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Abstract:    In this paper, a G1, C1, C2 PH-spline is employed as an approximation for a given Bézier curve within error 
bound and further renders offset which can be regarded as an approximate offset to the Bézier curve. The errors between 
PH-spline and the Bézier curve, the offset to PH-spline and the offset to the given Bézier curve are also estimated. A new 
algorithm for constructing offset to the Bézier curve is proposed.  
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INTRODUCTION 
 

Offsets are used in many industrial applica-
tions, such as tool paths in numerical-control (NC) 
machining, planning paths for mobile robots and in 
CAD/CAM fields. The parametric representation 
of curve in CAGD is based on employing polyno-
mial or rational function. Plane curve and its off-
sets are usually defined by parametric forms such 
as r(t) = (x(t), y(t)); offsets are d ( ) ( ) ( )t t d t= ±r r n , 
n(t) is normal vector of r(t), d is distance along 
n(t). But the generation of offset curves is not a 
simple task because n(t) in general has no rational 
expression. So far, authors have presented some 
remarkable approaches which can be categorized 
as follows: 

1. Approximation. Klass (1983) constructed a 
cubic spline as an approximate offset to another 
cubic segment, where both curves can be defined 
in term of their endpoints and tangents at these po- 

ints. Tiller and Hanson (1984) first calculated the 
offset lines for the original B-spline. The control 
points for the offset curve can be obtained from 
the points of intersection of offset lines. Coquillar 
(1987) constructed each control vertex for offset 
curve by offsetting a control vertex of the original 
curve along the normal direction at the point 
where the curve is closest to the original vertex. 
Hoschek and Wissel (1988) introduced a method 
for merging and splitting Bézier curve segments of 
different degrees that is based on the square error 
that sum between the original and approximation 
is minimized. Bercovier and Jacobi (1994) used a 
method based on a min-max problem which de-
scribes approximation and differential geometric 
characteristics under some constraints to render 
offset to the Bézier curve. Li (1998) employed 
Legendre series as approximation for the offset to 
the original polynomial curve. 

2. Accuracy. Farouki (1990; 1994) advocated 
PH curve whose offset has rational polynomial 
form. Moon and Farouki (2001) analyzed how to 
construct PH curve according to the average cubic 
curve. Choi and Han (1999) gave a simple proce-
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dure to obtain offset curve in terms of the MPH 
curve. Lü (1995) proved the condition of exact off- 
set to the Bézier curve and developed explicit rep-
resentation for offset. 

The uniform accuracy algorithm has short-
coming for ignoring the difference between the PH 
curve and the designed polynomial curve. The ap-
proximation algorithm yields high degree approxi- 
mation curve with improved accuracy. In this pa-
per, a new method combining the previous two 
algorithms will be presented.  

 
 

PH-SPLINE APPROXIMATION FOR THE BÉZI- 
ER CURVE  
 
Definition 1  Let r(t) = (x(t), y(t)) be a given 
polynomial curve, r(t) is called a Pythagorean- 
hopograph curve (PH curve) if there exists a poly-
nomial such that  
         

2 2 2( ) ( ) ( )x t y' t tσ′ + = . 
 

PH curve is distinguished from polynomial 
parametric curve in general by a desirable property 
that the offset to the PH curve can be expressed in 
rational polynomial form.  
 
The basic strategy of PH-spline approximation 
for Bézier curve  

We shall employ the complex representation 
for planar curve r(t)=(x(t), y(t)), wherein a plane 
curve is regarded as a complex-valued function r(t) 
=x(t)+iy(t),where the bold character i represents 

1− . Now a problem appears: For a given Bézier 

curve of degree n (n>2), 
0

( ) ( )
n

n
j j

j
t B t

=

= ∑b b , where 

jb  are control points. To solve the problem of 

how to obtain a proper approximation for b(t) 
whose expression is compatible with the current 
CAD/CAM system, it is desirable to employ a 
PH-spline curve approximation for the given Bé-
zier curve within a given error like arc spline be-
cause of the special property of the PH curve. First, 
b(t) is subdivided into N+1 segments of Bézier 

curves after N knots are inserted into the parameter 
interval [0,1] for t, namely  

 

( ) ( )

