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INTRODUCTION 
 

In this paper, all groups considered are finite; 
G means a finite group. 

We use conventional notions and notations, as 
in Huppert (1968). Recall that a minimal subgroup 
of a finite group is a subgroup of prime order. For 
the group of even order, it is helpful to also consider 
the cyclic subgroup of order 4. Two subgroups H 
and K of a group G are said to permute if HK=KH. 
It is easily seen that H and K permute if and only if 
the set of HK is a subgroup of G. We know that a 
normal subgroup of G permutes with every sub-
group of G. So Ore (1937) extended normal sub-
group to quasinormal subgroup, a subgroup of G is 
called quasinormal subgroup of G if it permutes 
with every subgroup of G. Kegel (1962) went fur-
ther to define Л-quasinormal subgroup, a subgroup 
of G is Л-quasinormal in G if it permutes with every 
Sylow subgroup of G. Recently, Asaad and Heliel 
(2003) extended Л-quasinormality to a new em-

bedding property, namely the Z-permutability. Z is 
called a complete set of Sylow subgroups of G if for 
each prime p∈Л(G) (the set of distinct primes di-
viding |G|), Z contains exactly one Sylow p-sub- 
group of G, Gp say. A subgroup of G is said to be 
Z-permutable in G if it permutes with every mem-
ber of Z.  

A number of authors had considered how 
minimal subgroups could be embedded in a nilpo-
tent group or a p-nilpotent group. Huppert (1968) 
proved that if G is a group of odd order and all 
minimal subgroups of G lie in the center of G, then 
G is nilpotent. An extension of his result is the 
following statement: If for an odd prime p, every 
subgroup of order p lies in the center of G, then G is 
p-nilpotent. If all the elements of G of order 2 or 4 
lie in the center of G, then G is 2-nilpotent (Huppert, 
1968). Recently the result was generalized as fol-
lows: Let N be a normal subgroup of a group G such 
that G/N is nilpotent. Suppose every element of 
order 4 of F*(N) is c-supplemented in G, then G is 
nilpotent if and only if every element of prime order 
of F*(N) is contained in the hypercenter Z∞(G) of G 
(Wang et al., 2003). All the results mentioned 
above were also extended with formation theory, 
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such as in Asaad et al.(1996). In this paper, we want 
to get some results analogous to the above theorems 
by replacing the c-supplementation by Z-permu- 
tability. The main theorem is as follows: 
Main Theorem    Let F be a saturated formation 
such that N ⊆F, where N is the class of all nilpotent 
groups. Let G be a group and Z a complete set of 
Sylow subgroups of G. Suppose every element of 
order 4 of F*(GF∩G2) is Z-permutable in G, where 

2G ∈Z. Then G belongs to F if and only if <x> lies 
in the F-hypercenter ZF(G) of G for every element x 
of F*(GF∩Gp) of prime order, for every Gp∈Z. 

It is significant to mention first there are solu-
ble group with Л-quasinormal (Z-permutable) 
subgroups which are not c-supplemented. Con-
versely, there are soluble groups with Л-quasi- 
normal (Z-permutable) subgroups which are not 
c-supplemented subgroup; Secondly our results 
give the sufficient and necessary condition of nil-
potent group, i.e., it is a characteristic condition of 
nilpotent (ref. Theorem 5). 

For the definitions and terminology of forma-
tions, please refer to Finite soluble groups (Doerk 
and Hawkes, 1992). 

Let Z be a complete set of Sylow subgroups of 
a group G. If N G, we shall denote by Z∩N the 
following set of subgroups of G: 

 
Z∩N={Gp∩N:Gp∈Z}. 

 
An element x of a group G is said to be      
Л-quasinormal (Z-permutable) in G if <x> is   
Л-quasinormal (Z-permutable) in G. 
 
