
Song et al. / J Zhejiang Univ SCI 2004 5(5):550-557 550

Circle quorum system-based non-stop network service model

SONG Ping (宋 平)†, SUN Jian-ling (孙建伶), HE Zhi-jun (何志均)
(Department of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)

†E-mail: songping_zju@hotmail.com

Received Aug. 18, 2003; revision accepted Nov. 25, 2003

Abstract: Rapid developments in network systems of business service have resulted in more reliance on distributed
computing, typified by “subscriber/push” architectures. Unfortunately, frequent and unexpectable network failures were
routine, and downtime was not in hours, but in days. High availability has become the most important factor decreasing
business risk and improving Quality of Service. Cluster technology has solved the non-stop problem on Local Area Network.
However, most technologies including cluster today fail to ensure the non-stop Internet service based on Routers. With good
performance on high availability and fault tolerance, quorum systems are very suitable for application to distributed business
service networks. In this work, we modeled and developed a non-stop Internet service system based on a new quorum system,
circle quorum system, for Boston Mutual Fund Broker, US. With five protocols, it provided highly available data services
for clients on Internet.

Key words: Non-stop network, Quorum system, Distributed computation, Fault-tolerance
Document code: A CLC number: TP316.4

INTRODUCTION

Non-stop network, a special distributed net-

work with feature of high availability, provides
clients valid and consistent data in case of unex-
pectable failures. Based on the improvement of
communication reliability, most business Internet
service networks have adopted “Description/Push”
architecture as the real-time Internet service frame-
work which clients customize or use to describe
their requirements to Internet servers who offer
customized information to clients on time. Unfor-
tunately, frequent and unexpectable network fail-
ures still happened routinely, and downtime was not
in hours, but in days. Moreover, it is a great loss to
Internet service companies, and decreases the Qua-
lity of Service and increases service costs. Tech-
nologies for fault tolerance study became an urgent
issue. Fault tolerance technologies generally in-
cluded RAID theory, backup online, mirror tech-

nology and fake IP. It just offered fault tolerant
policies for computer hardware, but not for the
entire non-stop network system.

Cluster technology proposed some non-stop
polices on local area network (Lee et al., 1998;
Mohan and Parmon, 1998). However, without in-
cluding Routers, remote mainframes and processes
takeover, it cannot solve non-stop problem on
Internet. In real application, especially for financial
transaction system on Internet, any of the above
problems could not be accepted and computer
network system was required to have extremely
high stability and fault tolerance.

Quorum systems (Martin and Dahlin, 2002;
Malkhi and Reiter, 2000; Malkhi, 2000) were re-
cently introduced and studied to deal with the above
problems. Generally, a quorum system was a set of
sets called quorums; each pair of quorums inter-
sects. All elements in a quorum should have the
same features such as data and services consistency.

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

Song et al. / J Zhejiang Univ SCI 2004 5(5):550-557 551

It had good performance on duplicate data (Ahamad
and Ammar, 1980), fault tolerance (Yin et al., 2002;
Malkhi et al., 1999) and load balance (Malkhi et al.,
2001; Peris et al., 2001; Kumar, 2002).

By introducing quorums systems into distrib-
uted computation, a novel quorum system, circle
quorum system, was designed to realize distributed
fault tolerant policy with high availability. More-
over, a non-stop Internet service model with five
protocols, duplication protocol, takeover protocol,
Router protocol, read protocol and recovery pro-
tocol, was constructed that provided clients a highly
available data service. The design of this model has
successfully been implemented until now in inter-
national transaction system at Boston 24×7 Mutual
Fund Broker, US.

CIRCLE QUORUM SYSTEM

A set system Q={Q1, …, Qm} is a collection of
subsets Qi⊆U of a finite universe U. A quorum
system is a set system Q that has intersection
property: P∩R≠φ for all P, R∈Q. Alternatively,
quorum systems are known as intersecting set sys-
tems or as intersecting hyper-graphs. The subsets of
the set system are called quorums.

