithm is equivalent to a level-1 perturbed com-
posite Newton method. Computations in the
algorithm do not require that the initial itera-
tion be feasible. Some computational results
are presented.

PREDICTOR-CORRECTOR
POINT ALGORITHM

INTERIOR-

In this section, we derive the predictor-
corrector interior-point algorithm for the vari-
ational inequality problem VIP ( K, F ),
where the mapping F: R"—R" is assumed to
be continuously differentiable and a monotone
on K. The mapping F is a monotone on K,
ie.» (x—=y)(F(x)—F(y))=0 for all x>
y& K if and only if VF (x) is positive
semidefinite on K (Ortega and Rheinboldt,
1970). It is easy to prove that the solution of
VIP(K F) is the same as that of the follow-
ing constrained system of nonlinear equa-
tions:

J F(x)+A'y—u
b—Ax—v
( ): = U
JGh= XUe NED)
l YVe
z=Cx" y5 out vDT=¢
where e is the vector of all ones; X, Y, U,

and V are diagonal matrices corresponding to
x> ¥, u and v, respectively, u€ R", vE&
R are auxiliary variables. For complemen-
tarity equation XUe = §, the Newton-type
method deals with the linearized formula
XAu + UAx = — XUe with a serious flaw. It
forces the iterations to stick to the boundary
of the feasible region once they approach that
boundary. That iss if a component [ x, J; of a
current iteration becomes zero and [ u, 1, >0,

then from the linearized formula, we see that
[x,]; for all Z>Fk;s i.e.» this component will
remain zero in all future iterations. The anal-
ogous situation is also true for variables u, y>
v. Such an undesirable attribute clearly pre-
cludes the global convergence of the algo-
rithm. An obvicus correction is to modify the
Newton formula so that zero variables can be-
come nonzerc in subsequent iterations. This
can be accomplished by replacing the equation
XUe = ¢ with the perturbed equation XUe =
ue> 1 >96. Of courses this is exactly the in-
troduction of the notion of adherence to the
central path. It is known that such adherence
tends to keep the iterations away from the
boundary and promote the global convergence
of the Newton interior-point method.

Instead of Eq. (1), we consider the fol-
lowing constrained system of nonlinear equa-
tions:

FGx)+A'y—u=0,b—Ax—v=9,

XUe=pe>YVe=pe, x>y,u>v=06 (2)

Rather than applying the Newton method to
Eq. (2) to generate correction terms to the
current estimate, we substitute the new point
(x+Ax>y+Ay, utAu, v+Av) into Eq.
(2) directly and obtain the equivalent system

VFGOAx + A'Ay —Au=u— A"y — F(x +
Ax)+ VF(x)Ax,

—AAx—Av=v+ Ax —b>

XAu + UAx =pe — Xu — AXAu>

Av+ VAy=pe— Yv—AYAv (3

where AX and AY are diagonal matrices cor-
responding to Ax and Ay, respectively. To
determine the correction approximately satis-
fying Eq. (3), we first solve the equations:

VFGOA +ATAy—Mi=u— A"y — F(x),
— AN —Av=v+ Ax — b
XAu+ UAx = — Xu>
YAy + VAy= — Yv

for the affine direction (Ax,» Ay, Au> Av ),
then use it to approximate the nonlinear terms
on the right-hand side of Eq. (3) and estimate
the centering parameter p. To estimate p»
we first define

Yi 2
—=] . .
X Ay; <0

J

a = omin {TZ%;ZA;CJ<O:
J
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u;

AR <0s e AV, <0)

o —k (4

where 6 € (0,1), and compute the new com-
plementarity gap

g=C(x+aAx) Cu+alrud)+Cy+aAy)"
(v + aAv), then choose the centering param-
eter 1 by the following formula:

( - 2( 2
J T o = if [ xTu+y'vi=1
<L lxutyv ln ,
# xTqu Tv
4‘L®(n) if |xTu+y'v|<l1
2, <5000,
(n)= [" = (5
ORI L3, 1 >5000.