 
SOME LEMMAS  
 
Lemma 1 (Kegel, 1962)  

(1) A Л-quasinormal subgroup of G is sub-
normal in G;  

(2) If H≤K≤G and H is Л-quasinormal in G, 
then H is Л-quasinormal in K; 

(3) If H is Л-quasinormal Hall subgroup of G, 
then H G; 

(4) Let K G and K≤H. Then H is Л-quasi- 
normal in G if and only if H/K is Л-quasinormal in 

G/K. 
Lemma 2    Suppose G is a group and P is a normal 
p-subgroup of G contained in Z∞(G), then CG(P)≥ 
OP(G). 
Proof    Applying Satz 4.4 of Endliche Gruppen 
(Huppert, 1968). 

The generalized Fitting subgroup F*(G) of G  
is an important subgroup of G and it is a natural 
generalization of F(G). The definition and impotent 
properties can be found in Huppert and Blackburn 
(1982). We wound like to gather the following basic 
facts which we will use in our proof. 
Lemma 3 (Li and Wang, 2003)    Let G be a group 
and M a subgroup of G.  

(1) If M is normal in G, then F*(M) ≤ F*(G);  
(2) F*(G)≠1 if G≠1; in fact, F*(G)/F(G)= 

soc(F(G)CG(F(G))/F(G));  
(3) F*(F*(G))=F*(G)≥F(G); if F*(G) is soluble, 

then F*(G)=F(G). 
(4) CG(F(G))≤F(G);  
(5) Suppose K is a subgroup of G contained in 

Z(G), then F*(G/K)=F*(G)/K. 
Lemma 4 (Asaad and Heliel, 2003)    Let Z be a 
complete set of Sylow subgroups of G, U be a 
Z-permutable subgroup of G, and N a normal sub-
group of G. Then:  

(1) Z∩N is a complete set of Sylow subgroups 
of N. 

(2) If U≤N, then U is a Z∩N-permutable sub-
group of N. 
Lemma 5    Let P be a normal 2-subgroup of a 
group G, and Z a complete set of Sylow subgroups 
of G. If every cyclic subgroup of order 4 of P is 
Z-permutable subgroup in G, then every cyclic 
subgroup of order 4 of P is Л-quasinormal in G. 
Proof    Let L be an arbitrary subgroup of P of order 
4. Then 

ipLG  is a subgroup of G for every 
ipG ∈Z. 

Since P G, 
1

i

x
pL G

−
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i
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subgroup of G, then L is Л-quasinormal in G. 
Lemma 6    Suppose M, N are normal subgroups of 
G. If there exists a Sylow p-subgroup P of G such 
that every element of M∩P of order p lies in N, then 
every element of M of prime order lies in N. 
Proof    Since M is a normal subgroup of G, M∩P is 
a Sylow p-subgroup of M. By Sylow Theorem, for 
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any element x of M of prime order, there exists 
m∈M such that xm∈M∩P, so xm∈N by the hy-

potheses. Then x∈
1mN

−

=N. Thus the lemma holds.  
 
 
MAIN RESULTS  
 
Theorem 1    Suppose G is a group, p is a fixed 
prime number. If every element of G of order p is 
contained in Z∞(G).  If p=2, in addition, suppose 
every cyclic subgroup of order 4 of G is Л-qua-
sinormal, then G is p-nilpotent. 
Proof     Suppose that the theorem is false and let G 
be a counter-example of smallest order.  

(a) The hypotheses are inherited by all proper 
subgroups, thus G is a group which is not 
p-nilpotent but whose proper subgroups are all 
p-nilpotent. 

In fact, ∀H < G, K is a cyclic subgroup of H of 
order p (or 4 if p=2), then K≤Z∞(G)∩H≤ Z∞(H). By 
Lemma 1(2), we know that the Л-quasinormality in 
G can imply the Л-quasinormality in H. Thus H 
satisfies the hypotheses of the theorem. The mini-
mal choice of G implies that H is p-nilpotent, thus 
G is a group which is not p-nilpotent but whose 
proper subgroups are all p-nilpotent. So, G=PQ, 
where P G and Q is not normal in G (Huppert, 
1968). 

(b) p=2 and every element of order 4 is    
Л-quasinormal in G. 

If not, then p>2, then exp(P)=p (Huppert, 
1968). Thus P ≤Z∞(G) by the hypotheses. Therefore 
G=PQ=P×Q, then is nilpotent by Lemma 2, a con-
tradiction. Thus (b) holds.  