System definition

Traditional quorum systems are typically
represented by Byzantine quorum system (Tsuchiya
and Kikuno, 2002), Crumbling Wall quorum sys-
tem (Peleg and Wool, 1997), Grid quorum system
(Kumar, 2002), Tree quorum (Kafri and Janecek,
2002) and Diamond quorum system (Fu et al.,
2002). Their topology covers regular grid, tree, dia-
mond, and irregular grid.

Normally quorum systems simulate ROWA
(Read One Write All) protocol for failure resistance,
which means valid data are read from only one valid
quorum and all data are written to all quorums. This
failure tolerant mode requires huge disk capacity
and loses big communication bandwidth to backup
one data in all nodes of all quorums. Generally,
unexpectable Internet failures easily split the whole
quorum system into two or more independent and

disconnected systems. It would make it impossible
to write data to all quorums. In addition, the prob-
ability of three quorums’ simultaneous failure is
very small. Thus, in our design of circle quorum
system, every three quorums are required to backup
one part of the distributed data. Through two fault
tolerant policies, the novel system can realize high
availability.

A circle quorum system is defined as Q={Q1,
…, Qm}, Qi=Qout(i)∪Qcore, Qout(i) is a set of backup
circle layer, Qcore is a set including all nodes of core
circle layer, and Qout(i)∩Qout(i+1)≠φ. Fig.1 shows
an example of circle quorum system with 16 nodes.

Fault-tolerant policies
Unexpectable faults can happen in any place of

the circle quorum system. Two basic policies were
designed for nodes’ failures of core circle layer and
backup circle layer.

(1) Core circle layer: two neighbors’ takeover
policy. When one node of core circle layer failed,
two valid neighbors next to it would take over its
data services and generated data are sent to their
nodes. In Fig.1, suppose node 15 failed, two valid
neighbors node 14 and 16 would take over the data
services of node 15 and send corresponding data to
nodes, 1, 2, 3 and 11. Nodes, 1, 2, 3 and 11, would
be merged into new quorums, Q(2) and Q(4). At the
same time, node 14 and node 16 became neighbors,
because the connectivity between node 14 and node
16 existed when node 15 failed.

Core circle layer

coreQ

6 7 8 9 10

1 2 3 4 5

11 14 16 12

13

15

Backup circle layer

}16,15,14,13{core =Q }12,11,10,9,8,7,6,5,4,3,2,1{backup =Q
}11,3,2,1{)1(out =Q }12,5,4,3{)2(out =Q

}10,9,8,12{)3(out =Q }11,9,7,6{)4(out =Q
})1({)1(coreout QQQ ∪= })2({)2(coreout QQQ ∪=
})3({)3(coreout QQQ ∪= })4({)4(coreout QQQ ∪=

Fig.1 A circle quorum system with 16 nodes

Song et al. / J Zhejiang Univ SCI 2004 5(5):550-557 552

(2) Backup circle layer: a voting policy with
the newest timestamp. Only if under the newest
timestamp, the summation of data number returned
by valid nodes of backup circle layer was more than
half of quorum size, the returned data were re-
garded as valid data. For instance, if node 1 failed
and the quorum size was 6, the summation of data
numbers of data sent by nodes 2, 3, 11 and 15 was 4.
According to voting policy, the value of returned
data was valid.

Circle quorum system is a fault tolerant system
with high availability. With all connectivity of
circle quorum system valid, circle quorum system
failed only if all nodes of core circle layer failed.

NON-STOP INTERNET SERVICE MODEL

Logic framework definition

Non-stop Internet service model framework is
defined with four layers, computation layer, Router
layer, backup layer and client layer, which provide
data services for clients on Internet.

Computation layer
Router layer

Backup layer

Client layer

Fig.2 Four layers logic framework

Fig.2 shows the four-layered Non-stop Internet
service model framework. Below is the definition:

(1) Computation layer: with strong computa-
tion capability, all computers work as mainframes
which receive clients’ customized information, ge-
nerate original data and push them to client layer of
clients’ computers through computers on Router
layer and backup layer;

(2) Router layer: with powerful transmission
capability, Routers relay group broadcast informa-
tion to computers on backup layer, screen failed
computers between computer layer and backup
layer and redirect valid computer address;

(3) Backup layer: computers of this layer have
large disk or memory storage, save and rapidly push
customized information to related clients who are
online;

(4) Client layer: clients send customized infor-
mation to mainframes and receive their data pushed
by computers on backup layer.

