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Abstract:

lers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting

The closed-loop stability issue of finite-precision realizations was investigated for digital control-

from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL
closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate
the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point
FWL closed-loop stability measure was then introduced and the method of computing the value of this measure
for a given controller realization was developed. The optimal controller realization is defined as the solution
that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the re-
sulting optimal realization problem. A numerical example was used to illustrate the design procedure and to

compare the optimal controller realization with the initial realization.
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INTRODUCTION

Due to the finite word length (FWL) effect,
a casual controller implementation may degrade
the designed closed-loop performance or even
destabilize the designed stable closed-loop sys-
tem, if the controller implementation structure is
not carefully chosen. The effects of finite-preci-
sion computation have become more critical with
the growing popularity of robust controller design
methods which focus only on dealing with large
plant uncertainty ( Keel and Bhattacharryya,
1997).

A control law can be accomplished with dif-
ferent realizations and the parameters of a con-
troller realization are represented by a digital
processor of finite bit length in a particular num-
ber representation format, such as fixed-point,
floating-point or block-floating-point format. In a

Digital controller, Finite word length, Block-floating-point, Closed-loop stability, Optimization
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given representation format, different controller
realizations have different degrees of “ robust-
ness’ against FWL errors. This property can be
utilized to select “ optimal ” realizations in the
given format. In fixed-point format or floating-
point format, the optimal controller realization
problems were studied in Gevers and Li (1993),
Istepanian and Whidborne (2001), Fialho and
Georgiou (1994; 1999), Li (1998), Whid-
borne et al. (2000; 20010, Wu et al. (2001)
and Whidborne and Gu (2001). A comparative
study was presented by Istepanian et al . (2000)
on the stability and performance using block-
floating-point and fixed-point implementations for
various realizations for a PID digital controller of
a steel rolling mill benchmark system. However
the optimal controller realization problem in
block-floating-point format was not discussed
there. To date the true block-floating-point FWL
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closed-loop stability measure has not been seen
which can be optimized to obtain the optimal
block-floating-point realization. This work is
aimed to study the optimal controller realization
problem in block-floating-point format.

BLOCK-FLOATING-POINT

The fixed-point and floating-point formats are
the two basic representation schemes for real
numbers stored in digital memory and in digital
registers. For a group of real numbers stored si-
multaneously in a digital processor, the so-called
block-floating-point format is also available.
Suppose that the group of real numbers form a set
S. In the block-floating-point format, S is di-
vided into some blocks. The block-floating-point
scheme may be viewed as aiming to achieve a
trade-off between the simplicity of the fixed-point
scheme and the accuracy of the floating-point
scheme.

For illustrative purpose and without loss of
generality, consider the case of dividing S into
two non-empty subsets S| and S,, which satisfy
S;US, =S and S; S, is the empty set. Let
71 be the element in S, that has the largest abso-
lute value, and 7, be the element in S, that has
the largest absolute value. Then, any x &€ S can
be expressed uniquely as

w=C—1)" xux2" QP
where s & {0, 11} is the sign of x» ©w€[0,1) is

the block mantissa of x> and the block exponent
of x is

A 10g2|77]|J+1’ forxGS],
h={10g2|n2|J+1,f0rx€SZ, (2)
* | denotes the floor functions i.e.> xJ is the

closest integer less than or equal to x. Obvious-
ly, all the elements in the same block have the
same exponent value of A. When all the ele-
ments in S are stored in a digital processor of the

bit length

B=1+pB,+pB 3>

in a block-floating-point scheme; the bits are as-
signed as follows: 1 bit for the sign, B, bits for
w which is represented in fixed-point with the
two” s complement system, and 8, bits for h.

Thus the set of all the block-floating-point num-

bers that can be represented by the bit length 3
is given by

ﬁé{(ibjz-f - s) x2":se 0,1}
j=1

b € 0,1}, h€ Z,h < h < h} (4)

where Z denotes the set of integerss A and h
represent the lower and upper limits of the block
exponent, respectively, and h — h = 2% — 1.
Obviously, when A > h or h < h> overflow or
underflow will occur in the block-floating-point
representation .