0
( ) ( )

n
i i n

j j
j

t B t
=

= ∑b b       i=1…N+1 

 
where ( ) ( )i i

j xjb= +b i ( )i
yjb . Then for each ( ) ( )i tb , let 

the endpoint conditions of that be as follows: (1). 
endpoints ( ) ( )

0 , i i
nb b and their directions; (2). endpoint  

derivatives ( ) ( )
0 1, ;i id d (3). endpoint second deriva-

tives ( ) ( )
0 1, i iB B . The ith PH curve of degree 2p+1  

 
2 1

( ) ( ) 2 1

0
( ) ( )

p
i i p

j j
j

t B t
+

+

=

= ∑p p     i=1…N+1 

                                 
with hodograph  
 

( ) ( ) 2

0
'( ) ( ( ))

p
i i p

j j
j

t B t
=

= ∑p ω  

 
where ( ) ( )i i

j xjp= +p i ( )i
yjp , ( ) ( )i i

j xjω=ω + i ( )i
yjω , can be 

constructed according to different endpoint condi-
tions as stated above. See Fig.1. Finally, a total 

PH-spline 
1

( )

1

( ) ( )
N

i

i

t t
+

=

=∪p p  will be rendered when 

the N+1 corresponding PH curves are generated. 
We regard p(t) as an approximation for b(t). In the 
next sections, three kinds of PH-splines will be 
respectively presented in detail. 

                         
                                 
                                     

 
 
 

                                                 
 

Fig.1  The relationship of b(i)(t) and P(i)(t) 

 
Constructing G1 PH-spline  

PH cubic curve, the simplest curve in geo-
metric structure among PH class, will be used to 
construct G1 PH-spline. A valuable theorem prov- 

b(i)(t) 

P(i)(t) 

( )
0
ib ( )i

nb
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en by Farouki (1994) is given by: 
Theorem 1  For a cubic z(t) with Bézier control 
points z0…z3, let 1 1i i iL − −= −z z  be the lengths of 

the control-polygon legs, and 1 2,θ θ be the control 
polygon angles at the interior vertices z1 and z2. 
Then the conditions 1 0 2L L L=  and θ1=θ2 are suf-

ficient and necessary for z(t) to be a PH curve. 
With the aid of Theorem 1, another theorem 

on constructing PH cubic curve in practice can be 
obtained.    
Theorem 2  Let A, B be two given endpoints, L 
be the length of AB, α, β be the angles between 
AB and the direction of point A, AB and the direc-
tion of point B respectively, α, β be no more than 
90 degrees, see Fig.2a. There exists a unique 
characteristic convex quadrilateral generating a 
PH cubic curve.  
 
 
 
 
 
 
 

Fig.2  (a) Initial conditions; (b) Polygon for PH cubic 
curve 
 
Proof  A right angle coordinate is established, 
see Fig.2b. Suppose k1, k2, 0 2

,kz z 1 3
kz z be respec-

tively slopes of z1z2, z2z3, z0z2 and z1z3.  
Because L1= 0 2L L and 1 2 3 0 1 2 ,∠ = ∠z z z z z z  we 

have 0 2 1 3

0 2 1 3

1 2

1 21 1
k k k k

k k k k
− −

=
+ +
z z z z

z z z z

. Let 
2

α βγ −
= . After 

tedious calculation, the following equation is de-
duced     

   
2

0 0 0pL qL r+ + =             (1) 
 

2

2

2 2 2

(sin tg cos )[(tg tg )(cos tg sin )
(1 tg tg )(sin tg cos )]

[(tg cos sin )(2tg tg tg tg )
(1 tg )(tg cos sin )tg ]

tg (1 tg )

p

q L

r L

α γ α β γ α β α
β γ α β α

γ α α β γ γ β

γ β α α β

β γ

= − − +
 − + −
 = − − +
 + + −
 = − +

 

0L can be solved from Eq.(1). Moreover  
 

2 2
0 0 0 0

1

cos cos 4cos ( cos )
2cos

L L L L L
L

γ γ β α
β

− + − −
= , 

2
1

2
0

LL
L

= .    

 
Now we come back to construct the 

PH-spline. For each subdivided segment, let 
( )
0
ib , ( )i

nb  be two given endpoints and their direc-

tions be those of tangents of ( ) ( )i tb  at the two 
endpoints. According to Theorem 2, the ith PH 
cubic curve can be generated. Correspondingly, 
the PH cubic spline is G1 continuity because the 
adjacent PH curves have the same tangent direc-
tions at common endpoints.  
 