With good features of strong data computation,
powerful relay capability of group broadcast and
rapid memory and transmission capability, Non-
stop Internet service model can provide highly
available data services for its clients as rapidly as
possible.

Non-stop Internet service model definition
Definition 1 Computers in computation layer are
defined as mainframes, and computers in backup
layer are defined as servers. Routers on Router
layer make a valid connection between computation
layer and backup layer.
Definition 2 Mainframe set in computation layer
is described by Eq.(1),

0 1 1{ , ,... ,..., }i NM m m m m −= (1)

∀i∈[0, N−1], mainframe mi∈M, N means the num-
ber of mainframes.
Definition 3 Router set in Router layer is de-
scribed by Eq.(2),

Router 0 1 1{ , ,... ,..., }i NR R R R R −= (2)

∀i∈[0, N−1], Router subset |Ri∩R(i+1)mod N|≥2.
Definition 4 Server set in backup layer is de-
scribed by Eq.(3),

Backup 0 2 1{ , ,..., ,..., }i NS S S S S −= (3)

∀i∈[0, N−1], server subset |Si∩S(i+1)mod N|≥2.
Definition 5 The format of distributed dataset in
unit Ui is described by Eq.(4),

(, (,),)i i i iDBL DCL DCR DBR (4)

∀i∈[0, N−1], DCLi and DCRi represent left and right
computation dataset; DBLi=DCR(i−1+N)mod N means

Song et al. / J Zhejiang Univ SCI 2004 5(5):550-557 553

left backup dataset, and DBRi=DCR(i+1) mod N the
right backup dataset.

For quorum i , left backup dataset DBLi equals
right computation dataset DCR(i−1+N)mod N of its left
neighbor, quorum (i−1+N) mod N; while right
backup dataset DBRi equals left computation data-
set DCL(i+1)mod N of its right neighbor, quorum (i+1)
mod N. We use mainframe mi or server sj→dataset
to denote mainframe mi or server sj operates on
distributed dataset, such as mi→DCLi and Sj→DBRj
that indicate the mainframe mi operates on DCLi
and servers of serve set Si handle DBRi.
Definition 6 D=(timestamp, number, value, type)
is designed as basic data structure.

D(timestamp) and D(number) are used for
clients to vote valid data D(value) under unex-
pected failures situation. Number D(number) is the
times of the newest timestamp dataset by different
quorums. Generally, D(number) of valid intersected
nodes is set to 2; because their data are affirmed
twice by two intersected quorums. For other
non-intersected nodes, the number is set to 1. Data
type D(type) is used for Routers to redirect valid
mainframe. D(type) can be assigned to (000 & 001),
(010 & 011), (100 & 101) and (110 & 111) to rep-
resent left backup data (Part one & two), left
computation data (Part one & two), right computa-
tion data (Part one & two) and right backup data
(Part one & two).

Based on the above definitions, the Non-stop
Internet service model can be defined by Eqs.(5)−
(7):

0 1 1{ , ,... ,..., }i NNSISM U U U U −= (5)

(1)mod (1) mod{ , , }i i N N i i NU Q Q Q− + += (6)

{ , , }i i i iQ m R S= (7)

where ∀i∈[0, N−1], mi∈M, Ri∈RRouter and Si∈
SBackup. Quorum Qi mainly executes dataset (DCLi,
DCRi) services such as computation, transmission
and failure tolerance; Data service unit Ui, includ-
ing quorum Q(i−1+N)mod N, Qi and Q(i+1)mod N, princi-
pally monitors the availability of quorum Qi and
prepares to take over dataset (DCLi, DCRi) services.
When quorum Qi fails, quorum Q(i−1+N)mod N takes

over data DCLi services and Q(i+1)mod N takes over
data DCRi services. All computers of mainframe mi,
router set Ri and server set Si collaborate with each
other and push customized data to clients as rapidly
and valid as possible.