It is easy to verify that, for the affine direc-
tion (Ax»Ay>AusAv) and the centering pa-
rameter y» the solution (Ax, Ay, Au,Av) to
the following equation satisfies Eq. (3) ap-
proximately

VF(x)Ax +A"Ay — Au=
F(x+Ax)+ VF(x)Ax,
—AAx —Av=v+ Ax — b,
XAu + UAx = pe — Xu — AXAu
YAv+ VAy=pe— Yv—AYAv

u_ATy_

Finally, we determine the actual step length
a from Eq. (4) using Ax,> Ay, AusAv to re-
place Ax»> Ay, Au» Av and define the new
point by x, =x +alAx,y. =y+alAy,-u.=
u+talAu>v,.=v+aAv. The algorithm con-

determined tolerance.

Now we summarize the proposed predic-
tor-corrector interior-point algorithm for VIP
(K, F). For the sake of simplicity, we let e
denote the vector (05 ***5, 05 1, ***» 1) whose
numbers of zeros and ones are all n + m and
write Az =(Az, Ay Au’s AvDT.

Algorithm 1 (Predictor-corrector interior-point method)

Given z(y>0, for £k=0,1,""",
1) Solve V G(z,)Az= — G(z) for Az,;
2) Solve VG(z,)Az = —
F(x, + Ax, ) —F(x,)—V F(x,)Ax,
0
AX,Au,
AY,Av,
3) Choose p;, >0 and solve V G(z,)Az =
e for Az.s

for Az,,s

4) Set Az =Az,+ Az, + Az

5) Choose ¢, € (0,1) and set @, = min
ﬂ,ak&k}where
[ ax<0s ¥ iay<o;
a, = min Ax, Ax — Ay, y;
u;
R w0 T Av<0}

6) Set Zp+1= 2p T apAz.

In this section we are not concerned with
the specific choice of the initial iteration z or
the algorithmic parameter o,,» we notice that
Mehrotra’ s choices allow us to obtain very
impressive numerical results in the numerical
experiments.

EQUIVALENCE

In this section we prove the equivalence
between the predictor-corrector interior-point
method and the level-1 perturbed composite
Newton method. At first we present the per-
turbed composite Newton method for Eq.
(1). Itsidea is to replace the Newton compo-
nent in the primal-dual interior-point algo-
rithm with a composite Newton component.

Algorithm 2 (Level-m perturbed composite Newton
interior-point method)

Given z( >0, for k=051,
1) Solve VG (z,)Az = — G (z,) for
AZO,

2) Fori=1,*sm, solve VG(z,)Az =

~G(z, + >‘ Az) for Az;s

j=0
3) Choose s, >0 and solve V G(z,)Az =
e for Az,s

m

4) Set Az = >, Az; + Az

i=0
5) Choose 6, € (0,1) and set o, = min {1,
o, } where
~ { X; yi . .
Q, = min Ax, CAx; <03 _ij~Ay]-<0,
M Au<0; Ay <0)
—Auj J _AVJ' J

6) Set Zp+1= 2, T Az

We say that two algorithms are equivalent
if given a current iteration they produce the
same subsequent iteration for the same choice
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of common algorithmic parameters.

Theorem 1 The predictor-corrector interi-
or-point method (Algorithm 1) is equivalent
to the level-1 perturbed composite Newton in-
terior-point method (Algorithm 2).

Proof Let z be the current iteration and
let Az, be the solution in predictor step for
VIP (K, F)>. Comparing Algorithm 1 with
Algorithm 2 (m = 1), we see that it is only
needed to show that

G(z+Az,))=
F(x,+Ax,) — F(x)— VF(x)Ax,
]
AX,Au,
AY,Av,

By the assumption, Az, satisfies V G (z,)
Az,= — G(z,). Simple algebra indicates that
the above formula holds and we have estab-
lished the equivalence.

COMPUTATIONAL RESULTS

In this section,» we present the computa-
tional results in the implementation of the
predictor-corrector interior-point method CAl-
gorithm 1) for problem (VIP). Twenty-six
standard test problems with linear constraints

(Hock and Schittkowski> 1981) are solved.

is equivalent to VIP(K, F) with F(x) =
V f(Cx), we reformulate the nonlinear pro-
gramming problem as variational inequality
problem. When a variable [ x J; is uncon-
strained or nonpositive constrained, we take
the precaution of including the simple
bounds: [x1],.= — 100 or — 100=<[ x ],<<0>
respectively. In the experiments we had not
verified whether the assumptions on F were
valid, nevertheless, the runs on all the test
problems terminated satisfactorily under the
prescribed stopping rules.

