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Abstract:

The rejection sampling method is one of the most popular methods used in Monte Carlo

methods. It turns out that the standard rejection method is closely related to the problem of quasi-Monte
Carlo integration of characteristic functions, whose accuracy may be lost due to the discontinuity of the
characteristic functions. We proposed a B-splines smoothed rejection sampling method, which smoothed
the characteristic function by B-splines smoothing technique without changing the integral quantity. Nu-

merical experiments showed that the convergence rate of nearly OCN 1) is regained by using the B-

splines smoothed rejection method in importance sampling.
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INTRODUCTION

Standard rejection sampling method is of
importance in practical quasi-Monte Carlo
methods such as decision process and sampling
from a density function. However it is not as
efficient as theoretically expected.

To estimate the integral

1 = [If(x)dx (D
where I' =[0, 1] is the s-dimensional unit
cubes; and f: I'>R, one chooses a point set
Py= {x,s**»xy} in I’ and compute the esti-
mate

LN fed 2

For Monte Carlo(MC) method, the points of
Py are independent identically distributed (i.

IN

i.d.) samples from the uniform distribution
on I'. For the quasi-Monte Carlo (QMC)
method( Niederreiter, 1992, Py is a low dis-
crepancy point set and the error bound of the
QMC estimate ExCf) = [ ICf) — Iy| is the
Koksma-Hlawka inequality

ExCAO=<DyV(O (3)
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in which Dy is the discrepancy of the
quence and V() is the variation of f in the
Hardy-Krause sense. Rejection sampling method
can be interpreted as the integration of a char-
acteristic function. In general, characteristic
functions have infnite variation, the exception
being rectangles with sides parallel to the co-
ordinate axes. So the Koksma-Hlawka in-
equality cannot be used to derive an upper
bound and theoretical error bounds of size O

Se-

(N1 are often not observed.

We smoothed the characteristic function
by B-splines technique, and regained the error
bounds of size OCN 1), B-splines smoothed
rejection sampling method is introduced in
section 2. We also developed the importance
sampling by using B-splines smoothed rejec-
tion sampling method in section 3. Numerical
experiments will be given in section 4.

REJECTION METHOD

Standard Rejection Method, interpreted as integra-
tion of characteristic function

Let p(x) be a probability density func-
tion defined on I'. The algorithm of Standard
Rejection can be described as follows:
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1. Select y=sup p(x).

x€r
2. Repeat until N points have been ac-

cepted:

Ca) Sample C x,,
1175,

(b) If v, <7y 'pCx,)s accept trial point
X;.

v, ) from U ([0,

Otherwise, reject them.

By Bayes’ formulas the density function
of accepted points p (X can be interpret-
ed as a Monte Carlo evaluation of the follow-
ing integral:

|
[Ox(y < v 'pCxdddy

1
,]’
J;[Jox(sf<17' pCx)Ddyldx

2 accept( X ) =

~ pCxD/y
- 1/y

where ¥ C(y < 77! p (x D) is characteristic
function defined as:

X<y<y*1p<x>>:%

= pCx).

’ lf y< Vflp(x),
» otherwise.

4>

So this algorithm produces an infinite se-
quence P of accepted points in s dimensions
distributed according to p(x).

But how well is the quality of the first N
elements of the sequence P? We introduce the
more general concept of discrepancy(Fang et
Definition 1 Assume that Py =
++, N} is a set of points in I's and Fy(x) is
the empirical distribution of Py> i.e. >
Fy(x) = (1/NDX Y 5 e, < x). The F-
discrepancy of Py with respect to defined cu-
mulative distribution function F(x) is by

DP(PV):sup|FN(x)—F(x)| .

x€r

{x,-,z'=1,

(5

The F-discrepancy is a measure for the
quality of the representation of F(x) by a
point set Py. As shown in the literature
(Wang,> 2000), The F-discrepancy is in fact
the error of QMC integration of a characteris-
tic function and the known theoretical bounds
may only be OCN V5 D), which is due to
the discontinuity of the characteristic func-
tion. A smoothed rejection method was given

(Wang, 2000; Moskowitz et al., 1996),
which replaced the characteristic functions by
continuous but non-differentiable functions.
In section 2, we propose a B-splines smoothed
rejection sampling method which introduced a
differentiable weight function.