2m 3m

1m

Mainframes

Routers

Servers
1Q

2Q 3Q

Client computuers

Fig.3 shows an example of the least Non-stop
Internet service model framework based on circle
quorum system. Actually, the least model has only
one data service unit U1 composed of quorum Q1,
Q2 and Q3, that is because data service unit 1U
equals U2 and U3. If any of quorums fails, the other
two quorums can take over without stop the data
service of the failed quorum.

PROTOCOLS

Duplication protocol

Suppose mainframe mi supplies data service
for its clients and has generated datasets DCLi and
DCRi in quorum Qi. Mainframe mi finishes the
duplication of dataset DCLi as shown below:

(1) Si→DCLi=mi→DCLi, servers of server set
Si receive dataset DCLi directly from mainframe mi
through router set Ri;

(2) m(i−1+N)mod N → DBR(i−1+N)mod N = mi →DCLi,
mainframe m(i−1+N)mod N accepts dataset DCLi and

Fig.3 Least non-stop internet service model with 3 main-
frames

Song et al. / J Zhejiang Univ SCI 2004 5(5):550-557 554

keeps backup data (1) mod i N NDBR − + of quorum

Q(i−1+N)mod N synchronized with computation data
DCLi of quorum Qi;

(3) S(i−1+N)mod N → DBR(i−1+N)mod N = m(i−1+N)mod N

→ DBR(i−1+N)mod N, mainframe m(i−1+N)mod N stores
and forwards dataset DCLi to servers set S(i−1+N)mod N
through router set R(i−1+N)mod N.

Thus, quorum Q(i−1+N)mod N has synchronized
its right backup dataset DBR(i−1+N)mod N with left
computation dataset DCLi of quorum Qi, and pre-
pared for taking over dataset DCLi services at any
moment. For dataset DCRi, mainframe mi also
executes similar steps to keep left backup dataset
DBL(i−1+N)mod N of quorum Q(i+1)mod N synchronized
with right computation dataset DCRi of quorum Qi.
Timestamp, value and type of dataset DCLi or DCRi
are saved by all servers of server sets S(i−1+N)mod N
and Si or Si and S(i+1)mod N. The number of valid data
of intersected servers of server sets S(i−1+N)mod N and
Si or Si and S(i+1)mod N is set to 2, others’ number is
set to 1.

Takeover protocol

Assume that mainframe mi crashes or fails, and
that it cannot provide dataset DCLi and dataset
DCRi services for its clients. Eq.(8) and Eq.(9)
show that dataset (1) mod i N NDBR − + equals DCLi,

DBL(i+1)mod N equals DCRi.

1 2
(1)mod (1) mod (1) mod{ , }i N N i N N i N NDBR DBR DBR− + − + − += (8)
1 2
(1) mod (1) modi N N i N NDBR DBR φ− + − +∩ = ,

1 2
(1) mod (1) mod| | | |i N N i N NDBR DBR− + − +=

(1)mod| | / 2.i N NDBR − +=
1 2

(1) mod (1) mod (1) mod{ , }i N i N i NDBL DBL DBL+ + += (9)
1 2
(1) mod (1) modi N i NDBL DBL φ+ +∩ = ,
1 2
(1) mod (1) mod| | | |i N i NDBL DBL+ += (1) mod| | / 2i NDBL += .

Mainframe (1) mod i N Nm − + performs takeover op-

eration as follows:
(1) From m(i+1)mod N to m(i−1+N)mod N, it searches

the nearest valid mainframe to be its right neighbor.

Suppose m(i+1)mod N is its valid right neighbor;
(2) (1) mod (1) modi N N i N Nm DCL− + − +→

(1) mod (1) mod{ ,i N N i N Nm DCL− + − += →
1

(1) mod (1) mod }i N N i N Nm DBR− + − +→ .

