Journal of Zhejiang University SCIENCE ISSN 1009-3095 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn

Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization^{*}

SHI Jian-ming (史建明)[†], BAO Yong-zhong (包永忠),

HUANG Zhi-ming (黄志明), WENG Zhi-xue (翁志学)

(Institute of Polymer Reaction Engineering, Zhejiang University, Hangzhou 310027, China) [†]E-mail: shijianming1@163.com Received July 4, 2003; revision accepted Oct. 28, 2003

Abstract: Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate (nano-CaCO₃) surface modified with γ -methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO₃ composite. The reaction between nano-CaCO₃ and MPTMS, and the grafting of PMMA onto nano-CaCO₃ were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO₃ modified with MPTMS were much higher than that on nano-CaCO₃ modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO₃ increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO₃ covered with PMMA was formed by in-situ emulsion polymerization.

Key words: Methyl methacrylate, Nanometer calcium carbonate, Emulsion polymerization, *γ*-methacryloxypropyltrimethoxysilane, Grafting

Document code: A CLC number: TQ316.334

INTRODUCTION

In recent decades, extensive research efforts have been directed towards the preparation and characterization of polymer/inorganic nanometer particles composite (Siegel, 1994). Nanometer inorganic particles easily agglomerate because of their high surface energy, so it is difficult to achieve the homogeneous dispersion of nanoparticles in polymer matrix. Surface modification of an inorganic particle with an organic substance is a useful way to reduce its surface energy, to increase its compatibility with polymer matrix and the dispersion homogeneity, and thus to improve the properties of the polymer/inorganic particles nanocomposite.

Emulsion polymerization has been widely used to modify inorganic particles with polymer. Surfactant-free emulsion polymerizations of vinyl monomers in the presence of various inorganic particles were carried out by Hasegawa *et al.*(1987a; 1987b), Hergeth *et al.*(1988; 1989) and Caris *et al.*(1989). In most cases, the surface of particles is partially or totally covered with polymer mainly through static electric forces. The remarkable improvement in properties of nanocomposite can be achieved when some polymer chains are covalently bonded to inorganic nanoparticles (Baraton *et al.*,

^{*} Project (No. 01101619) supported by the Science and Technology Project of Zhejiang Province, China

1997; Espiard and Guyot, 1995; Espiard *et al.*, 1995; Hayashi *et al.*, 1999; Liu *et al.*, 1998).

Although encapsulation of silica with polymer has been extensively studied, only few studies concern calcium carbonate. Janssen *et al.*(1993) employed emulsion polymerization to encapsulate CaCO₃ pretreated with titanate, and found that less than 10% of polystyrene produced was chemically bonded at the surface of CaCO₃. Yang *et al.*(1999) obtained composites of CaCO₃ encapsulated by polystyrene using soapless emulsion polymerization. The encapsulating ratio was 60%, but only 6.4% remained after Soxhlet extraction with toluene.

In this work, in-situ emulsion polymerizations of methyl methacrylate in the presence of nanometer CaCO₃ pretreated with γ -methacryloxypropyltrimethoxysilane were carried out to prepare poly (methyl methacrylate)/nanometer CaCO₃ composite.

EXPERIMENTAL DETAILS

Material

Methyl methacrylate (MMA), purchased from Yuhang Co., China, was distilled under reduced pressure. Nanometer CaCO₃ (nano-CaCO₃) was donated by ACCR Co. Ltd, Hangzhou, and had average particle diameter of about 50 nm. Nano-CaCO₃ modified with stearic acid was also donated by ACCR Co. Ltd. *γ*-methacryloxypropyltrimethoxysilane (MPTMS) from Shuguang Company was of chemical purity. 2,2'-Azoisobutyronitrile (AIBN) and sodium dodecyl sulfate (SDS) were of analytical purity and used as received.

Surface modification of nano-CaCO₃

Nano-CaCO₃ was dried under vacuum (2 kPa) at 100 °C for 20 h to remove physically adsorbed species before modification. The introduction of reactive groups onto CaCO₃ surface was achieved by the reaction of MPTMS with the hydroxyl groups of CaCO₃. A typical process was as follows: 30 g CaCO₃ and 200 ml pure toluene were placed into a flask equipped with a stirrer. MPTMS (5 wt% to CaCO₃) was added dropwisely under rapid stirring.

The slurry was left standing in the flask for 2 days. The solvent was removed under vacuum at 60 °C. The modified nano-CaCO₃ was dried and ground, then stored at room temperature for 3 days before use.

Emulsion polymerization

Polymerizations were carried out using a 500 ml jacketed glass reactor fitted with a stirrer, reflux condenser, thermometer and N_2 inlet. The pretreated nano-CaCO₃, 200 ml distilled water and SDS were put into the reactor after ultrasonic treatment for 10 min. The concentration of SDS was 1.0 g/L to water, which was much lower than its critical micelle concentration (CMC). After the addition of initiator solution and monomer, the mixture was raised to 60 °C, and maintained at this temperature for 5 h under N₂ atmosphere.

