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Abstract:

In this paper> the authors propose a new model for active contours segmentation in a given im-

age, based on Mumford-Shah functional { Mumford and Shah, 1989). The model is composed of a system of

differential and integral equations. By the experimental results we can keep the advantages of Chan and

Vese’ s model (Chan and Vese, 2001) and avoid the regularization for Dirac function. More importantly, in

theory we prove that the system has a unique viscosity solution.
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INTRODUCTION

In the fields of Computer Vision and Image
Processing; the theory of PDE has been applied
very successfully to image segmentation and im-
age smoothing ( see Ambrosio et al., 1992;
March, 1992; Weickert, 1998;
1999; IEEE Trans. on Image Processing,

1998) . In the classical snakes and active cont-

Bourdin»

our models, as pointed out in the Chan and
Vese” s work (Chan and Vese, 20010, to stop
the evolving curve on the boundary of the desired
object, an edge-detector is used, depending on
the gradient of the initial image u,. For the
problems of curve evolution, the level set meth-
od is also widely used. The present model con-
sidered is based on a level set formulation, in
which the boundary of the objects segmented
with our model is modelled as the zero set of a
smooth function $ defined on the entire domain.
The boundary is then updated by solving a non-
linear equation in the whole domain. This level
set formulation of the moving interface was intro-
duced by Osher and Sethian(1988) and was ca-
pable of computing geometric properties of highly
complicated boundaries without explicitly track-
ing the interface. Hence the moving boundary
can develop corners, cusps:, and undergo topo-
logical changes quite naturally. Various results
using this level set method have been published;
in particular by Malladi et al. (19950, Chen et
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al. (20000, Chang et al . (1996), Sussman et
al. (1994) and Whitaker (2000). Moreover,
the level set formulation generalizes easily to
three-dimensional problems.

Anyway, there are two kinds of PDE mode-
Is: one depends on the gradient of the initial im-
age ug» or its approximation YV G, Cx) % uy(x)
CAlvarez et al., 1992; Barcelos and Chen,
20000, and the other is independent of them
such as Chan and Vese’ s model ( Chan and
Vese, 2001). Many of them have a common
point: their corresponding PDE’ s are Euler
equations of some specified functional. In this
paper for segmentation we begin to work from the
famous Mumford-Shah functional, i. e., the
functional with area constraint as follows (see
Chan and Vese, 2001 or Mumford and Shah,
1989):

F™Cu, C) = plengthCC) + ¥ AreaC C) +
2
AJQ‘uO(x,y) - ulx, y)‘ dxdy +

J ‘Vu(x,y)‘zdxdy 1
ave

where uy: 2 =[0, 12> R is a given image,
p v and A are positive parameters, and the
LengthC C) and Area( C) represent the length of
the curve C and the area of the region inside C
respectively. The solution uCx, y ), the minimi-
zer of this functional is formed by finite smooth
regions with boundary €. Some applications of
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the Mumford and Shah functional can be found in
chambolle ( 1995, 1999 ), Chambolle and Maso
(1999, and Bourdin and Chambolle(2000) .

Using the level set method and Heaviside
function H(Chan and Vese, 2001), we have

LengthCC) = Length {$ = 0} =
JQ‘VH(¢(x,y))‘dxdy =

an%(?s(x,y))’V?S(x,y)‘dxdy (2
Area(C) = Area {$ = 0} =
jnmqsu,y))dxdy (3

where {$ = 0} is the level set of the curve C
and 8,Cx) is the Dirac function centered at zero

point.
If we assume for all Cx, y) €& 0

uClx,y) = ¢, HCPpCxs y)) 4+ ¢,(1 —
HC$Cxs 30, (4

then the Mumford-Shah functional becomes the

following form:
FCeyreyr$) = #[‘050<¢<x,y>> v pCx,
y)‘dxdy + “/JQH(sﬁ(x,y))dxdy +

"HCH sy ) dudy +

A]JQ ‘uo(x, y> - C

(1= HCCxs ) dady
(5)