(c) ∀a∈P\Φ(P), o(a)=4. 
If not, there exists a∈P\Φ(P), such that o(a) 

=2. Denote M=<aG>≤P. Then MΦ(P)/Φ(P) G/ 
Φ(P), we have that P=MΦ(P)=M≤Z∞(G) as P/Φ(P) 
is a minimal normal subgroup of G/Φ(P) (Huppert, 
1968), a contradiction. 

(d) Final contradiction. 
∀x∈P\Φ(P), o(x)=4. Then <x> is Л-quasi- 

normalin G, so <x>Q<G, thus <x>Q=<x>×Q by 
(a). Therefore <x>⊆NG(Q), it follows that P⊆ 
NG(Q), the final contradiction. 

Theorem 2    Suppose N is a normal subgroup of a 
group G such that G/N is p-nilpotent, where p is a 
fixed prime number. Suppose every element of N of 
order p is contained in Z∞(G). If p=2, in addition, 
suppose every cyclic subgroup of order 4 of N is 
Л-quasinormal in G, then G is p-nilpotent. 
Proof   Assume that the theorem is false and let G 
be a counterexample of minimal order, then we 
have: 

(a) The hypotheses are inherited by all proper 
subgroups, thus G is a group which is not 
p-nilpotent but whose proper subgroups are all 
p-nilpotent. 

In fact, ∀K<G, since G/N is p-nilpotent, 
K/K∩N ≅ KN/N is also p-nilpotent. The element of 
order p of K∩N is contained in Z∞(G)∩K≤Z∞(K), 
the cyclic subgroup of order 4 of K∩N is Л-quasi- 
normal in G, then is Л-quasinormal in K by Lemma 
1. Thus K, K∩N satisfy the hypotheses of the 
theorem, so K is p-nilpotent, therefore G is a group 
which is not p-nilpotent but whose proper sub-
groups are all p-nilpotent. Then G=PQ, P G, Q is 
not normal in G (Huppert, 1968). 

(b) G/P∩N is p-nilpotent. 
Since G/P ≅ Q is nilpotent, G/N is p-nilpotent 

and G/(P∩N)≤G/P×G/N, therefore G/(P∩N) is p- 
nilpotent. 

(c) P≤N. 
If not, then P∩N<P. So Q(P∩N)<QP=G. Thus 

Q(P∩N) is nilpotent by (a), Q(P∩N)=Q×(P∩N). 
Since G/P∩N =P/P∩N·Q(P∩N)/P∩N, it follows 
that Q(P∩N)/P∩N G/P∩N by (b). So Q char Q(P 
∩N) G. Therefore, G=P×Q, a contradiction. 

(d) Final contradiction. 
If p>2, then exp(P)=p by (a). Thus P=P∩N 

≤Z∞(G), then that G=P×Q (Huppert, 1968), a 
contradiction. 

If p=2, since P G, so all elements of order 2 
of G are contained in P, i.e., contained in N. Thus 
every element of order 2 of G lies in Z∞(G), every 
cyclic subgroup of order 4 is Л-quasinormal in G. 
Applying Theorem 1, we have that G is 2-nilpotent, 
a contradiction, completing the proof. 

Since a group G if nilpotent if and only if G is 
p-nilpotent, ∀p∈Л(G). By Theorem 2, we have: 
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Theorem 3    Suppose N is a normal subgroup of a 
group G such that G/N is nilpotent. Then G is 
nilpotent if and only if every element of N of prime 
order is contained in Z∞(G), every cyclic subgroup 
of order 4 of N is Л-quasinormal in G. 

