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Abstract:

The computed orientation distribution of fibers immersed in laminar pipe flows showed that the

longitudinal distributions are wide for small Reynolds numbers and become narrower with increasing Re. For
low Re number, the axial orientation distributions are broad with almost no preferred orientations. For high
Re number, the axial distribution becomes narrow, with sharp maxima. The mean values of the longitudinal
orientation depend strongly on the Re number. The computed results are in qualitative agreement with relevant

experimental results.
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INTRODUCTION

The orientation behavior of fiber immersed in
fluid is an important problem in the processing of
composite materials. The fiber orientation pat-
tern is the dominant structural feature of the fiber
composites which is stiffer and stronger in the
direction of greatest orientation, and weaker and
more compliant in the direction of least orienta-
tion. Numerous investigations were performed
during past yearss regarding gravitational sedi-
mentation and alignment of fiber in quiescent flu-
id. This deals with orientable fibers moving in
externally imposed flows.

The spatial orientations of fiber depend on
the flow velocity gradients, external forces or
torques rotational Brownian motion or local mi-
cro-turbulence. The flow velocity gradient and
the fiber” s rotational motion are important fac-
tors affecting the fiber orientations. The motion
of fibers is influenced by forces and moments in-
ducing them to align themselves in preferred spa-
tial orientation. The phenomena preferred orien-
tation of fibers was observed experimentally by
Spurny et al. (1978). Chiba et al. (1997) com-
puted the fiber orientation in a backward-facing
step channel. Ericsson et al. (1997) calculated

the interaction between the flow and fiber crien-
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tation in squeeze flow. Doesburg et al. (2000)
studied the preferred orientation of Au-Sn alloy
plated fiber deposits. Zak et al. (2001) investi-
gated a 3-D fiber orientation distribution in short-
fiber composites by a two-section method. Bur-
nell et al. (2001 ) gave the pressure-induced
change in orientation order of solutes in liquid
crystals. In spite of the indirect experimental ev-
idence of the existence of preferential orientations
of fibers; no quantitative information has yet
been provided pertaining to these orientations and
to their dependence upon the flow characteristics
in a pipe. Bernstein et al. (1994) studied exper-
imentally the orientation distribution of fibers.
This paper deals with the computation of the ori-
entation distribution of fibers moving in a pipe
flow.

BACKGROUND FLOW FEILD

The background flow is pipe flow as shown
in Fig. 1, with velocity profile

uz(r)=2u3V<1—;—22) (1

where wu. is the velocity of flow in the pipe, R is
the pipe radius, r is the distance to the center
line, u,, is average velocity of flow.
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Fig.1 Pipe flow

FIBER DYNAMICS

Basic assumption

The computations are based on the following
assumptions:

1. the continucus medium hypothesis is suit-
able; i.e. Kn<<1.

2. fibers are non-Brownian, slender rigid
cylinders (Fig.2) in Newtonian fluid and the as-
pect ratio is larges [/a>>1([, a are the semi-
length and the radius of the fiber respectively),
and the end effect of cylinders is not considered.

Fig.2 Fiber

3. the length of fiber is much smaller than
that of the flow field, smaller than the mesh, so
that the flow around each fiber can be considered
as Stokes flow.

4. the suspension is dilute, the interactions
among the fibers and the lubrication effects can
be neglected.

Forces and torque exerting on fibers

The fibers move under the effects of Stokes
drag, added mass; DBasset force and high-fre-
quency vibration. High-frequency vibration af-
fects the motion of the fibers to a certain degree.
The complicated frequency parameter A> = —
il’w/ v determines the frequency of the fiber vi-
bration, where [ is the minimum distance in the
direction perpendicular to that of the fiber mo-

tion, w is the angular frequency of the fiber vi-
bration, and v is the kinematic viscosity of the
fluid. Comparing the viscosity relaxation time
with the period of fiber vibration, we find that
|A] = O0C1). The particle velocity is given by
the real part of U, = Uje ™, and the fiber dis-
placement is Uy/w. In fact, speed of the fiber
vibration is small, namely U,/ wl << 1, so Re =
Wy/v= |212(Uy/ )<< 1.

The low- and high-frequency hydrodynamic
resistance of an oscillating particle is defined by
(Pozrikidis, 1988):

F= plRe {R* Uy} )
where
r— (R A(1/6m)(RRD, [2] <<t
VP + AB”, A >>1
3>

and R, M” and B” signify Stokes drag, added
mass: and the tensor of Basset force. For an el-
lipsoid with suitable aspect ratio» the results of
numerical computation showed that R could be
approximated very well by expansion at any fre-

quency (Pozrikidis, 1989):

R~R’+AB” + XM +[A/(x+1)]
[(1/6x)(R*R"))— B~ ] 4>

This formula can be transformed into (3)
under certain conditions. When the last parame-
ter is small, there is extremely high accuracy.
Resistance R disappears for a sphere, so the for-
mula is precise. The Eq. (4) also can be applied
to calculate the flow resistance in an unsteady
flow of fibers with a proper aspect ratio. For a
fiber> all the tensors have two principal values in
the direction of the symmetry axis and the direc-
tion perpendicular to the symmetry axis respec-
tively. The aspect ratio @ = [/ a is the ratio of
the semi-length to radius.