AZJQ ‘uo(x, y)— (&5

where we use different constants A; and A, in-

stead of A .
The Euler equations of this functional are as

follows:
V¢(x,y)
80(¢)[#dl1} V¢(x,y) -7 - )L](uo(x,
¥ — 1% + 0y (x,y) — 2] =0 (&
[ ugCas y ) HCHC x5 y ) ddxdy
e ($) = 22 7
[Om $Cxy y))dxdy
[ woCxs yOCT — HCH s 4D ) dxdy
e, (9 = 22

f (1 = HC$Cxr y))dxdy
J 0
(8)

The above system can be used to detect the
objects in a given image wg» but at firsts one
has to regularize the Dirac function 8> just as
done in Chan and Vese s work( Chan and Vese,
2001). In the next section we modify this sys-
tem,> i.e.> by ‘ Vsls(x,y)‘ instead of &g
hence the steady solutions of them are same, and
furthermore> we consider a coupled system con-
sisting of an evolution equation, Eqs.(7) and
(8). Then we regularize it and prove that the
regularized system has at least one classical solu-
tion satisfying some prior estimates. In Section
3> we prove this system has a unique viscosity
solution. Some experimental results are present-
ed in last section to show that our model keeps
the advantages of Chan and Vese s model( Chan
2001), the locations of boundaries
are very well detected and preserved.

and Vese;

NEW MODEL AND REGULARIZATION PROB-
LEM

As mentioned in Section 1, for the fixed 7
>0, our new model called problem (NP) is de-

scribed as follows:

3¢ VSZS

9, = V?S[/xdiv(W]— 7 = 21 CuCas

y) — (e 4 X CuCas y) — e ()02 ],

in QO = R*> x (0, T] (9
f woCas y YHCHC s s 1))y
C](t) = 240
JQH(SZ‘)(x,y,t))dxdy

(10D
Cz(t) =
J 1o Catr (1 — HC$Cxr s £ )dxdy
o (11>

fﬂu — HC$Cxrys £ dwdy

Sls(x,y’()) = 5150(x’y) (12)

where the unknown function $Cxs y, ) and its
initial value $,C x> y) and the given data uy(x,
y ) are 2-period for x and y respectively as usu-
ally done in Guichard and Morel’ s paper( Gui-
chard and Morel, 1998) . Let C C 2 be a closed

Jordan curve in R?, the zero level set of ¢, with
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%o >0 in the inside of C and $; <0 in the out-
side of C> t is the artificial time or scale param-
eter.

We assume that
(A1) uy=0 is Lipschitz continuouss i.e., ug
S CCRONWI*(RD).
(A2) ¢, is smooth, i.e., $,E C* (R,
Remark 1 The assumption for ug =0 is natu-
ral and we can choose ¢, to satisfy its assump-
tion.

Remark 2 The principal part div(%) in

Eq. (9) just is the mean curvature of level set of
$=0.
Remark 3 let p=C(p;spys -

lplpljz; then we know the matrix ( a;
p j
(p D) s semi-positive .

5 p, )€ R" and

a; =0y -

For the problem (NP, we first regularize it
as follows:

a¢€ € £ 3 € £ €
I #ai,-(vsﬁ )SZSL',' — aCufys s c5h, *

(V) =0,
sés(x,y,O) = ?SO(x,y)’

(13>
(14>
Jﬂu%(x,y)Hs(?Ss(x,ya t))dxdy

CE] = ’ (15)
Jan(sﬁs(x,y,t))dxdy +e

Cr =

jnu%(x,y)(l _HCF Cas e 1)) ddy

’

[Qu C HC$ sy ))dady + e

(16)
where
c(p) = 5, — LPI_, (17
h(p) =vV1plI®+es (18)
aCufr o d) ==Ly + 4 Cuh = 5% -
0w - &2, (19)
1 ife << 2
H.(z) = {smooth, if0 < z< ¢ (20D
0, ifz <0

with H. € C*(R) and O H.” < %, and O <

u5 € C* CR?) with
in CCR>) N Wh=(R?>). (21)

: €
limuf =
e

Ug»
We call the regularized problem (13) — (16) as
problem (RP) .

