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Abstract:

General solutions for coupled three dimensional equations of piezoelectric media were used in this

work to obtain some analytical solutions for free vibration of piezoelectric annular plates. These solutions not

only satisfy the governing equations at every point in the concerned region but also satisfy the prescribed

boundary conditions at every point on the boundaries. Therefore, they are three-dimensional exact. Numerical

results are finally tabulated .
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INTRODUCTION

Due to their wide applications in engineer-
ing, piezoelectric crystal plates attracted much
attention and had been extensively studied as re-
ported. However, most works were based on va-
rious two-dimensional approximations ( Dokmeci,
1980; Lawson, 1942; Mindlin, 1952; 1972;
Lee et al.> 1987; Wang et al.>2000) .

If a solution satisfies the governing equations
at every point in the studied region and the pre-
scribed boundary conditions at every point on the
boundaries, it is called three-dimensional exact
solution, which is always pursued by researchers
because it represents advances in mechanics the-
ory and provides the benchmarks for assessing
approximate methods. Three-dimensional exact
solutions for the free vibrations of rectangular pi-
ezoelectric plates had been obtained by employ-
ing Fourier series expansions ( Heyliger et al . »
1995; Chen et al., 1998; Gao et al., 1998;
Ray et al.> 1998; Kapuria et al., 1998) ob-
tained three-dimensional axisymmetric piezother-
moelastic solution of a finite transversely isotro-
pic piezoelectric clamped circular plate. Ding et
al. (1999) presented three-dimensional exact
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solutions for the free axisymmetric vibration of
circular piezoelectric plates by utilizing the state
space method as well as finite Hankel transform.
Ding et al. (1996) obtained the general so-
lution for the coupled equations of transversely
isotropic piezoelectricity by introducing two dis-
placements functions. One satisfies a second-or-
der partial differential equation while the other
satisfies a sixth-order one. The form of this solu-
tion is very simple and keeps unchanged either in
Cartesian coordinates or in cylindrical coordi-
nates. Hence it can be a powerful tool to solve
some static and dynamic problems in piezoelec-
tricity. Ding et al. (2000) obtained three-di-
mensional exact solutions of piezoelectric circular
plates which included the non-axisymmetric case
through these general solutions ( Ding et al.»
1996) . This paper extends previous works ( Ding
et al .» 2000) to the case of annular plates. The
three-dimensional exact solutions for the free vi-
brations of transversely isotropic piezoelectric
circular annular plates were obtained under some
boundary conditions. Both axisymmetric and
non-axisymmetric cases can also be considered.
Some numerical results are finally tabulated.
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terms of elastic constants ¢;» dielectric constants
GENERAL SOLUTIONS e ane piezoelectric coefficients e; as follows:

By introducing two displacement functions ¢
and F, Ding et al. (1996) obtained a general
solution for the coupled linear dynamic equations
for piezoelectric media. In circular cylindrical
coordinates (75> 6, z), the general solution can
be written as
u, Z%g_sé} _airAlF’ Uy =
’MJ=A2F’ ¢=A3F’

19
- dr _79_0A1F’

QP

I

where u,> wu; and w are three displacement
components, ¢ is the electric potential, and the

differential operators A, A, and A; are

33
A] = [(013 + 044)633 + (615 + 631)633]F +
z
d
[(013+C44)€11+(615+e31)615]Aa_z (2)
84
Ay = 0445338—24 + {[011533 + cyeq +
2?1 2*
2
Ceps + e3 ) JA - p€339—t2}8—z2 +
82
cnenAA — e A EF (3)
d
Ay = 044533a—z4 + {[011833 + cyels —
2% 9?
Ceps + ey )Ceps + e ) JA — p€333_t2}8—z2 +
2
ciieis AA — pejs A (4)

22’

where A =9*/9r* + (1/r)d/dr + (1/r*>3*/9 6
is the two-dimensional Laplacian operator.
The displacement functions ¢ and F' satisfy