In order to calculate forces on a fiber, we
need to know the coefficients with a tensor form
of those forces. All the tensors have two princi-
pal values, one in the direction of the symmetry
axis and the other in the direction perpendicular
to the symmetry axis» such as R% < RY%, M}«
MY, BT~ B%, (RY%)>*/6r (R’ )*/6x. For the
above parameters, this paper adopts the experi-
mental results (Cox, 1970) with suitable ratio.
The chart form of the results given by Loewen-
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berg (1993) leads to an inconvenient implemen-
tation. In this paper> the method of the least
squares is used to fit each curve into a multinomi-
al function and to obtain the coefficients of each
multinomial. Then we construct a series of func-
tions to solve for the principal values of any ten-
sor in terms of any @.

Particle equation of motion
Pozrikidis (1989) deduced an expression for

the force F on a vibrating fiber. F is a function
of w:

F=—pa R"+B”X+MA+
(B"-BLa/A+ DU (5

This formula can be used to calculate the
force F on a fiber. Here R, M, B represent
Stokes drag> added mass force and the tensor of
R0 R’/ 67,
U is the relative velocitys and A2 = — iwa®/v.
The counter-transform of the fon’nula is:

the Basset force respectively, B =

o[t dU |
F__/Ja{R U+(Tc)1/2 Jod‘r
dz a’y . . dU
(oot Mgt
ﬁ(BO—B“%

J; Ccli—s_]etfferfc(«/ t— z-)dz'} 6>

The torque on a fiber is

L3=%n/ml3(c—[9)|:1 (2 —1.833) 1D
where ¢ = In'!' (2¢), C =
du, Jdv dv i Ju )
(#_J) + o0 =L — sin’0 =2, 0 is the
x dy dx dy
angle between fiber orientation and the pipe axis,
and u, and v, are the components of the velocity
of the flow.
Eq. (6) is divided by particle mass mz, =

pytl*as and then is written out with its scalar

— sinfcosd

forms in the Cartesian coordinates. Eq. (7) is
divided by the fiber moment of inertia round its

center J, = %ﬂ /%, and note that the flow field is

steady, so there is

Ciy g0
AT R'ACU, —

[p” d .
1 _ .
C, SZJ ATB” A d‘t( xX)

X = X)) +

d % _ ..
(; _:_)1/2 — C3p" AT MLAX +
e[ A1B — oA d_ %)
C sJ (B - BHA L X0
e Terfe(V ¢ — TIdr €]
0 = 4p(C — 0ol 1 - 6In2 — 1.8333)1/ p,a?
D)
here St = pfazU/S/x, o = pi/0,. Ci» Cy
C;5 C, are four constants cbtained in the method
1 U
of the least squares; and C, = b o’ C, =
L L =Ll c=c. Uads

2rdmeV/8/U 0 2me
denote the characteristic velocity and length of
the flow respectively. oy is the fluid density. U,
is the velocity of the flow at the position occupied
by the fiber. X =[x, y]1"is the coordinate ma-
trix of the fiber. The subscripts p and f denote
fibers and flow respectively. A is the transfor-
mation matrix from the coordinates in the direc-
tion of the fiber axis to the Cartesian coordinates:

cos  sind :|

—sinf@  cosf

Al

From Eq. (8), we can obtain two scalar e-
quations of x >y and their derivatives:

x=f1+bl+ml*zx+m2%y+bcl

y=f24 b2+ m3 % >+ md* y+ be2
In Eq. (10D, we let

(100

it

* _1 d B . .
czﬂ/SJA B A L%

(¢ —dTr)l/z B [Zﬂ

Ciy g0 5 _[
GATRAU, - %O =

‘A 1 m2
Cip" A7'MuA = [23 24],
. A NB - B® d .
Cof G [ A8 - A L

(= X0 erfe(/ 2 — odr = [ X1].
bc2
In the above equations, the matrix A is re-
lated to the azimuth angle. The Basset integral
term and the high-frequency correction term
have something to do with the accelerate course.
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We cannot find an exact solution for the equa-
tions with the Basset integral term and the high-
frequency » so the only way to solve them is by
numerical method.

Steps of computation
1. Calculate the flow field to get the distri-
- : Ju du Jdvu
butions of the flow velocity and o2’y dx

du . .
Jy in the pipe.