Smoothing characteristic function

We can smooth the discontinuous function
by B-splines technique ( Schumaker, 1981 ).
It’s well known that for any integrable func-

tion f(x)» x € R, we call

1Jf+§
flxd = | fCeode (6)
/ h .r*%

its average function. Denote D 'f(x) =

flf( t)dt » we have
f,Cad)=h"18D ()

where 8,1F(x)=F(x+%)—F(x—%).

We apply the smoothing operator h !
5, 'Ch is smoothing width) to some simple
and basic discontinuous functions. For exam-
ple, if fC2) =2, then

. 1 h h
f,I(x)Zﬁ[(er*)z«F —(x—z)a]

2
(0, if x<—%,

=Gt Byop, i - Raat,
. if o>

It is obvious that average function f;,(x)
is continuous function. When £ is sufficiently
small, f;,Cx) is the approximation function of
fCx ). The difference between them is the

. h h
function value over [+ — 5 + > 1.

Theorem 1 If f,(x) is the average function of
fCax) defined by Eq. (6), then

Silad==fCa)
and l/ln"'l f,Cx) = fCa).

We call the above described smoothing
technique B-splines smoothing technique.

B-splines smoothed rejection sampling method,
without changing the integral quantity

The characteristic function ¥ (y <y 'p
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(x)) defined by Eq. (4) can also be smoothed

by B-splines smoothing technique. We
rewrite y(y<y 'p(x)) as
Wo(x,y)Z()/_lp(x)—y)g, 0<y<1.

We apply the smoothing operator (27 ) !
8D ' to Wy(xs y)s where smoothing width
is 2h.

W(;(x,y):(Zh)_182hD_1W0(x,y):
Q) My Tplxd—y+h), —
(Cy plxd—y—h) ]
Denote f1(y)=Cy 'p(x)—y+h), and f,

(W=Cytplx)—y—h);
-1

applying the
smoothing operator h ' 8,D "' to f;(y) and
f>Cy) again, we get the differentiable weight
function.

Walx, 3»)=Qr 'Th gD i) —h teD ! () ]=

1,

<y*1p<x>—y—%>2

[Cy tplxd)—y+h)—

2h
2h
Syl —y+ R
2h ’
Cr 1 pCad =yt

M

4h?

0,

The function Wy (x, y) is our weight
function used to replace characteristic function
¥ (y <7 'pCxD). The modified B-splines
smoothed rejection sampling method is de-
scribed as follows:

1. Select y=<<sup p(x).

€T
2. Repeat until the sum of weight w, is
within one unit of N:
(a) Sample (x,5 v,) from U(LO, 117D,
(b) Set weight w0, = Wy (x5 y,) to points
X,» namely the accept probability of point Cx,»

3h

Hoy<y 'plx)— >

if Vflp(x)—%\y< yflp(x)—%,

if y*1p<x>—’—2‘<y<y*1p<x>+%,

i y*'p<x>+%<y<y*'p<x>+%,

oo 3h

if v 'plx)+ > =y=<l.

7

v, s w,.
Theorem 2 Wy (x, y) is weight function de-
fined by Eq. formula(7), ¥ (y<<y 'pCx)) is
characteristic function defined by Eq. (4). We

1 1
haveJOWg(g(x, y)dy = Jox(y < Vflp(x))dy .

The sequence generated by B-splines smoothed
rejection sampling method is distributed accord-
ing to p(x).

Proof Set = )/_lp(x)—%, then

5hy (Gt —y+ h)? Sh
1 ( ) J l+/1[(t_y+7)_ 2h ] z+2/z(t_y+7)
[ Wi yody=] 1| 2h a],, an P
153 (¢ — 5y + 3R D7 _
Jz+2/1 4/12 dy N
11h  h  h _ 3h _
T R ST Rl S A AR

1 1
So Jovvm(x’y)dy = [Ox(y < y"p(x))dy.

is distributed according to p(x).
We will apply the B-splines smoothed re-

That is to say that the sequence generated by jection sampling method to importance sam-

B-splines smoothed rejection sampling method

pling in quasi-Monte Carlo integration in Sec-



342

LEI Guiyuan

tion 3.