Constructing C1 PH-spline  

In this section, we shall interpolate given 
first-order Hermite data by PH quintic curves. For 
each subdivision, let the corresponding PH quintic 

curve and its hodograph be
5

( ) ( ) 5

0
( ) ( )i i

j j
j

t B t
=

= ∑p p  

and ( ) ( ) 2 ( ) ( ) 2 2
0 1 2'( ) [ (1 ) 2 (1 ) ]i i i it t t t t= − + − +p ω ω ω re-

spectively, where ( )
0 ,iω ( )

1 ,iω ( )
2
iω are three unknown 

complex coefficients. From the interpolation 
conditions  
 

( ) ( )
0'(0)i i=p d , ( ) ( )

1'(1)i i=p d , 
1 ( ) ( ) ( ) ( )

00
'( )di i i i

nt t = − = ∇∫ p b b p ,    

 
a group of the complex coefficients can be solved 
as follows: 
 

( )
0
i =ω ( )

0
id , ( )

2
i =ω ( )

1
id , 

( ) ( )
( ) 0 2
1

( ) ( )( ) 2 2 ( ) ( )
0 2 0 2

3( )
4

120 15( ) 10
4

i i
i

i ii i i

− +
=

∇ − + +
+

p

ω ω
ω

ω ω ω ω
   

 

Then the control points of ( ) ( )i tp  are expressed as 

(a) 

α β L 
A                   B 

L0 
z1 

z2L1 

L2
α β

A z0                  B z3 

(b) 



Zheng et al. / J Zhejiang Univ SCI  2004 5(3):343-349 346

( )( ) ( ) ( ) ( ) 2
0 0 1 0 0

1, ,
5

ii i i i= = +p b p p ω  

( )( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )
2 1 0 1 3 2 1 0 2

1 2 1,
5 15 15

ii i i i i i i i= + = + +p p p pω ω ω ω ω

( ) ( ) ( ) 2
4 5 2

1 ,
5

i i i= −p p ω ( ) ( )
5
i i

n=p b     

 
This kind of PH-spline can guarantee C1 con-

tinuity as any two adjacent PH curves share the 
same tangent vector at a common endpoint. 

  
Constructing C2 PH-spline 

In this section, the PH curve of degree seven 
will be used to render a C2 PH-spline. Sup-
pose ( ) ( )i tp and its hodograph to be respectively 

7 3
( ) ( ) 7 ( ) ( ) 3 2

0 0

( ) ( ) and '( ) ( ( ))i i i i
j j j j

j j
t B t t B t .

= =

= =∑ ∑p p p ω                  

where ( ) ( ) ( ) ( )
0 1 2 3, , ,i i i iω ω ω ω are complex coefficients. 

For each subdivision, now consider ( ) ( )i tp interpo-
lating the data: endpoints, endpoint derivatives and 
endpoint second derivatives of ( ) ( )i tb , we come 
up with the following theorem.     
Theorem 3  The control points of ( ) ( )i tp may be 
expressed as   
 

( )( ) ( ) 2 ( ) ( ) ( ) ( )
1 0 0 2 1 0 1

( )( ) ( ) 2 ( ) ( )
3 2 1 0 2

( ) ( ) ( ) ( ) ( ) ( )
4 3 0 3 1 2
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5 6 2 3 6 7 3

1 1, ,
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3 2 ,

35 35
1 9 ,
70 70
1 1,
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ii i i i i i

ii i i i

i i i i i i

ii i i i i i .

= + = +

= + +

= + +

= − = −

p p p p

p p

p p

p p p p

ω ω ω

ω ω ω

ω ω ω ω

ω ω ω

 

 
where  
 

( )
( ) ( ) ( ) ( ) 0
0 0 1 0 ( )

0

( )
( ) ( ) ( ) ( )1
2 3 3 1( )

0

, ,
6

,
6

i
i i i i

i

i
i i i i

i .

= ± = +

= − = ±

Bd

B d

ω ω ω
ω

ω ω ω
ω

            (2) 

 
In fact, there are only two solutions to Eq.(2), 

( ) ( )
0 3( , )i i+ +ω ω  is used to compute control points. 