2. Calculate the forces on the fibers.

3. Calculate the tracks of the fibers. First,
time ¢ is divided into time points #;(: =0,1,2,3
-*) by unequal intervals which changes from
10 7% t0 10 " based on the requirement of preci-
sion, so the problem is transformed into solving
for quantities at every point of time. Second, if
the velocities, angular velocities and azimuth an-
gles at time #; and all the times ahead of it are
calculated we can get the acceleration at time
t;. From the acceleration, the velocity of the
next time #;+; can be computed approximately.
Based on the velocities at #; . and all the time a-
head of it,» the positions of the fibers at #; . can
be denoted as follows:

i’i.ﬂ = ii + i’idt

Vit = ;b ydt an
Xi+1 — X + (.2‘1‘2‘_1 + ii+1)dt/2

Yot = 3+ (g yde/2 a2

4. Again, in Eq. (9), we can calculate the
angular accelerations at #; from the angular veloc-
ities and the azimuth angles at #;» and then cal-
culate the angular velocities and the azimuth an-
gles at ;+1:

9i+1 — 91' + (C - 61‘ )L/3dt
0{.;.1 — (9i + (91‘,1 + 9i+1)dt/2 (13)
where L3 =4[ 1 — 6(In2 — 1. 8333>1/

s’

In the computation, when a fiber strikes the
wall, the computation ends. The final steady
distribution of 8 is what we want to get.

RESULTS AND DISCUSSION

In order to compare the computational results

and experimental ones, the same parameters of
pipe flow and fiber with the experiment (Bern-
stein et al. » 1994) were selected in the computa-
tion. The diameter of pipe was 38 mm> the
mean flow velocities ranged from 0. 18 to 3.7
em/s. Fig. 3 is statistical longitudinal orientation
0 for different Re number; Re number is defined
based on fluid average velocity and fiber diame-
ter. The left side gives the experimental results,
the right side gives the computational ones. Ab-
scissa is degrees of @5 ordinate r is ratic of fiber
numbers which locate some region to total fiber
numbers. Fig. 4 is the dependence of the mean 0
upon the flow Re number. Fifty fibers were cal-
culated in the computation. We calculated the
case of seventy fibers in Re = 51 for trial; the
disparity for different number of fibers was not
evident. Because it took long time to track a
fiber, we selected fifty as the number of calculat-
ed fibers.

1. Computational and experimental results
were in accord qualitatively.

2. The distributions of the longitudinal ori-
entations were asymmetrics with at least one
prominent maximum observed in the range from
0° to 30°. Sometimes; an additional lower maxi-
mum could be observed at larger #-angles. The
reason was that when fibers had orientations near
0° and 90°, the torque exerted on a fiber was the
least.

3. For Re = 51, the distributions were
broad, the mode of the maxima was comparable
to the neighboring modes; the longitudinal orien-
tation distributions were broad, with almost no
preferred orientations. The mode became larger
at low @ values at Re =110. For Re number ly-
ing between 504 and 1584, the distributions pa-
rameters were localized around @ values smaller
than 30°. Therefore, the range of the mode lo-
cations depends on the flow Re number. At low
Re numbers all fiber orientations seemed equally
probable. With increasing Re number, the
fibers” alignment with the flow direction became
more obvicus. This phenomenon can be ex-
plained by the fact that fiber orientation depends
on the force and torque, which are related to the
fluid velocity and velocity gradient. At high Re
numbers, velocity and velocity gradient are high-
er> then the torque on a fiber which has no pref-
erential orientation near the 0° is larger based on

Egs. (6) and (7).
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Fig.3 The distribution of longitudinal orientation 6 for different Re number

Cay)s (ay)s (ag)s (ay)5 (ag) and (ag) are experimental results; (by)s(hy)s (hy)s (hy ),y (bs) and (by) are computational results
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4. A strong dependence of the mean of the
f-angle on the Re number is easily observed
from Fig. 4. In the pipe flow discussed in this
paper> Re number is a parameter controlling
flows, so we give the results of the effect of Re
number on the orientations of fibers. The effect
of the fiber properties on the orientations deserves
to be studied in the future.

55
45
Sasp T
=3 “\
25
15
1o 160 1000 10300

Re

Fig.4 'The dependence of the mean 6 upon the flow Re
number

computational results;
experimental results

5. There were some differences between
computational results and experimental ones.
The reasons were as follows. Experimental noise
influences the measured values. In the computa-
tion> the number of calculated fibers was not
large enough, so because of the limit of the com-
puter capacitys this led to error statistically.

CONCLUSIONS

The computational results, which agreed
with the experimental ones qualitatively, showed
the influence of Re number on the orientation

distribution of fibers. For low Re number, the
axial orientation distributions were broad, with
almost no preferred orientations. For high Re
number> the axial distribution became narrow-
with sharp maxima. The mean values of the lon-
gitudinal orientation depended strongly on the Re
number.
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