When no underflow or overflow occurs, that
is» h is within Z[,,;7> the block-floating-point
quantization operator % S — .7 is defined as

Ax) 2Co1)2h=82 2B-m | x 140.5].
(5

The quantization error of the block-floating-point
representation is defined as

Denote
2lgln el for x €S,
( )é{ 7
r\vx 210g1|772|J+1’ forx 6 Sz- 7

It can be shown easily that the quantization error
is bounded by
(8, +1>

(8

Thus, when x € S is implemented in the block-
floating-point format of 3, block mantissa bits,

e < r(x)2”

assuming no underflow or overflow, it is per-
turbed to

QCx)=x+r(x)8, 181 <2- PP (9

Hence the perturbation resulting from FWL
block-floating-point representation is neither
multiplicative nor additive. The perturbation de-
pends on the set S and how S is divided into
blocks. It can also be seen that the dynamic
range of block-floating-point representation is
determined by [, bits,
block-floating-point representation is determined

by (3, bits.

and the precision of

PROBLEM STATEMENT

Consider the discrete-time closed-loop con-
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trol syslem consisling of a linear time-invariant
plant P and a digital controller €. The plant
model P is assumed to be striclly proper with a
state-space description
{x(k+ 1) =Ax (k) + Be(k)
y(k) = Cx(k)

which is completely state controllable and ob-
servable with A € R"*", B& R" " and C &
R*" . The digital controller C is described by

{v(k+ 1)=Fv(k)+ Gy(k)
e(k)y=gv(k)+ My(k)

Ge Rqu’ JG Rp)tm and M

(10)

(1)

with F& R™**™ |
€ R,
Assume that a realization ( Fy, Gy, J,,
M,) of C has been designed. It is well-known
that the realizations of C are not unique. All the
realizations of € form the realization set

S(jé {(F,G,J,M):F: T—lF(]Tv

G=T’!Go, J=ILT, M=M0} (12)

where T& R™"" is any real-valued nonsingular
matrix, called a similarity transformation. De-

note

r ~[M T
X=(x 20 ¥ (13)
We also refer to X as a realization of C. The
stability of the closed-loop system depends on the
eigenvalues of the matrix

[A + BMC BJ
GC F
A 0 B 0 c o0
=[0 0]"'[0 I]X[O []
=M, + M, XM, (14)
where 0 and I denote the zero and identity ma-
trices of appropriate dimensions, respectively .
All the different realizations X have the same set
of closed-loop poles if they are implemented with

infinite precision. Since the closed-loop system
is designed to be stable, the eigenvalues

IL(ACX)) | <1, Vi€E{l,,m+nl.
(15)
For a matrix W = [wj'k}, let U( W) be the

matrix of the same dimension whose elements are
all 1s,

A(X) =

(16)

; A
|| w ” max — maﬁ" u”j.k | s
Pk

(W) Emin{lw; | :w, , =0, (17)
gk

- I
For two malrice W = [wJA] and Z = sz.k] of
the same dimension, define the Hadamard prod-

uct of W and Z

W"Zg[wj,kz,',k] . (18)

We have known that the controller realization X
is implemented in block-floating-point format of
By block exponent bits, 3, block mantissa bits
and one sign bit. In the remainder of this paper,
it is assumed that X stored in the block-floating-
point format is divided into “natural” blocks of
F, G, Jand M. Let & be the element in F
which has the largest absolute value. Similarly
&y, & and &, is defined in G, J and M re-
spectively . Denote

Q(X) é[El "-.:2 & 54]1‘ (19)

with 7 being the transpose operator,

Firstly , the dynamic range of 3, bits must be
large enough for X. We define a dynamic range
measure for realization X in block-floating-point
format as

s 4l g(x) I,
y(X) =]0g2 'm))—.

The rationale of this dynamic range measure

(20)

becomes clear in the following ( obvious) propo-
sition.
Proposition 1 The realization X can be repre-
sented in the block-floating-point format of B
block exponent bits without underflow or over-
1900 ) o),
w(q(X))

Let 87" be the smallest block exponent bit

flow, if 2% 210g2(

length that, when used to implement X, does
not cause overflow or underflow. The minimum
required block exponent bit length can easily be
computed by

B (X) =[log,(Llog, Il q(X) || ,. | -
Llog,m(g(X)) | +1)1,

where [+ ] denotes the ceil function, i.e. , [ x]
is the closest integer greater than or equal to x .
Note that the measure ¥ ( X) defined in Eq.