The reaction mixture was then centrifuged at 4000 rev/min for 10 min, and the sediment was dispersed in deionized water again using mechanical agitation and ultrasonic bath, this centrifugation-dispersion cycle was repeated two to five times. Finally, the composite was collected, dried and ground into powder.

Characterization

A drop of a diluted dispersion was put on a carbon film supported by a copper grid and dried in the vacuum chamber of a JEM-1200EX electron microscope. The morphology of nano-CaCO₃ particles and PMMA/nano-CaCO₃ composite particles was observed by using TEM.

The product was extracted with toluene for more than 20 h to remove the ungrafted PMMA completely. The weight loss of the original nano-CaCO₃, silane modified nano-CaCO₃ and PMMA/ nano-CaCO₃ composite was determined by using a Perkin Elmer TGA thermogravimetric instrument under N₂ atmosphere. The heating rate was 10 °C/ min.

The conversion of MMA monomer to polymer was determined gravimetrically. The grafting ratio (f_r) and efficiency of PMMA (f_e) were calculated as follows:

$$f_{\rm r} = \frac{\rm PMMA \ unremoved \ by \ extraction \ (g)}{\rm CaCO_3 \ added \ (g)} \times 100\%$$
$$f_{\rm e} = \frac{\rm PMMA \ unremoved \ by \ extraction \ (g)}{\rm PMMA \ formed \ (g)} \times 100\%$$

RESULTS AND DISCUSION

Modification of nano-CaCO₃

The introduction of C=C group onto $CaCO_3$ surface was achieved by the reaction described in Fig.1.

The existence of free –OH group on the surface of CaCO₃ was confirmed by its infrared (IR) spectrum shown in Fig.2, in which an obvious adsorption at 3432 cm⁻¹ is shown. The content of –OH group of CaCO₃ was determined to be 0.42 mmol/g by measuring volumetrically the amount of hydrogen evolved by reaction with triethylaluminum.

Nano-CaCO₃ pretreated with MPTMS was Soxhlet-extracted with toluene for 24 h. Thermogra-

Fig.1 Introduction of MPTMS onto CaCO₃ particle

Fig.2 IR spectrum of original nano-CaCO₃ (1) and nano-CaCO₃ modified with MPTMS (2)

vimetric analysis (TGA) showed that 52.2% (2.61 wt% to CaCO₃) of MPTMS remained after extraction. The IR spectrum of the extracted sample (2 in Fig.2) showed adsorptions at 2931.1 cm⁻¹ (ν -CH₃), 1124.5 cm⁻¹ (ν -COOR) and 812.7 cm⁻¹ (ν C(CH₃)= CH₂). This clearly indicated the existence of chemically bonded MPTMS on the CaCO₃ surface. Thus, the inert CaCO₃ surface can become active part and act with MMA like a comonomer in the polymerization.

Influence of surface modification of nano-CaCO₃ on the grafting of PMMA

Emulsion polymerization of MMA was carried out in the presence of modified CaCO₃ with different weight ratios between CaCO₃ and MMA. The formation of PMMA grafted to CaCO₃ particles is confirmed by the IR spectrum shown in Fig.3, in which absorptions at 750.5 cm⁻¹ (ν =CH₂), 1147.7 cm⁻¹ (ν -C-O), 1732.1 cm⁻¹ (ν -C=O) and 2951.8 cm⁻¹ (ν -CH₃) indicate existence of PMMA.

The applied SDS concentration in the present emulsion polymerization system was much lower than its CMC, so few latex particles without $CaCO_3$ particles would be formed. During the polymerization process, the oligomers formed at the early stage of emulsion polymerization behaved like surface-active agents and were adsorbed on the $CaCO_3$ surface, then the monomer molecules and radicals in the water phase were also be adsorbed onto the surface layer formed by the oligomers. As a result, the polymerization locus transferred from

Fig.3 IR spectrum of original CaCO₃ (1) and PMMA/ CaCO₃ composite (2)

the aqueous phase to the powder surface at the early stage of the reaction, and C=C bond of MPTMS would react with MMA to form grafted PMMA.

Influence of the modifier type and the weight ratio between CaCO₃ and MMA on the polymerization conversion, f_r and f_e of the resulted composite is shown in Table 1, showing that the existence of nano-CaCO₃ in the polymerization system affects the final conversion of MMA (the conversion of MMA is 96% for polymerization with no nano-CaCO₃). The conversion of MMA decreased as more CaCO₃ was added. When nano-CaCO₃ pretreated with stearic acid was used in the polymerization, most of the formed PMMA could be easily removed by Soxhlet extraction, and grafting ratio of PMMA was much lower. However, relatively higher grafting ratio was achieved when MPTMS pretreated CaCO₃ was used in the in-situ emulsion polymerization. It can also be seen that the grafting efficiency decreased as more MMA was added.