Mainframe (1) mod i N Nm − + merges dataset
1
(1) modi N NDBR − + into its dataset DCL(i−1+N)mod N, and it

changes data type of 1
(1) modi N NDBR − + from 110 (right

backup data) to 010 (left computation data) to take
over dataset 1

(1) modi N NDBR − + services.

(3) (1) mod (1) modi N N i N Nm DCR− + − +→

(1) mod (1) mod{ ,i N N i N Nm DCR− + − += →
2

(1) mod (1) mod }i N N i N Nm DBR− + − +→ .

At one time, mainframe m(i−1+N)mod N also adds
dataset DBR1

(i−1+N)mod N to its dataset DCR(i−1+N)mod N
and changes data type of DBR2

(i−1+N)mod N from 111
(right backup data) to 100 (right computation data).
Similarly, mainframe m(i−1+N)mod N also takes over
backup dataset DBR2

(i−1+N)mod N and sends new data
of new dataset DCR(i−1+N)mod N to its right neighbor
m(i+1)mod N;

(4) m(i−1+N)mod N → DBR(i−1+N)mod N = m(i+1)mod N

→ DCL(i+1)mod N. Mainframe m(i−1+N)mod N prepares to
receive backup data of DCL(i+1)mod N from its right
neighbor m(i+1)mod N;

(5) R(i−1+N)mod N={R(i−1+N)mod N, Ri}, Routers
rebuild router set R(i−1+N)mod N to redirect data re-
quests from failed mainframe im to m(i−1+N)mod N
and screen failed mainframe im ;

(6) S(i−1+N)mod N={S(i−1+N)mod N, Si}. Si is merged
into server set S(i−1+N)mod N, which means mainframe
m(i−1+N)mod N supplies non-stop service of data DCLi
for server set Si.

Mainframe m(i−1+N)mod N, the left neighbor of
failed mainframe mi, performs the takeover pro-
cedure of dataset DCLi. By merging Ri and Si into
R(i−1+N)mod N and S(i−1+N)mod N, mainframe m(i−1+N)mod N
will take over dataset DCLi services without stop
when mainframe mi or quorum Qi fails. Similarly,
mainframe m(i+1)mod N can take over dataset DCRi
services of the failed mainframe mi or quorum Qi.

Song et al. / J Zhejiang Univ SCI 2004 5(5):550-557 555

Router protocol
Router protocol mainly performs detection of

mainframe and other Routers’ heartbeat; redirects
valid mainframe & screens failed mainframes and
Routers, and rebuilding Router list. Client com-
puter’s registration processes is initialized as fol-
lows:

(1) Client computer sends registration or cus-
tomized information to mainframe mi through
Routers;

(2) Mainframe mi transmits received informa-
tion to servers of its Server set Si;

(3) All servers of Si will record IP address and
customized information of client computer, receive
data from mainframe mi and push them to client
computer.

After the above descriptions, in every cycle
Tcycle=Tmax/Tqueue, 0< Tcycle ≤ Tmax; Routeri

T = Tmax/
iRT ;

maxRouter0 TT
i
≤< , mainframe mi sends heartbeat to

all valid Routers of its Router set Ri; Router i sends
heartbeat to other Routers of Router set Ri. Tqueue is
defined as the waiting time of data transmission
between mainframe mi and Routers of Router set Ri;

iRT is the time between Routers of Router set Ri. The

process of Router protocol is described as below:
(4) Within 3Tmax, if Router does not receive

any heartbeat from mainframe mi, it requests main-
frame mi to send heartbeat and at the same time it
collects the state mainframe mi from other valid
Routers of Router set Ri;

(5) If all Routers of Router set Si find that the
mainframe mi is inactive, they search for two valid
neighbors of failed mainframe mi and notify left
valid neighbor to take over left computation data
service of failed mainframe mi and right valid
neighbor to take over right computation data ser-
vice of failed mainframe mi;

(6) If clients ask for mi→D(type=010), Routers
change it into m(i+1)mod N→D(type=101) and main-
frame m(i+1)mod N sends generated data D(type=101)
to server set S(i+1)mod N including Si;

(7) Within 3Tmax, if one Router does not get the
heartbeat of Router j, it will send a message to other
valid Routers to check that Router j activity. Simi-
larly, if one router does not get response from

Router j within 3Tmax, it will send a message of
Router j’s failure to all valid Routers of Router set
Ri to rebuild Router configuration;

(8) In each 3Tmax, all valid Routers will send
one message to failed Router j to check its recovery.
Once one Router gets recovery information of
Router j, it will notify other valid to reconstruct
Router configuration.