(20) provides an estimate of B as

(21)

By (X) 2 Tlog, 7 (X)) . (22)
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. Anin min
It can easily be seen that 8" =, -

When the dynamic range is sufficient, ac-
cording to Eq. (9), X is perturbed to X + E
(X)) A due to the elfect of finite 3, where

2»‘““;"54||+1U(M) 2[01:,:553||+1U<J)

E(X); 2‘1"553'52]’“1U(G> 2\’10&IE'|'+IU(F)
(23)
Each element &, of A is bounded by

#2700 , that is,

A ., <2 A, (24)

With the perturbation A, A, (A (X)) is moved
to A, (A(X + E(X)°A)). If an eigenvalue of
A(X + E(X)°A) is outside the open unit
disk, the closed-loop system, designed to be
stable, becomes unstable with the finite-preci-
sion implemented X .

It is therefore critical to know when the FWL
error will cause closed-loop instabilily. This
means that we would like to know Lhe largest
open “cube” in the perturbation space within
which the closed-loop system remains stable.
Based on this consideration, a precision measure
for realization X in block-floating-point format

can be defined as

wo(X)Sinfi 1 A || po:A(X + E(X)°A) is

unstable} (25)

From Lhe above definition, the following proposi-
tion is obvious.

Proposition 2 A(X + E(X)°A) is stable if
|| A || max < #O(X)

Thus under the condition that the dynamic
range is sufficient, that is, 8, = B':i" , the per-
turbation || A || ., and therefore the block man-
tissa bit length 83, determines whether the closed-

loop remains stable. Let B’:i" be the block man-

tissa bit length such that ¢ 3, = Bﬁ'i", the

closed-loop system is stable with X implemented
by B3, block mantissa bits and the closed-loop

system is unstable with X implemented by B=”
— 1 block mantissa bits. The precision measure

min

#0(X) provides an estimate of 37" as

Bl (X)2 = Llogpeg(X) -1 . (26)

min min

It can be seen that Z?u() =8,

Define the minimum total bit length required

in the implementation of X as
Smin & pmin min
B - ‘BII + Bu + ] *

Clearly, X implemented with a bil length 8=
B™" can guarantee a sufficient dynamic range
and closed-loop stability . Combining the mea-
sures ¥(X) and ;1 ( X) results in the following

(27)

true FWL closed-loop stability measure for the
given realization X inblock-floating-point format

P()(X)éllo(x)/}’(X). (28)
An estimate of 8" is given by po(X) as
Bem(X) & —Llogpo(X) ]+ 1. (29)

min

It is clear that 3" = 8" . The following propo-
sition summarizes the usefulness of p,( X) as a
measure for the FWL characteristics of X in
block-floating-point format.

Proposition 3

implemented in block-floating-point format with a

The controller realization X

bit length 8 can guarantee a sufficient dynamic
range and closed-loop stability, if

281 !

The closed-loop stability measure py( X) de-
pends on the controller realization X only. Con-
sequently, an optimal realization can in theory
be found by maximizing p,( X ) over S . lead-
ing to the following optimal controller realization
problem

(31)

A
Ulrut- = [)283(‘00( X) -

However, the difficulty with this approach is
that computing the value of o ( X) is an un-
solved open problem. Thus, the true FWL
closed-loop stability measure p,( X) and the op-
timal realization problem (31) have limited
practical significance. In the next section, an
alternative measure is developed which nol only
can quantify the FWL characteristics of X in
block-floating-point format but also is computa-
tionally tractable.