Note that ( ) ( )i tp  is constructed by C2 Hermite 
interpolations, it is obvious for this kind of spline 
to be C2 continuity.  

 
Error estimation between Bézier and PH-spline 
under L2 

Theorem 4  The error between the original Bé-
zier curve b(t) and its corresponding PH-spline p(t) 
after inserting N knots into the interval [0,1] for t 
under L2  is expressed as 
 

11 2
( ) 2

a
1 0

( ( 1 2 1 ) )
N k

i *
l

i l
B l , k l pε

+

= =

= + + − ∆∑ ∑          (3) 

 
Where B is the Beta function, k = max (2p+1, n), 
 

min( )
( ) ( ) ( ) ( ) ( )

max(0 )

( )
k ,l

i * i * i * i * i * j l j
l xj xl j yj yl j k k

j ,l k
p p p p p C C −

− −
= −

∆ = ∆ ∆ + ∆ ∆∑ , 

( ) ( ) ( )ii * i * i *
j xj yjp p= +p , ( ) ( ) ( )ii * i * i *

j xj yjb b= +b ,  j=0 k 
( ) ( ) ( )i * i * i *
xj xj xjp p b∆ = − , ( ) ( ) ( )i * i * i *

yj yj yjp p b∆ = − ,  j=0 k 

 
( )i *
jp and ( )i *

jb are the control points of the curves 

respectively when the degree of ( ) ( )i tp  or ( ) ( )i tb  
is elevated to k.   

 
Criteria for determining inserted knots 

The simplest way to obtain knots is by divid-
ing the interval [0,1] for t equally. However, the 
ideal PH-spline should be such kind of spline that 
has fewest segments within a given error. Now let 
the error between the ith subdivided Bézier curve 

( ) ( )i k ,tb and its corresponding PH curve ( ) ( )i k ,tp  
after k knots are inserted is 

 
( ) ( ) ( )
a 2

( ) ( ) ( )i i ik k ,t k ,tε = −p b . 

 
The procedure of procuring optimal knots is 

illustrated as follows (Fig.3): 
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RENDERING OFFSET TO PH-SPLINE  
 
Representation for offset 
Theorem 5  Two offset curves at each (signed) 
distanced, defined as  
 

( ) ( ) ( )
d ( ) ( ) ( )i i it t d t= ±p p n  

 
where ( ) ( )i tn is the unit normal to ( ) ( )i tp , can be 
represented in rational polynomial as 
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∆ denotes the difference in x or y of ( )i

kp . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus the total offset d ( )tp to a PH-spline p(t) 

is given by 
1

( )
d d

1

( ) ( )
N

i

i

t t
+

=

=p p∪ . 

 
Error estimation between offset to the original  
Bézier curve and offset to PH-spline curve 
Theorem 6  The error between offset to original 
Bézier curve b(t) of degree n and offset to its cor-
responding PH-spline curve p(t) of degree 2p+1 
after b(t) is subdivided into N+1 segments has the 
following estimation:  
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Repeat the previous procedure 
until the total error is no more than aε
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Fig.3  Procedure of procuring optimal knots 
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∆ is the difference in x or y of ( )i
jb or ( )i

jp , 

 
( ) ( )min{2 }
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( )i *
jω as same as Eq.(4), ( ) ( ) ( )i * i * i *

k k kr q p= − . 

Proof  In fact, we notice from the inequality 
 

( ) ( )
d d 2

( ) ( ) ( ) ( ) 11( ) 2
a 0 ( ) 2 ( ) 2 ( ) 2 ( ) 2

( ) ( )

'( ) '( ) '( ) '( )
2 [ (1 )d ]

' ' ' '

i i

i i i i
x x y yi

i i i i
x y x y

t t

b t p t b t p t
d t

b b p p
ε

− ≤

+
+ −

+ +
∫

p b

 
that because  
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we have the relationship 
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After a series of computations, the following 

conclusion can be obtained: 
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Corollary 1  The error dε can further be repre-
sented as follows: 
 

( )1

d a ( )1 21

2 max
iN

l
il n pi l

vd
u

ε ε
+

≤ ≤ +
=

≤ + ∑               (6) 

 
where      

( )min(1 )
1 2 1( ) ( )

max(0 2 ) 2

i k l k,l
l k n pi i

l l l
k ,l p n n p

R C C
u ,v

C

−
− + −

= − − +

= ∑ , 

( ) ( )i i *
l k l kR q− −=  for ( )i

lu , ( ) ( )i i *
l k l kR r− −=  for ( )i

lv . 
 