9’ 9
(066A+c443—zz—pa—t2)¢;=0, LyF =0, (5
where

a2 a2
Ly = asAAA + (a3a—22+a6a—t2)AA +

a* a* a* 90
(@ 5+ as s+ ar 5] A+ ar T

6

Here a,(n = 1,25, 9) can be expressed in

a; = culel + cnen)s ay=cyCefs + cuen>
as =p2€11,

a, = 633[044€11 +( e + ey )2] + 833[011033 +
i —Cepy + e 1+ e[ 2cuers + cpyexs —
2Cep; + ey )Ceys + ey )1,

as = c44|:cns33 + ( es + ej3; )2] + 311[011 cy +
i —Cep+ e’ 1+ es[2¢ e + cuers —
2Cep; + ey )Ceys + ey )1,

—‘0[6%5 +Ceyy + 044)511]’

ag =
ag = —‘o[e§3+(c44+c33)s33:|,a9=‘02€33,
a; = — p[2615€33 +(C44 + C33)€11 +

7

(Cll + C44)€33 +(€15 + ej3 )2].

MECHANICAL AND ELECTRIC QUANTITIES

Consider a transversely isotropic piezoelectric
annular plate of height hq> outer radius ry> in-
ner radius r; and center angle @, as shown in
Fig.1. The center of the upper surface is taken
as the origin of the circular cylindrical coordi-
nates (7, @, z) and the positive direction of z-
axis points from the upper surface to the bottom
surface. The elastic symmetric axis of the piezo-
electric material coincides with the z-axis.

Fig.1 The geometry of the annular plate in the po-
lar coordinates system

If two non-dimensional coordinates are de-
fined as

E=rlry, C=1zlhg (8)

and the resonant frequency of the annular plate is
denoted by w> the displacement functions ¢ and
F can be written as
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F =

5
ha FCEOH, CEG ) cos( pb e

C11€33

o= hjgl C)fllj(itg)sin( p0)e™

9

where f(¢) and g({) are unknown functions,
k> k and p are undetermined parameters, re-
spectively, and

H,(+)=AJ,()+ BY, (=) (10

where ,]/j( *) and Y#( *) are the first and second
Bessel functions of order x> respectively. A and
B are constants.

Substituting Eq;. (9) into Eq.(5) yields the
equations satisfied by f(¢) and g( )

B fOCO + BofY () + Byf Y +

B,f(g)=0 (1

and

2P+ Bsg()=0 (12>

respectively. Where f< " ¢ and g(")( ¢) denote
the nth derivative of f(¢) and g(¢) with re-
spect to & respectively. The parameters B, (n
= 1,2’37475) are

B =a,» By=—Cark* 13 + agQ*)

B; = as k*td + a; K2 13.0% + Q°

By= — Cak%t§ + agk* td Q% + ask* 30
Bs = — Cegk? i3 — cn 2%/ cay

(13
where Q° = pc02 h3lcy s to= ho/ro and
6n = an/( 0%1633 )(n =1,2, 3’4)
a, = a,,,/(pclle33)(n=6,7,8) (14)
67,5 = a5/(p2€33)

If Eq.(11) has distinct eigenvalues A,(n =1,
2,°**,6), one has

Ko = N g et

n=1

(15>

where 8,(n =1,2, "
nts. The solutions of Eq.(12) are

»6) are arbitrary consta-

Brett + Bge Mt A2>0
gl = B E+ By A5=0
Brcos(A7 8D + Besin(A;8) A3 <0

(16>

where 3; and g are arbitrary constants and

5(7=\/ —)(%’ A%Z _BS

Substitution of Eq. (9) into Eq. (1) yields
the displacements and electric potential

am

u, =~ ho{ [ D) U, £ CO ko B, (k&) +

%tog( C)H/I(ZCS)}COS(#Q)ei‘”’ (18a)

wy = ho{[ D) U, £V CON Cputo/ & H, (ke —

ktggCEOH' , (k&) }sinC e (18b)

hol D) W, 70 O] H, Ck&cosC pfde™

w =
(18¢)
5
$ = hocnlenl D) @, f VO H, (ke -
n=1
cosC 0 e™ 18d>
where U,» W, and @,(n=0,1,"*,5) are
(U = U; = Us =0
U, = - kzt%[(CB + C44)€11 +
(615 + 631)615]/( 011533) (193)
U, = |:(013 + cyden +
Cers + 631)633]/( cnesn)
’WQ = W4 =0, W5 = C44/C]1
W; =— kzt(z)[ C11€33 + Cu€q + (19b)