A TRACTABLE FWL CLOSED-LOOP STABILITY
MEASURE

When the FWL error A is small, from a
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firsti-order approximation, ¥V i€ {1, , m + n}

A (A(X + E(CX) A 1 -1 A, (A(X)) | ~

Al
W o 32)
— I8, ’A:O(’)\I'A (
b derivaion L [OI/U] Yofi
) : derivative ——— = “| s define
For the derivative TA 76,
DA 19 A
1794 I = 201705, -l e
Then
|AAZ(XpFE(X)OA))|—IL(Z(X))IS
ARSI |
3
I A | S5 ], 0 (34

This leads to the following precision measure for
realization X in block-floating-point formal

1 -1 (A(X))I

(X)) = o min e |l T ’ TR (35)
aA A =0 Il sum
Obviously, if || A |l < 2, (X), then 14,(A

(X+ E(X)°A))1l <1 which means that the
closed — loop remains stable under the FWL, error
A . In other words, for a given X implemented
in block-floaling-point format with a sufficient
dynamic range, the closed-loop can tolerate
those FWI. perturbations A

Al are less than s, (X).
(X) is, the larger the FWL errors the closed-
Similar to Eq. (26),
from the precision measure 1, (X), an estimate

whose norms

The larger p;
loop system can tolerate .

of 37" is given as
AU (X) 2~ Llogyp (X)) - 1.

The assumption of small A is usually valid in

(36)

practical implementation of digital controllers .
Generally speaking, there is no rigorous relation-
ship between 1,( X) and (X)), but 1 (X)
is connected with a lower bound of #O(X) in
there are “ stable perturbation
Al A e < gy (XD
stable perturbation cube” larg-
er than {A: || A || war < 0 (X)) (Wu et al .,
2001). Hence, in most cases, it is reasonab]e
to take that 2 (X) < 40 (X) and BT = pmin |
More importantly, unlike the measure p, (X)),

some manner:
cubes” larger than |

while there is no “

the value of 4, (X) can be computed explicitly .
It 1s easy to see that

<|A|

Yo 0 (37)

. S

Al E(X
A=0

Let p; be a right eigenvecior of A ( X') corre-

sponding to the eigenvalue A;. Define

Ml’é[p] P pm+n:| (38)

and

ym+n:| = Mp_H
(39)

M, 2y, y,

where the superscript # denotes the conjugate
transpose operator and y; is called the reciprocal
left eigenvector related to p; . The following lem-

ma is due to Li (1998) .
Lemma 1 let A(X) =M, + M, XM, given

in Eq.(14) be diagonalizable. Then
dA;
7% = Miy ' piM; (40)

where the superscript denotes the conjugate
operation .

The following proposition shows that, given a
X, the value of 4, (X) can easily be calculated.

Proposition 4 Let A (X) be diagonalizable.

Then
(X)) = . min
iC 7l m4 ne

AT TAD (41)
”(MlRe[A,y,P,]Mz)"E(X) ” sum
Proof Noting (A1 =+/A] A, leads to
Al 1 (aa; . 57;1‘.)
X T A xR ox) T
L ((9a)" NERY
2|Ai|((ﬁ) Ai+ A TX‘)“
T —x] (42)

Combining Egs. (35), (37),
1 results in this proposition.

Replacing Hao (X) with (X)) in Eq.(28)
leads to a computationally tractable FWL closed-
loop stability measure

01(X) 2 1 (X)y(X).

(42) and Lemma

(43)

From the measure p, (X), an estimate of A"t s
given as

-

‘Bmm( ) = o L]0g2 ‘OI(X)J +1 . (44)
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OPTIMIZATION PROCEDURE

As different realizations X have different
values of the FWL closed-loop stability measure
01CX ), it is of practical importance to find an
“optimal 7 realization X o that maximizes p;
(X). The controller implemented with this opti-
mal realization X, needs a minimum bit length
and has a maximum tolerance to the FWL error
in block-floating-point format. This optimal con-
troller realization problem is formally defined as

Uémax‘ol(X). (45>
XE'S,

Assume that a controller has been designed using

some standard controller design method. This

controller, denoted as

Mo "0] (46)

XO = GO FO ’

is used as the initial controller realization in the
above optimal controller realization problem. Let
Po: be a right eigenvector of A (X,,) correspond-
ing to the eigenvalue A;> and y,; be the recipro-
The definition

cal left eigenvector related to py; .
of S¢ in Eq.(12) means that

I To-l]XO[(I)

where det( T) £0. It can then be shown that

X=Xx(1) = 47>

A= I 0—]]“‘(X0>[(I, (48)
which implies that
Pi=1y T Poi> Yi =1 TI Yoi. (49
Hence
M{Rel X[y ptIM) =
1 -
0 TI]M Re[ALyOLpOL:le[ —'|'] N
o 2l