Valid
mainframe IP

address

Client send process

IP address replace
process

No

Router send process

Valid
mainframe IP

address

IP address redirect
process

Router receive
process

Client receive
process

Yes

iRouter

xClient

Server j

Valid IP

Fig.4 Router redirect process

In detail, Routers run redirection process to
transmit and redirect clients’ requirements. Fig.4
shows the flow chart of Router redirect process.
First, client gets valid mainframe IP address and
accesses related mainframe; then one Router checks
whether the mainframe IP address is valid. If it is
valid, Router will directly transmit client’s re-
quirements; or else if data type equals 0XX, Router
will change failed mainframe IP address into its left
valid neighbor IP address. If data type equals 1XX,
Router will replace failed mainframe IP address by
its right valid neighbor IP address, and then trans-
mits them; and then, Router sends the client a re-
direction message, which changes client’s failed
mainframe IP address into the valid one. Finally,
client uses the new valid mainframe IP address to
access valid mainframe directly.

Song et al. / J Zhejiang Univ SCI 2004 5(5):550-557 556

Read protocol
Presume a client wants to get its customized

data d from data service unit Ui of quorum Qi. It
waits a fixed time Tdelay to collect data di pushed by
servers of server set Si. All received data di form a
dataset D and the loop variable Loop is initialized to
be zero.

(1) Step 1: Tnewest=max{di(timestamp)|di∈D},
client gets the newest timestamp of dataset D;

(2) Dnewest = { newest, ()i i id d D d timestamp T′ ′ ′ ∈ = },
a new dataset Dnewest with newest timestamp is
obtained;

(3) If ∃i, j, () () i jd value d value′ ′= and Loop

≤N, a data failure message is sent to mainframe mi
to recompute data d based on local valid mainframe
IP address, and Loop++;

(4) If Loop>N, Non-stop Internet service
model fails, or else returns to Step 1;

(5) Nnewest= (),id number′∑ client calculates

data number of valid data;
(6) If Nnewest< |Qi|/2, it triggers valid neighbors

of quorum Qi to send data, and returns to Step 1;
(7) or else, d= (),id value′ client gets valid data.
From the explanations above, a voting method

with newest timestamp can ensure that clients get
valid data.

Recovery protocol

Suppose that the failed or crashed mainframe
mi has been recovered and its nearest valid
neighbors are m(i−1+N)mod N and m(i+1)mod N. It will
execute the followed steps to take its data services
back:

(1) i im DBR→ (1) mod (1) modi N N i N Nm DCR− + − += →

i im DBL→ (1)mod (1) modi N i N Nm DCL+ − += → .

Mainframe mi firstly backups computation dataset
DCR(i−1+N)mod N and dataset DCL(i+1)mod N;

(2) mi → DCRi = mi → DBRi, and mi→DCLi =
mi→DBLi, mainframe mi changes data type and
takes over computation dataset DCR(i−1+N)mod N and
DCL(i+1)mod N;

(3) m(i−1+N)mod N and m(i+1)mod N release dataset

(DCLi, DCRi) services by changing data type and
make mi their neighbors by restoring current router
set and server set to original ones.

Thus, five protocols are presented to construct
the non-stop mechanism of Non-stop Internet ser-
vice model based on circle quorum system. These
protocols indicate all computers cooperate with
each other to keep the whole system highly avail-
able.