Ceis + e3 )2]/( ciexn) + 27

(D, = &, = 0

@D, = Ck*1f — K130 e/ criexns

Ds = cyen/Cey v/ cex)

D; = {Q%epncy — Ktilenes + cuers —

(013 + C44)(€15 =+ 631)]}/(011 V4 Cll€33)
(19¢)

The constitutive relations of transversely isotropic
pizeoelectric materials can be written as ( Ding et

al.> 1996)
o)=Lcly)-Lel{E}

Di=[el r+lel®y 20
where
{O'} = [U, Oy o, Ty, T, Ty ]T’
{ip}=[bD, D, DI Q1D
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d d d =
=l L e T, | |
19w 9w  Jdu,  19u, Juy up|? [013]9 toEUf'll(§)+0332Wf"(§)+
- + — +———] (22>
rdf Ir ' 9z rdg = Idr cn ,
24 - 2 DL CO| H, ke cosC e
E)y= -5 (23) %)
[C:|= 5 ) 5 O
—011 Cp C13 0 0 0 To: = {[ Cy 2_1 Un.f(" ( g) — Cy 2_1 ‘:Vn.f("_
C1p C11 C13 O O O Z__ 5 "
c3 ¢ c3 O 0 0 (8 — e,/ e_;;Z @,f"'_l)( C)] Cutg/EOH,
n=1
0 0 0 0 0 _ _ ‘
0 0 0 084 Cas 0 (k&) — C44ktog'(§)H//,(ké)}sin(ﬂ9)em
L O 0 0 0 0 Ceyy—ep/2] 29
24> ) )
[ 0 0 0 0 €15 0 T = {[CMEUJ(n (g) - C447 an !
[e:l: 0 0 0 €15 0 O], cll aD) ,
ey en en 0 0 0 (£ — e Z@f CO| btoH', (k& +
[en 00 cuhtog’ C )H(ké) cosC e
[8:|= 0 SpY) O] (25) “ithod C " } # (30)
L O 0 €133

Substitution of the displacements and electric
potential into the constitutive relations of piezo-
electric material yields the stresses and electric
displacements

o,

5
{ C;p — Cll)[ZUf(n_l)(c)] kz ZH” (kS) +
[012k2502 Uf<n 1)(§)+0132 Wf(">(§)+

ﬂchnf")( O] H, (k&) +

kﬂto

2066[ o (ke -

oy, (ks)] 2O beos( et (26)

2
3
Oy =

5
{(011 - 012)[ 2 U, f =« C)] kzt(z)H”/j(kS) +
[anztgz Uf P8 + ey D) W f e +
;1 n=1
es /ﬂz@f")(g)] H,Ck&) -

kﬂto

2%[ o (ke -

“oy, (ks)] 2CO beosC e (27>

52

5
5 = {2¢q| D) UL VO CptdseO
(k&) = Cuadi 8O H, k)] — ek L2,
(k&) — H, (k&) 1g(O}sinC pdde (31)

D, =
5 5

{[ = es D UL 4 e DI Wf e -

u /z—iz_]lcpfn-”(g)] ko ', CKE) +

eis “g% COH, (ke feos e

Dy = {[6152 U,fn)(c) - 6152_ W,fn—l)
o + 811@2@fn—1>(§)] Cputo/ EH,

(k&) — ershtog’ COOH, (k&) }sin( e
(33)

(32

D, =
5 5
[631k2t(2)2 Ufn_l)(g) + 6332 W,J(n>(§) -

NEIRE Z (P,f”>( §)] H/l( k& cos( pulde™
(34>



Free vibration of piezoelectric annular plate

383

BOUNDARY CONDITIONS

If k and k satisfy
H,(k)=H,(k)=0 or

H,Cks)=H,(ks) =0 (35)

where s = r;/ry> on the boundary of r = ry»
i,e., E=lorr=ry» i.e.» &=s one has
LLZZO, LL@ZO, 95:0
Ceyy = epdu, + 10, =0
If k& and k satisfy
H’#(k)=H#(it)=00r
H\,Cks)=H,(ks) =0

and

(36)