IMPORTANCE SAMPLING

Standard importance sampling

Importance sampling is probably the most
widely used variance reduction technique a-
mong MC methods. Rewrite the integral I
Cf) as

1) = | plodx = | f((—x))p<x>dx,

where p (x ) is an importance function,
which is chosen such that it mimics the be-
havior of f(x) over I'. The standard impor-
tance-sampled estimate is

13

Zd
N,’:L

f(x,)
p(xi)’

IY = (8
where x> ***» xy are i. 1. d. samples from the
density p(x). Rejection sampling method is
used robustly to sample points from p(x).
However, the improved performance for
OMC method is not often observed, this
degradation is due to the discontinuity of
characteristic functions. We introduced the B-
splines smoothed rejection sampling method
into the importance sampling, and regained
integration error of size OCN 1),

Improving importance sampling with B-splines
smoothed rejection sampling method

We rewrite the integral I1C f) as

CH = [lﬂx ddx

_ y[ I 1 Codx

pCx 7
= y[ &[[ x(y < ¥ 1pCxddy ldx
(
= 7[ %[J‘ IYIY(x’y)dy:Idx
3 SCxD

/)(x)
%mLiZIWm(xwy, »Cx; )

The improved importance-sampled esti-
mate of QMC integration is defined as
R FCx)
- NZIJ (?(?(x’yz)lb(x)’

i

If\]mb)

9>

where Wy (x5 y) is defined by Eq. (7) and
N is chosen such that the sum of acceptance
weights wj; is within one unit of N. It is ob-
vious that
N~N"*/y

Numerical experiments for improved im-
portance sampling in MC and QMC integra-
tion will be given in the following section.

NUMERICAL EXPERIMENTS

In numerical experiments, the standard
estimates,> the standard rejection methods and
B-splines smoothed rejection sampling meth-
ods for MC and QMC integration have been
compared on several classical functions. The
following estimates will be computed by Egs.
(2), (8) and (9):

Crude Monte Carlo:

N
Y = (/N D) fx)x, — U0, 11

i=1

Standard rejection method:

N
Q= (/N DL x)D pCxdsx; — plxds
i=1
accepted pointss;
B-spline smooth rejection:

= (1/ND > Wi Cxir v fCa )/ pCxy).
i=1

For a given N take 7 samples of these esti-
mates, denoted by Y’ (&) for 1=<k<"m (using
successive points from a single sequence). The
final approximation of integral I( /) is given by
19 = (1/m) > YV (R, In all cases the errors

k=1

can be estimated by the empirical standard devia-
tion(sd error Vs defined as:

- 1 Xhryop i
Gj_(m—l)kz_l‘[Y‘\]](k) I,

We use Halton sequences(Bratley et al. »
1992) for quasirandom points and generate
pseudorandom points using function ran2
(Press et al.» 1992). Set m = 75, thatis to
say that 75 runs for each estimate. Log-log
plots are used so that slopes(which are pre-
sented parenthetically in the Figure keys)cor-
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respond to convergence rates.

One example is Monte Carlo and quasi-
Monte Carlo integration over I’ =010, 1] of
the function
Flx)= o sin G disin’ G wsin’ B ) o
+ ottt x7)
200

Using the positive definite importance function:

(sin(1) + =

P(x) — le1—(sin2(%;1:1)+sin2(%;1:2)+sinz(%.r3))

—(sin*(Z, 2T ) gin (X
Where 7 = J‘ 76‘1 (sm(2x1)+sm(2x2)+sm(2x3))dx _
I

U o
e- (J e 94203, which is easily approxi-
0
mated to high accuracy as a one-dimensional
integral.

The resulting sd error using pseudoran-
dom and quasirandom points are presented in

Fig.1 and Fig. 2.

'k T T T Crade Momte cario | ———0.475) 5 v T - T I
Standard Rejection Methad = *~(—0.433) § Crude Mom? cano (0949}
= B-spline Smooth Rej.h=0.1 — - =(—0.802} 10k Standard Rejection Method ~ — = (—0.642] |
c E B-spline Smooth Rej.h=0.]  — - =(~0.994)
& 107k F .
= 3 g L
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Fig.1 'The resulting standard deviation error us- Fig.2 The resulting standard deviation error us-

ing pseudorandom points

The computational examples show that:

1. QMC methods give much smaller er-
rors than MC methods(with or without im-
portance sampling)with the same sample size.

2. Both for QMC and MC, the impor-
tance sampling with B-splines smoothed rejec-
tion sampling is better than that with stan-
dard rejection sampling.

CONCLUSIONS

We can conclude that B-splines smoothed
rejection sampling methods can improve the
rejection method, and make the importance
sampling more efficient in QMC methods. It
can also be seen that use of modified differen-
tiable weight functions in B-splines smoothed
rejection sampling methods may improve MC
methods. We expect that B-splines smoothing
technique can be used more widely in MC and
QMC methodss; such as many methods in-

ing quasirandom points.
volving decision process.
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