CONCLUSION

The impact of network downtime, once rele-
gated to either financial or specialized industrial
applications, is becoming far more significant to a
great number of businesses. State Street Company
of USA, a world leader in financial services, re-
constructed its Fund Broker System as 24×7 global
international transaction service system on Internet.
Original Fund Broker System, a service system on
LAN, was required to be replanted to Internet. High
availability and flexible upgrade were required to
supply for Non-stop Internet service system. A
novel quorum system named circle quorum system,
combining with the high availability of quorum
systems with distributed computation, was de-
signed in this work. Non-stop Internet service
model based circle quorum system was constructed
and its five protocols were designed to provide
highly available services for clients on Internet,
even if some unexpectable failures happen. Cur-
rently, this model has been successfully imple-
mented into international transaction system for
Boston Mutual Fund Broker, US.

References
Ahamad, M., Ammar, M.H., 1980. Performance charac-

terization of quorum-consensus algorithms for repli-
cated data. IEEE Trans. Software Eng., 15(4):492-495.

Fu, A.W.C., Wong, M., Yat, S., 2002. Diamond Quorum
Consensus for High Capacity and Efficient in a Rep-
licated Data System. Distributed and Parallel Data-
bases, p.1-25.

Kafri, N., Janecek, J., 2002. Dynamic Behavior of the Dis-
tributed Tree Quorum Algorithm. 22nd International
Conference on Distributed Computing Systems (ICD-

Song et al. / J Zhejiang Univ SCI 2004 5(5):550-557 557

CS’2002), Vienna, Austria.
Kumar, A., 2002. An Efficient Super Grid Protocol for High

Availability and Load Balancing. IEEE Transactions
On Computer, p.1126-1133.

Lee, C.M., Tam, A., Wang, C.L., 1998. Directed Point: An
Efficient Communication Subsystem for Cluster
Computing. Proceedings of the 10th IASTED Interna-
tional Conference on Parallel and Distributed Com-
puting and Systems, Las Vegas, Nevada, USA, p.662-
675.

Malkhi, D., 2000. Quorum Systems. In: The Encyclopedia
of Distributed Computing, Joseph Urban and Partha
Dasgupta editors. Kluwer Academic Publishers, Philip
Drive Norwell, USA.

Malkhi, D., Reiter, M., 2000. An architecture for survivable
coordination in large distributed systems. IEEE
Transactions on Knowledge and Data Engineering,
12(2):187-202.

Malkhi, D., Reiter, M.K., Alonso, G., Kemme, B., 2001.
The load and availability of byzantine quorum systems.
SIAM J. Computer, 29(6):1889-1906.

Malkhi, L., Alvisi, P., Reiter, E.M., 1999. Fault Detection
for Byzantine Quorum Systems. Proceedings of 7th
International Working Conference on Dependable
Computing for Critical Applications, California, USA,

p.357-372.
Martin, J.P., Dahlin, M., 2002. Small Byzantine Quorum

Systems. Proceedings of the International Conference
on Dependable Systems and Networks (DSN 2002 and
FTCS 32), DCC Track, Washington, DC, p.374-383.

Mohan, R.B., Parmon, B.G., 1998. PARMON: A Compre-
hensive Cluster Monitoring System. The Australian
Users Group for UNIX and Open Systems Conference
and Exhibition, AUUG’98−Open Systems: The Com-
mon Thread. Baulkham Hills, Australia.

Peleg, D., Wool, A., 1997. Crumbling walls: a class of
practical and efficient quorum systems. Distributed
Computing, 10(2):87-98.

Peris, R.J., Martnez, P.M., Alonso, G., Kemme, B., 2001.
How to Select A Replication Protocol According to
Scalability, Availability, and Communication Over-
head. Proc. of the Int. Symp. on Reliable Distributed
Systems (SRDS), New Orleans, Louisiana.

Tsuchiya, T., Kikuno, T., 2002. Byzantine quorum systems
with maximum availability. Information Processing
Letters, 83:71-77.

Yin, J., Martin, J.P., Alvisi, V., Dahlin, M., 2002. Fault-
Tolerant Confidentiality (updated), International
Workshop on Future Directions in Distributed Com-
puting (IWFDDC’2002), Bertinoro, Italy.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276