Next we will use Schauder fixed point theo-
rem to prove that there exists at least one classi-
cal solution to problem (RP)D. Indeed. we
choose a closed and convex subset F in Banach

space CCLO, T x L0, 71, that is

E = {()=Ce, (e ()€ ¢CL0, T] x
[O’ T:D:Os C1s CH (22)

= max LLO}’

=

with the norm || ¢ || = maxgg, ;1 Ce? () + 3

()" For given ¢ = C¢ys ¢;) € E instead of
(s ¢5) in Eq. (13D, there exists a unique clas-
sical solution ¢ to the problem (13) and (14)
(Ladyzhenskaya et al., 1968). Moreover; we
have

Lemma 1 The following uniform estimates of
$* with respect to ¢ hold:

min®, < ¥ < max%,> (23>
R R
and
| veEC ol = <
expC KT |~ ¢ ll x> < K. (24>

where the positive constants K and K; depend
only on given data uy and T.

Proof This lemma can be proved by maximum
principle ( Ladyzhenskaya et al., 1968 ) and
similar method can be found in Chen’ s paper
(Chen et al ., 20000, we omit this proof here.

For all Cx, y, ), (x> v ) € R %0,
71 and 0 < n < 1/4, we also have
Lemma 2 The following relationships hold:

By - F (Y ) < K x -
1/4

), 25

+‘y—y' +‘t—t'
hrglszss = ¢, in C"7""1(CR?2 « [0, TD,
p & CCR* x[0, T N L=C0, T;

wh= (R, (26>

where Eq. (26) holds for some subsequence of
e» which we denote by ¢ itself here.

Proof From Eq.(13) and by the part of inte-
gral we have
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J' 1 (8555 )2 I b o0 ) a¢e ciple, we get
75 (7 = [0 uo b cl b cz G -
0, hS(VSZS ) It v ¥y It H ¢ H L (RD = Ke || c—d || ’ <31>
Ih,( £
)UJ 677?}5 . where the positive constant K. depends only on e
0, °

Hence, using Eq.(24) and noting that the func-
tion « is bounded, we get

a¢e
dt

, =
Loy

By the above estimate, Eq.(24) and Sobolev
imbedding theorem, for all Cx,y, 1), Cx’y 9/,
)€ R? x [0, T] we obtain the following esti-

mation:
165 Cxsyrt) = Carys /D)l Kle — 1" 1V,

Hence Eq.(25) holds, and by the Ascoli-Arzela
Theorem, we get Eq.(26).

Using this ¢ to the right hands of Eqs.(15)
and (16), we obtain a new ¢ = Ce¢ps ¢y 05 in

this way, we can define an operator

F: E—> CcUl0,T] x[0,TD, i.e., ¢ =
FCe). 7>

Obviously, the fixed points of F' are the solut-
ions to problem (RP). In order to prove that F
has a fixed point> we need

Lemma 3 F(E)CE and F is compact.

Proof It is clear that F(E) c E by assump-
tion (A1) and the definitions of Eqs. (15) and
(16). The compactness of F can be obtained by
Lemma 2.
Lemma 4
Proof For simplicity wrilten, we omit the su-

F' is continuous.

perscripts Cor subscripts) €. Let ¢ and d belong
to F and corresponding to them solutions of
problem (15) — (16) are ¢, and ¢,. Setting ¢
=¢. — ¢,> we get the following equation

I

where

G = 1Cay (V8. = ay( V0805 + aCugs

C]’Cz)(h(v¢()— h(v¢d))’ (29)

Gz = — [A](LL() — C])2 — )k](uo — d])z —

2aCuy — 0% + 25Cuy — dy)? Jh(7 9,0
300

From Eqs.(29), (30) and the Maximum Prin-

and the given data uy .
On the other hand, by Eqs.(15) and (160,

we can easily obtain
le-dll <« K Téll . (32
Then by Egs. (31) and (32), we have proved

this lemma.

By means of the above lemmas and Schauder
fixed point theorem, we have
Theorem 1  The problem (RP) has at least one
classical solution.
Remark 4
tinuity of F'> we can prove the uniqueness of so-
lutions to problem (RP) .