Thermogravimetric analysis

Fig.4 shows TGA plots of original CaCO₃ (curve 1), pure PMMA (curve 2) and different extracted PMMA/CaCO3 composites. The original CaCO₃ did not decompose below 550 °C and the weight loss was 1.2% above 550 °C. Curve 2 shows that pure PMMA decomposes completely above 550 °C and that the remained weight was 4.63%. For PMMA/CaCO₃ composite, the weight loss between 250 °C to 550 °C was attributed to the existence of encapsulating PMMA. TGA of extracted PMMA/CaCO₃ composites revealed weight loss of 94.05%, 78.13%, 80.18%, 84.57% for sample 1 to sample 4 in Table 1, respectively. From the conversions of MMA and the weight loss of extracted PMMA/CaCO₃ composites, the grafting ratio and grafting efficiency of PMMA can be calculated as shown in Table 1.

Fig.4 TGA plot of original $CaCO_3$ (curve 1), pure PMMA (curve 2) and PMMA/CaCO₃ composite after extraction (curve 3, 4, 5 and 6 correspond to the sample 1, 2, 3, 4 in Table 1)

Electron microscopy

Fig.5 shows TEM photographs of original nano-CaCO₃ (a) and PMMA/CaCO₃ composite (b) taken from the emulsion system after the polymerization. The average size of primary particles of original nano-CaCO₃ was about 50 nm. TEM photograph of PMMA/CaCO₃ composite shows the encapsulation of PMMA on CaCO₃ with each composite particle encapsulating more than one CaCO₃ primary particle. This was caused by the agglomeration of the original CaCO₃ particles.

CONCLUSIONS

PMMA/nano-CaCO₃ composite with higher grafting efficiency of PMMA was successfully prepared by emulsion polymerization of MMA in the presence of nano-CaCO₃ pretreated with MPTMS. The coupling of MPTMS and grafting of PMMA onto CaCO₃ were confirmed by IR spectrum. The grafting efficiency of PMMA was much higher in case of using MPTMS pretreated CaCO₃ than in case of using stearic acid pretreated CaCO₃.

Table 1 Influence of the modifier type and CaCO₃/MMA ratio on the polymerization conversion, f_r and f_e

Sample	Modifier type	CaCO ₃ /MMA	Conversion (%)	$f_{\rm r}$ (%)	<i>f</i> _e (%)
1	Stearic acid	2/3	85	2.86	2.38
2	MPTMS	2/3	81	14.25	12.42
3	MPTMS	1/2	89	18.69	11.12
4	MPTMS	1/3	93	22.46	8.53

Fig.5 TEM micrographs of original CaCO₃ (a) and PMMA/CaCO₃ (b) composite prepared by emulsion polymerization

References

- Baraton, M.I., Chancel, F., Merhari, L., 1997. In-situ deter mination of grafting on nanosized ceramic powders by FI-IR spectrometry. *Nanostruct. Mater.*, 9:319-322.
- Caris, C.H.M., van Elven, L.P.M., van Herk, A.M., 1989. Polymerization of MMA at the surface of inorganic submicron particles. *British Polym. J.*, 21:133-140.
- Espiard, P., Guyot, A., 1995. Poly (ethyl acrylate) latexes encapsulating nanoparticles of silica: 2. Grafting process onto silica. *Polymer*, **36**:4391-4395.
- Espiard, P., Guyot, A., Perez, J., Viger, G., David, L., 1995. Poly (ethyl acrylate) latexes encapsulating nanoparticles of silica: 3. Morphology and mechanical properties of reinforced films. *Polymer*, 36:4397-4403.
- Hasegawa, M., Arai, K., Saito, S., 1987a. Effect of surfactant absorbed on encapsulation of fine inorganic powder with soapless emulsion. J. Polym. Sci.: Polym. Chem. Ed., 25:3231-3239.
- Hasegawa, M., Arai, K., Saito, S., 1987b. Uniform encapsulation of fine inorganic powder with soapless emulsion polymerization. J. Polym. Sci.: Polym. Chem. Ed., 25:3117-3125.
- Hayashi, S., Takeuchi, Y., Eguchi, M., Iida, T., Tsubokawa N, 1999. Grafting polymerization of vinyl monomers

initiated by peroxycarbonate groups introduced onto silica surface by Michanel addition. J. Appl. Polym. Sci., 71:1491-1497.

- Hergeth, W.D., Starre, P., Schmutzler, K., Wartewig, S., 1988. Polymerization in the presence of seeds: 3. Emulsion polymerization of vinyl acetate in the presence of quartz powder. *Polymer*, **29**:1323-1328.
- Hergeth, W.D., Steinau, U.J., Bittrich, H.J., Simon, G., Schmutzler, K, 1989. Polymerization in the presence of seeds: 4. Emulsion polymers containing inorganic filler particles. *Polymer*, **30**:254-258.
- Jassen, E.A.W.G., Herk, A.M., German, A.L., 1993. Encapsulation of inorganic filler particles by emulsion polymerization. *Polym. Prepr.*, 34:532-533.
- Liu, Q., Wijin, J.R.D., Groot, K.D., 1998. Surface modification of nano-apatite by grafting organic polymer. *Biomaterials*, 19:1067-1072.
- Siegel, R.W., 1994. Nanostructured Materials-Mind over mater. *Nanostruct. Mater.*, **4**:121.
- Yang, Y., Kong, X.Z., Kan, C.Y., Sun, C.G., 1999. Encapsulation of calcium carbonate by styrene polymerization. *Polym. Adv. Technol.*, 10:54-59.