 
ALGORITHM FOR GENERATING APPROXIM- 
ATION FOR OFFSET TO BÉZIER CURVE 

Input  Bézier curve b(t), distance d, approxima-
tion error a

*ε  and offset error d
*ε . The Bézier 

curve should be subdivided at the points with rela-
tively larger curvature. 
Initial conditions  If *

a2
( ) ( )t t ε− ≤p b  and 

*
d d d2
( ) ( )t t ε− ≤p b , then output p(t).  

i =1. 
Step 1  Subdivide b(t) into ( ) ( )j tb according to the 
criteria for determining inserted knots and con-
struct ( ) ( )j tp .  j=1…i+1. 

Step 2  Estimate aε  and dε  according to Eqs.(3) 
and (5) or (6) respectively. 
Step 3  If a a

*ε ε≤  and *
d dε ε≤  then Step 4 

else   
i=i+1. 

Step 4 Output ( ) ( )j tp and offset to PH-spline 

joined by ( ) ( )j tp . 
 
 
EXAMPLE 
  

According to PH algorithm, we can procure 
offset easily. Table 1 shows the procedures for 
four Bézier curves, Figs.4a−4d show their corre-
sponding offsets. Moreover, we know that the 
B-spline curve can be transformed into several 
Bézier curves according to Boehm theorem, thus 
the offset to the B-spline curve can also be con-
structed. Fig.4e shows a group of offsets with dis-
tance at 0.2, 0.4, 0.6, 0.8, 1 to a cubic B-spline 
whose knots and control points are respectively (0, 
0, 0, 0, 1, 1, 1, 2, 2, 2, 2) and (1, 1), (2, 2), (3, 2), 
(4, 1), (5, 0), (6, 0), (7, 1); the offsets are rendered 
by a PH cubic spline, a PH quintic spline or a 
PH-spline of degree seven. 

 
 

CONCLUSION 
 

For realizing the remarkable advantages of 
PH curve in practical applications, an efficient and 
reliable algorithm for approximating the Bézier 
curve is given and then used to render offset to the 
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Bézier curve. The inserted knots can be efficiently 
controlled by error formulae. In this paper, several 
key contributions toward this end are described. 
Finally, an ideal approximation of the offset to the 
Bézier curve can be obtained. When a certain kind 
of PH-spline is selected, an approximation for 
offset to the Bézier curve with uniform rational 
polynomial of lower degree which is a very con-
venient piecewise representation in CAGD can be 
constructed. Compared with the original applica-
tions of PH curves, we hereby concentrate on 
solving the problem on offsets to the average 
polynomial curves. 
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Bézier curve and control points PH-spline Inserted knots d aε  dε  Fig.4

Cubic, (1,1), (3,4), (5,4), (6,1) C2 {0.2223,0.5113,0.7391} 0.5   0.000895 0.069 (a) 
Quintic, (1,5), (1,6), (2,7), 

(3,7.5), (4,7), (5,5) C2 {0.5172} 0.5 0.0064 0.082 (b) 

Cubic, (1,7), (4,1), (5,2), (7,7) C1 { }
8
i  0.8  0.00705 0.076 (c) 

Cubic, (2,5), (3,6), (5,7), (7,5) G1 { }
9
i  0.8  0.00934 0.0868 (d) 

Table 1  Examples of PH-spline approximation for Bézier curve and rendering offset   

Fig.4  The approximate offsets to the four given Bézier curves shown in Table 1 and the given cubic B-spline curve 
(a) An offset approximation for a quintic Bézier curve with a PH-spline of degree 7; (b) An offset approximation for a cubic
Bézier curve with a PH-spline of degree 7; (c) An offset approximation for a cubic Bézier curve with a PH quintic spline; (d)
An offset approximation for a cubic Bézier curve with a PH cubic spline; (e) An offset approximation for B-spline with a PH
cubic spline 

 