The solution of system G (z)Az = a in
steps 1, 2 and 3 was obtained in two steps:
first solving CAx = d for Ax, where a =
(alﬂ" a%‘x, ag" a'"‘)'"‘, C= Xﬁl U+ VF(X)
+A'VYA, d=a,+ X 'ay— ATV (a,
+ Ya,)then calculating Ay, Au and Av from
the expressions Av= —AAx —a,>» Au=X""
(ay;— UAx) and Ay=V 'Ca,— YAv). In
the experiments of Algorithm 1, the initial it-
eration z, was set to be 10e; the parameter
. was estimated according to Eq. (5) and o
=0.5, op — 1—-C1- O‘/cfl)/Za k=1,2,"",
the user-predetermined tolerance € = 10e-6.
The computer codes were written in Matlab
5.1. We ran the experiments on an AMD
K6-2 computer. The results obtained are giv-
en in Table 1, where the number of variables

Because the nonlinear programming rféi,{lf( x) n» the number of constraints m, and the
Table 1 Numerical results on Algorithm 1

Prob. n m NI /" NORM | Prob. =n m NI /* NORM
HSI 2 1 6 0.00001 6.579E-8 HS2 2 1 7 0.05043  9.860E-7
HS3 2 1 7 0.00003  1.435E-7 HS4 2 1 5 2.66667  9.981E-8
HSS 2 2 6 —1.9132 1.302E-6 HS9 2 2 6 —0.5000  2.499E-6
HS21 2 3 7 —99.960  5.315E-7 HS28 3 2 7 0.00001  6.184E-6
HS35 3 1 7 0.11111  2.760E-7 HS36 3 4 8 —3300.0  3.685E-8
HS37 3 5 9 —3456.0  2.949E-7 HS38 4 4 7 0.00001 5.962E-8
H341 4 6 7 1.92593  5.239E-6 HS44 4 6 8 —15.000 1. 150E-6
H$45 5 5 7 0.99999 1.620E-7 H$48 5 4 9 0.00004 1.201E-7
H$49 5 4 7 0.00007  4.401E-6 HS50 5 6 7 0.00003  5.361E-6
HS51 5 6 8 0.00002  2.307E-6 HS52 5 6 5.32660 5.266E06
HS53 5 11 7 4.09300  7.787E-7 HSS5 6 14 6.33333 1.852E-7
HS76 4 3 7 —4.6818  3.914E-6 HS86 5 10 11 —32.349  2.154E-6

HS110 10 10 8 —45.778 1.354E-6 HS118 15 44 14 664.820  8.398E-6
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number of iterations NI, the final objective
value f* and the norm of G (z”") NORM
achieved by the algorithm are given. From
the structure of Algorithm 1, we know that
the number of mapping F evaluations is dou-
ble NI and that the number of Jacobian ma-
trix V F(x) evaluations is the same as NI.

We summarize the results of our numerical
experimentation in the following comments:

1. The algorithm implemented does not
require that the initial iteration be feasible and
solves all the problems tested to the given tol-
erance.

2. The total number of iterations is small
and the quadratic rate of convergence is ob-
served in problems where second-order suffi-
ciency is satisfied.

3. The proposed predictor-corrector inte-
rior-point algorithm is stable and robust for
solving monotone variational inequality prob-
lems.

CONCLUSIONS

The level-1 perturbed composite Newton
method for nonlinear equation has at least
quadratic convergent rate under some condi-
tions. The predictor-corrector interior-point
method represents a significant computation
advance and is the most computationally effi-
cient method for large-scale linear program-
ming. Motivated by the two methods, we
have proposed a predictor-corrector interior-
point algorithm for the monotone variational
inequality problem on a polyhedral set in this
paper. It is proved that the algorithm is e-
quivalent to a level-1 perturbed composite
Newton method. Computations in the algo-

rithm do not require any feasibility of the ini-
tial iteration. Some computaticnal results
showed that the algorithm is stable and robust
for solving monotone variational inequality
problems. the convergent rate,
convergence and the choice of parameters of
the algorithm must be studied further.

Howevers
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