(50D
o 7% 50
with ®; = M'{'Re[ Al Yo 1 M3 . Define the

following cost function:

AT 2

min °
i€ (Lo m+ n}

(o plels pou])oEcxcrn|
( |/\}|<1—|x|> )
o L =] 1)

Then the optimal controller realization problem
Eq.(45) can be posed as the following optimiza-
tion problem:

v = max f(T). (52

rER™"
detTs0

As the optimization problem Eq. (52) is
highly nonlinear, global optimization algorithms,
such as the genetic algorithm and adaptive simu-
lated annealing> can be adopted to provide a
(sub)optimal similarity transformation T, (a ).
Global optimization methods are however compu-
tationally demanding. lLocal optimization algo-
rithms, such as Rosenbrock and Simplex algo-
rithms, are computationally simpler but run more
risks of only attaining a local solution. Our expe-
rience with the optimization problem Eq. (29)
suggests that local optimization methods are usu-
ally efficient in controllers of low order while glo-
bal optimization methods have to be adopted in
controllers of high order. It also helps to choose
a “good” initial controller realization, such as
Li’s closed-loop sub-optimal realization C Li,
1998), as the initial guess for the optimization
routine. With the solution T, of optimization
problem Eq. (52), the optimal realization X,

can readily be computed.

DESIGN EXAMPLE

An example is used to illustrate the design
procedure based on the FWL closed-loop stabili-
ty measure. In this example, the discrete-time
plant is given by

A:
3.7156e +0 —5.4143e +0 3.6525¢+0 —9.6420e — 1
1 0 0 0
0 1 0 0
0 0 1 0
B=[1 0 0 o],

C=[1.1160e -6 4.3000e—8 1.0880c—6 1.4000e—-8].

The initial realization of the digital controller is
given by
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F, =
2.6963e+2 —-4.2709e+1 2.2873e+1 2.6184e+2
2.556le+2 —4.0497e+1 2.1052e+1  2.4806e +2
5.609e+1 -8.5715¢+0 5.2162e+0  5.4920e+1 |’

—2.3907e+2  3.7998e+1 —2.0338e+1 —2.3203e+2
G, =
[ -4.6765e+1 —4.5625e+1 -9.5195¢+0 4.1609e + 11",
Jo=

[-2.5548e+2 —2.7185e+2 —2.7188e+2 2.7188e+21,
M, =[0].

Based on the proposed FWL closed-loop stability
measure, the optimization problem Eq. (52) is
formed. Using the MATLAB routine fminsearch .
m for the controller of 4 order, this optimization
problem is solved to obtain the optimal similarity

transformation

Toi=

~1.0345¢-001  1.2904e-001 3.8329e—003  1.091le— 002
~1.1078¢-001  1.1742e-001 2.9461e—-003  8.1639% — 003
~2.3775¢-002 2.3815e-002 4.9498e-004 1.8293¢ - 003
9.2138¢ - 002 — 1.1474e — 001 —3.4007e—003 —9.6780e — 003

It is obvious that the true minimum block ex-
ponent bit length BF" C X ) for a realization X
can directly be obtained by examining the ele-
ments of X. The true minimum block mantissa
bit length 37" ( X) however can only be obtained
through simulation. That is, starting from a very
large (3,> reduce (3, by one bit and check the
closed-loop stability. The process is repeated
until there appears closed-loop instability at f3,
= By - Then B2" = B,, + 1. Table 1 summarizes

Table 1 Various measures and bit lengths for X and
Xopt

X Xop

01(XD 1.5154e - 11 4.7787e - 6
BrnC x) 37 19

1 (XD 6.8793e — 11 3.6388¢ -5
BrinC X 33 14

7(XD 4.5395¢+0 7.6146e + 0
Brin( x> 3 3
prinC XD 33 16
prinC X 30 12

BN (X)) 2 3

the various measures, the corresponding estimat-
ed minimum bit lengths and the true minimum
bit lengths for the controller realizations X, and
X -
sure p; by a factor of 300000 over X, and that
the block-floating-point implemented X, needs at

It can be seen that X, improves the mea-

least 33 bits while the implementation of X,

needs at least 16 bits. More than half of the bit
length is saved.
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