(37>

on the boundary of r = ry> i.e.» £§€=1or r=
ri» i.e.» £=s one has

u, =0, 7,,=0, D, =0 and

(011—012)u3+71',g:0 (38)

Hences four boundary conditions can be defined
on the outer and inner circumferential bound-
aries: (1) boundary condition satisfies Eq.(36)
on the boundaries of £ = 1 and & = s; (2)
boundary condition satisfies Eq. ( 38) on the
boundaries of £ = 1 and & = s; (3) boundary
condition on the boundary of & = 1 satisfies Kq.
(36) and on the boundary of & = s satisfies Eq.
(38); (4) boundary condition on the boundary
of & =1 satisfies Eq. (38) and on the boundary
of & = s satisfies Eq.(36).

In a similar manner, if p = nn/6,(n =1,
2,°**) on the boundaries of 0 =0 and 6 = 6,,

one has
U9=0’ T,0=T@Z=O’ D@=O (39)

H#=(2n+1)ﬂ/(280) (n=0,1,2,"'), on

the boundary of 6 =0 one has Eq.(39) and on
the boundary of 8 = 0> one has

u,=w=0,¢=0,00=0 (40)

If cos( p0) and sin( z0) in the two displacement
functions are interchanged and p = nn/6,(n =
1,2, ***), boundary conditions on the bound-
aries of @ =0 and 6 = 0, both satisfy Eq.(40) .
Consequently, three boundary conditions can be
defined on the other two boundaries (0 = 0 and
0 = 0y) of the annular plates: (I) boundary

conditions on the boundaries of 8 =0 and 0 = 6,
both satisfy Eq.(39); (11D boundary conditions
on the boundaries of § =0 and 0 = 0, both sati-
sfy Eq. (40); (I boundary condition on the
boundary of 6 = 0 satisfies Eq.(39) and on the
boundary of 6 = 6§, satisfies Eq. (40).

If the center angle 0, = 2w and x is an inte-
ger; which implies sin( z0) = sin( g + 2p7)
and cos( p0) = cosC ) + 2w, the sectorial
annular plate degenerate to circular annular
plate. If 2 =0, all physical quantities are inde-
pendent on 0 and lead to axisymmetric case.

FREQUENCY EQUATION

For the case of free vibration, at the upper
and bottom surfaces of the annular plate, the
mechanical conditions are

6.=7.=10.=0 (41a)

and the electric conditions are

D, =0or $=0 (41b or 41¢)

For the sake of simplify, Case (1) is corre-
sponded to Eq. (41b) while Case (2) to Eq.
(41¢).

Substitution of Egs. (28) — (30) into Eq.
(41a) yields

(=g (=0 (42)

and

5 5
—Cl3k2 t%z U,J("_l)(o) + C33 E an")(O) +
n=1 n=1

€33 ﬂz@nf(")(()) =0

€33 L1

5 5
Cl3k2t(2)2 U,j("_l)(l)+033Zan(")(l)+
n=1 n=1
5
c
€33 S—;;(Pnf(")(l)zo
5 5
can 20 U f 0 — e D) WP 0 -
n=1 n=1

5
€15 ﬂz@nf(n_p(()) = O

€33 o1

5 5
ey D) U f 1D = ey DI WP -

5
eis ] N D (D = 0

€33 o1

(43a)
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Substitution of Eq. (34 ) or (18d)
Eq.(41b) or (41¢), respectively, yields

-631 th%Z U,J(("_l)(0> + 6332 WJ(H)(Q) _
A/ (,‘11€332@,,f(n>(0) =0
631k tOZ U,,f(" 1>(1) + 6332 Wj(">(1) —

n=1

A/ 0118332@“]{(")(1) = 0

n=1

into

(43b)

or

5
D@,/ "0 =0
5=1
M@ P =0

Substituting Eq. (16) into Eq. (42) yields ho-
mogeneous equations with respect to parameters
37 and Bg. For the non-trivial solutions of the

homogeneous equations, one has
(m=1,2,") (44>
From Eq. (17) and the last one of Eq. (13D,

one has

(43¢)