In fact> similar to the proof of con-

PROBLEM (NP> AND MAIN THEOREM

We use the notations with a little modifica-
tion for ¢ and ¢, in Section 2> and the problem

(NP is described as follows:

ad

% - #GU(VSZS)S% — Ol(u(]’ C](Si’)’ Cz(¢)) hd
\W\ = 0. (33>
?S(x,y,O) = ¢0(x’y). (34)

Inuo(x, y I HCPC x5 ys t)ddxdy

(P = [ HC3Cery 0wy

(35
e ($) =
_fou()(x,y)u — HC$Cxryr D)dxdy o

Jﬂu = HCPCxs s D))dxdy

We begin by a brief recall of the definition of
viscosity solutions to problem (NP) periodic on
Q.

Definition 1 Let $€ CCR* x[0, TDNO W™
(R?* x [0, TD be a viscosity subsolution( super-
solution) of problem (NP) if for all £& C2(R?
x R)» (& — ¢) attains a local maximum at

(xgs 20 )€ Qp = R* x [0, TJ; then the follow-

ing conditions hold
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JdE

(a) m = f_za,u( v s)su = Q( Lig » (.'1(95)! CH

(1| vel <=0, if | ve| <0,

(b)) :)}—f - Hmetlm-P( lirvn‘: ilf) u;j( vV 5)‘5&' =

(=)0, if | V&| =0.

Definition 2 ¢ is a viscosity solution of prob-
lem (NP) if it is both a viscosity subsolution and
a viscosity supersolution.
We have the following theorem:

Theorem 2 There exists a unique viscosity so-
lution to Problem (NP).

Proof Let ¢ be the limit of {#°} in Section 2
and £€ C*CR*>x R), (& — ¢) attains a strict
local maximum at Cxgs 1) € Qp = R> x [0,
T1: by Lemma 2, (¢ — &) has a local maxi-
mum at point Cx,» t. ) with

(x, 58 >>Cxgs29)r ase—>=0. (37
Then at Cx. . ) we have

vE=vE =6
and o (V$)¢ < a;(VEE;. (38

Hence:

& — (V828 —aCugr 1 ()5 c,(F DM,
(V< — i (VI — alugs ¢ (),
H(FEDR (Y E) =0 (39)

Let e—>0 on the left hand of (39) and by the
uniform convergence of $° in (26), we conclude
¢ is a subsolution of problem (NP). Similarly,
it also is a supersolution. Hence, existence of
solution of problem (NP ) is proved. The
uniqueness can be proved by similar method in
Wang’ s paper( Chen et al ., 2000 only noting
that aCugs ¢ (95 ¢, ($)) is bounded and the
A of Eq.(25) is chosen large enough.

Remark 5

interval of ¢ depended on that the denominations

Strictly speaking, the convergent

in Eqs.(35) and (36) are not zero» but due to

Lemma 2, this interval existss here we omit it

for simplicity .
EXPERIMENTAL RESULTS

For the problem (NP), we use the finite dif-

ference method to calculate $¢. In a variety of
contours in the images: our experiments showed
that the treated images had good segmentation by
our model. Moreover, we can treat any samples
of the images such as segments and open curves,
and the initial closed curve CC {$, =01}) can be
in a place anywhere which can contain the ob-
jects or nots even if far away from them. In the
experiments; we rescaled the domain Q and
fixed the parameters A = A, = ¥ = 1 for simplic-
ity of calculation and only modified g« .

There are four images in Fig.1: (a) repre-
sents the original image» (b) and (c¢) are the
processing images> and (d) is the resulting im-

0. 001 and ¢, = 100 —
v Cx — 100)? +(y —100)%. In Fig.2, we treat

the image with different grey levels: Ca) repre-
sents the original one which contain a circle( grey

age» where p =

Fig.1 The detection of multi-objects ( image size 400
x300). Ca) represents the original image. (b) and
(¢) are the processing images: and (d) is the result-
ing image. p = 0.001 and ¢, = 100 -

V(x =1000% + (y - 100)?

O®vy O v
e i)

la) (b)

Fig.2 The detection of bjects with different grey
levels (image size 256 x 256). (a) Original with dif-
ferent grey levels. containing a circle( grey level is ze-
ro). a rectangle ( grey level is 128): and (b) is the
resulting image
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level is zero), a rectangle( grey level is 128)
and a quadrilateral( grey level is 50); (b) is the

resulting image. These show that our model

keeps the advantages of Chan and Vese s model
(Chan and Vese, 2001) — the locations of

boundaries are detected very well and preserved.
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