)\%:Oorfh:mrc

(m =O’ 1’
(45)

which is a characteristic frequency equation for
the free vibration of a piezoelectric annular
plates. Substituting Eq. (15) into Eqs. (41a)
and (41b) or (41c¢) also yields homogeneous
equations with respect to parameters 8, (n = 1,

27 ..‘,6)

(22 = [066 iﬁzt% + C44( mTC)2 :l/C]]
2,)

(7,18 B B Bs Bs Ps'=0 (46)
where

5 5
-Tlm = cl3k2t%2 Un’v:n_l + 0332 W,Am +

n=1 n=1

€33 CHZ@HA;;’ T2m - Tlm

€33 01

5
cMZ Uy — ey >, Wa01 -

n=1 n=1

1
| — DA
€33 2

Tsm = ey k15 2 U,
n=1

T3m =
A
» Ty = Tipe
5
n-1 n
m o+ 6332 W, Am —
n=1

5
vV C11€33 2 @Mr"h’ Ts,

n=1

A
= T5m €

(m = 1’2s'"76) (473)

and

5 5
2.2 -1
Ts,, = ek toZ UL+ 6332 W Am —
n=1 n=1

5
n A
C11€33 2 @nkm’ T6m = TSme

(m ="1,2,,6) (471>
corresponds to Eq.(41b) or
5
= Eénkrrln_l’ T6m = T'Sme}L
(m' = 1,2,+,6) (47¢)

corresponds to Eq.(41c). For nontrivial solut-
ions of 3,(m=1,2,,6), the determinant of
coefficients of the homogeneous Eq.(46) should
vanish, i.e.>

| 7,1 =0 (48)

which gives another characteristic frequency
equation for the free vibration of piezoelectric an-
nular plates; so the free vibration of annular
plates can be categorized into two kinds with fre-
quency equations corresponding to Eq.(45) and
Eq.(48), respectively. In fact, frequency Eq.
(45) denotes the in-plane vibration of an annu-
lar plate. If a frequency (2 is obtained by Eq.
(45), it usually does not satisfy Eq.(48). So
Eq.(46) has only trivial solution, namely, p,
=0(n=1,2,,6) . As a result; one has f
(¢Z)=0and w =0. It means the frequency Qs
obtained by Eq.(45) corresponds to in-plane vi-
bration of annular plate.

In Eq.(45) and (48), the parameters > k
and k are determined by the boundary condi-
tions. Obviously, infinite frequencies can be ob-
tained from Eq.(45) for each k as well as from
Eq.(48) for each pair of ;« and k since Eq.
(48) is a transcendental equation with respect to

non-dimensional frequency (2 .

NUMERICAL EXAMPLES

It is noteworthy that the boundary conditions
on the boundary 6 =0 and 0 = 0> wave number
n in the circumferential direction and the center
angle 0, of the sectorial annular plate are all re-
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lated to the parameter p> namely, g = nw/ G, Table3 The first frequency of circular annular plate
under boundary condition (3)

p=1 p=2 ©=3
Case 1  Case2 Case ] Case2 Casel Case2
0.1 0.0403 0.0401 0.0588 0.0585 0.0884 0.0876
0.2 0.1511 0.1490 0.2156 0.2118 0.3129 0.3059
0.3 0.3120 0.3051 0.4337 0.4224 0.6094 0.5917
0.4 0.5041 0.4903 0.6852 0.6648 0.9388 0.9100
0.5 0.7149 0.6935 0.9541 0.9249 1.2821 1.2436

corresponds to boundary conditions (1) or CIID
and g = (2n + 1)7/20, to boundary conditions %
(11D . This means that different boundary condi-
tion on the boundary § = 0 and 0 = ;> wave

number n and value of center angle 0, may

probably have the same value of the parameter
. For instances, n =1, 0y = /0.9, and

boundary conditions (1) lead to 2 = 0.9 while n
=1, 0y = 7/0.6 and boundary condition (I Table 4 The first frequency of circular annular plate

also lead to ¢« = 0.9. Consequently, only the under boundary condition (4)
value of the parameter p is given in the following \ r=1 n=2 ©=3
numerical examples . 0 Case 1 Case2 Casel Case2 Casel Case?2

Example 1. Consider a circular annular 0.1 0.0234 0.0233 0.0345 0.0344 0.0524 0.0521
plate with material constants ¢;; = 13.9 x 10" 0.2 0.091 0.0893 0.1305 0.1289 0.1937 0.1905
Par ¢ =7.78 x 10°Pas ¢3 = 7.43 x 10" Pa, 0.3 0.1915 0.1884 0.2720 0.2664 0.3929 0.3831

0.4 0.3184 0.3112 0.4433 0.4317 0.6251 0.6069
Cyz = 11.5 % 1010 Pa, Cyy = 2.56 x 1010 Pa, els 05 05 04505 0.cxm 01 0879 O.siss
=12.7 C/m?s ey = —5.2 C/m?s ey =15.1 —— : : : : .

C/m?s €, =6.46x 107° F/m> €33 =5.62 X Table5 The first five frequencies of circular annular
plate under boundary condition (1)

107° F/m. Tis ratio of inner radius to outer radi-

us s =0.5. Tables 1 — 4 show the first non-di- rank p=1 #=2 #=3
Case 1 Case2 Casel Case2 Casel Case?2

0.1034 0.1023 0.1166 0.1152 0.1380 0.1362
0.3527 0.3443 0.3637 0.3549 0.3818 0.3724
0.6765 0.6564 0.6851 0.6647 0.6994 0.6785
1.0324 1.0008 1.0393 1.0074 1.0507 1.0185
1.4009 1.3593 1.4065 1.3648 1.4159 1.3739

mensional frequencies under four boundary con-
ditions when £t =123 and t, =0.1-0.5. Ta-
bles 5 — 8 show the first five non-dimensional
frequencies under four boundary conditions for #

=0.1.

wn AW =

Table 1 The first frequency of circular annular plate Table 6 The first five frequencies of circular annular

under boundary condition (1) plate under boundary condition (2)
n=1 n=2 n=3 pn=1 pn=2 n=3
to rank
Case 1 Case2 Casel Case2 Casel Case?2 Case 1 Case2 Casel Case2 Casel Case?2

0.0049 0.0049 0.0191 0.0191 0.0411 0.0409
0.1087 0.1075 0.1247 0.1232 0.1514 0.1493
0.3566 0.3481 0.3682 0.3593 0.3874 0.3778
0.6794 0.6593 0.6883 0.6678 0.7029 0.6819
1.0347 1.0030 1.0417 1.0098 1.0532 1.0210

0.1 0.1034 0.1023 0.1166 0.1152 0.1380 0.1362
0.2 0.3604 0.3517 0.4011 0.3910 0.4655 0.4530
0.3 0.6925 0.6718 0.7626 0.7396 0.8718 0.8452
0.4 1.0562 1.0239 1.1545 1.1193 1.3059 1.2667
0.5 1.4320 1.3896 1.5566 1.5112 1.7474 1.6975

wn A W N =

Table 2 The first frequency of circular annular plate Table 7 The first five frequencies of circular annular

under boundary condition (2) plate under boundary condition (3)
n=1 n=2 pn=3 n=1 pn=2 n=3
to rank
Case ] Case2 Casel Case2 Casel Case?2 Case 1 Case2 Casel Case2 Casel Case?2

0.0403 0.0401 0.0588 0.0585 0.0884 0.0876
0.2234 0.2193 0.2369 0.2324 0.2592 0.2540
0.5153 0.5010 0.5254 0.5107 0.5420 0.5268
0.8572 0.8310 0.8650 0.8385 0.8779 0.8511
1.2200 1.1830 1.2262 1.1891 1.2366 1.1992

0.1 0.0049 0.0049 0.0191 0.0191 0.0411 0.0409
0.2 0.0195 0.0195 0.0740 0.0734 0.1541 0.1519
0.3 0.0433 0.0430 0.1587 0.1564 0.3176 0.3105
0.4 0.0755 0.0749 0.2662 0.2608 0.5126 0.4984
0.5 0.1153 0.1140 0.3902 0.3805 0.7262 0.7044

W oA W N =
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Table 8 The first five frequencies of circular annular Table 12 The first frequency of sectorial annular plate
plate under boundary condition (4) under boundary condition (4)
n=1 n=2 n=3 pn=1.8 ©n=0.9 n=0.6
rank ty
Case 1  Case2 Casel Case2 Casel Case2 Case 1 Case2 Casel Case2 Casel Case?2
1 0.0234 0.0233 0.0345 0.0344 0.0524 0.0521 0.1 0.0317 0.0316 0.0227 0.0226 0.0210 0.0210
2 0.2104 0.2067 0.2227 0.2186 0.2428 0.2381 0.2 0.1205 0.1191 0.0875 0.0867 0.0812 0.0805
3 0.5053 0.4914 0.5151 0.5008 0.5312 0.5163 0.3 0.2523 0.2473 0.1862 0.1832 0.1734 0.1708
4 0.8494 0.8235 0.8571 0.8309 0.8698 0.8432 0.4 0.4130 0.4025 0.3100 0.3031 0.2897 0.2835
5 1.2137 1.1770 1.2199 1.1830 1.2302 1.1930 0.5 0.5922 0.5752 0.4511 0.4392 0.4231 0.4122
Example 2. Consider a sectorial annular plate
with the same material as Example 1. The ratio CONCLUSIONS

of inner radius to outer radius s =0.5. The fre-

quencies under four boundary conditions are

tabulated in Tables 9 — 12.

Table 9 The first frequency of sectorial annular plate
under boundary condition (1)

p=1.8 #=0.9

Case 1 Case2 Casel Case?2
0.1 0.1133 0.1120 0.1026 0.1015
0.2 0.3909 0.3812 0.3577 0.3492
0.3 0.7452 0.7227 0.6879 0.6674
0.4 1.1302 1.0957 1.0498 1.0177
0.5 1.5259 1.4811 1.4239 1.3817

#=0.6
Case 1 Case 2
0.1005 0.0995
0.3515 0.3431
0.6770 0.6569
1.0344 1.0028
1.4043  1.3626

ty

Table 10 The first frequency of sectorial annular plate
under boundary condition (2)

pn=1.8 1©=0.9
Case 1  Case 2 Case 2
0.1 0.0156 0.0156 0.0040
0.2 0.0607 0.0603 0.0158
0.3 0.1312 0.1295 0.0351
0.4 0.2219 0.2179 0.0613
0.5 0.3279 0.3204 0.0937

1©n=0.6

Case 2
0.0018
0.0071
0.0159
0.0280
0.0432

)
Case 1

0.0018
0.0071
0.0159
0.0281
0.0434

Case 1
0.0040
0.0158
0.0352
0.0617
0.09%46

Table 11 The first frequency of sectorial annular plate

under boundary condition (3)

n=1.8 ©=0.9
Case 1 Case2 Casel Case?2
0.1 0.0542 0.0539 0.0391 0.0389
0.2 0.1998 0.1964 0.1469 0.1449
0.3 0.4042 0.3940 0.3038 0.2971
0.4 0.6418 0.6230 0.4917 0.4783
0.5 0.8973 0.8698 0.6982 0.6774

1©=0.6
Case 1  Case 2
0.0362 0.0360
0.1367 0.1349
0.2840 0.2780
0.4616 0.4493
0.6579 0.6385

to

1. Application of the general solution for
coupled equations for piezoelectric media yielded
three-dimensional exact solutions for the free vi-
bration of a piezoelectric sectorial annular plate
under several boundary conditions. When the
circular center angle is equal to 2w and g is an
integer> the proposed solutions are simplified to
that of a circular annular plate.

2. Tables 1 — 12 show that the non-dimen-
sional frequency (2 for the boundary condition
(1) is the biggest, while that for the boundary
condition (ii) is the least when the other condi-
tions are the same. These numerical results also
show that the non-dimensional frequency 2 for
the Case (1) is high than that for the Case (2),
although the differences between the two cases
are few.

3. The proposed method can be extended to
analyze the static and dynamic behaviors of an-
nular plates.
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