Revising the proof of Theorem 3.3 of Wang et 
al.(2003), we can minimize the number of restricted 
elements in Theorem 3. 
Theorem 4    Suppose N is a normal subgroup of a 
group G such that G/N is nilpotent, then G is nil-
potent if and only if every element of F*(N) of order 
4 is Л-quasinormal in G and every element of F*(N) 
of prime order is contained in the hypercenter Z∞(G) 
of G. 
Theorem 5    Let Z be a complete set of Sylow 
subgroups of a group G and N a normal subgroup of 
G such that G/N is nilpotent. Then G is nilpotent if 
and only if every element of F*(N) ∩ 2G of order 4 is 

Z-permutable in G, and every element of F*(N)∩ 

pG of prime order is contained in the hypercenter 

Z∞(G) of G, for any Gp∈Z. 
By Lemma 6, it is easy to see Theorem 5 is 

equivalent to the following: 
Theorem 5’    Let Z be a complete set of Sylow 
subgroups of a group G, N is a normal subgroup of 
G such that G/N is nilpotent, then G is nilpotent if 
and only if every element of F*(N) ∩ 2G of order 4 is 
Z-permutable in G, every element of F*(N) of prime 
order is contained in the hypercenter Z∞(G) of G. 
Proof    The necessity is the same as that in Theo-
rem 4, we only need to prove the converse is true. 

Let G be a counterexample of minimal order, 
then we have: 

(1) Every proper normal subgroup of G is 
nilpotent.  

If M is a maximal normal subgroup of G, we 
have that M/M∩N is nilpotent, F*(M∩N) is con-
tained in F*(N) and Z∞(G)∩M is contained in Z∞(M), 
so every element of F*(M∩N) of prime order is 
contained in the hypercenter Z∞(M), and every 
element of F*(N)∩(G2∩N) of order 4 is Z-permu- 
table in G by hypotheses, thus is Z∩M-permutable 
in M by Lemma 4(2), so M, M∩N satisfies the 
hypotheses of the theorem. The minimal choice of 

G implies that M is nilpotent.  
(2) F*(G)=G. 
If F*(G)<G, then F*(G) is nilpotent by (1), in 

particular, F*(G) is solvable, so F*(G)=F(G) by 
Lemma 3. For the Sylow 2-subgroup P of F*(G), P 
=O2(G)≤G2, we know that the cyclic subgroups of P 
of order 4 are Z-permutable subgroups in G by 
hypotheses, now Lemma 2.5 implies the cyclic 
subgroups of order 4 of P are Л-quasinormal in G. 
Applying Theorem 4, G is nilpotent, a contradic-
tion.  

(3) G is almost simple, i.e., G/Z(G) is simple. 
By (2), G=F*(G)=F(G)E(G), where E(G) is 

layer of G. If E(G)≤F(G), then G=F(G) is nilpotent, 
a contradiction. Thus assume E(G) is not contained 
F(G), then we can pick a component H of E(G) 
(Huppert and Blackburn, 1982), and H is almost 
simple. By (2),  [H, G]=[H, F*(G)]=[H, F(G)E(G)] 
=[H, E(G)]≤ H, i.e., H is normal in G. If H<G, then 
H is solvable by (1), a contradiction. So G=H is 
almost simple. 

(4) GN=N=G, and Z∞(G)=Z(G). 
If GN<G, then GN is nilpotent by (1), then G is 

solvable, contrary to (3), thus GN=G, and GN≤N 
implies that N=G.  By Huppert (1968), we have GN 
∩Z∞(G)≤Z(GN), so Z∞(G)=Z(G). 

(5) The final contradiction. 
We know that G is a quasisimple group by (3). 

So Z(G) is a subgroup of the Schur multiplier of 
G/Z(G) (Gorenstein, 1982). Again by Table 4.1 in 
(Gorenstein, 1982), Z(G)≤R or Z(G)≤R×P. There- 
fore Л(Z(G)) contains at most two primes. Then 
every element of prime order of G lies in Z∞(G)= 
Z(G) by hypotheses and (4), we conclude that Л(G) 
contains at most two primes, the well-known 
Burnside paqb-theorem implies that G is solvable, 
contrary to (3), the final contradiction. 

This completes the proof of the theorem. 
With the similar the proof of Theorem 4.4 of 

Wang et al.(2003), we can extend Theorem 3 with 
formation theory. 
Theorem 6    Let F be a saturated formation such 
that N⊆F. Let G be a group such that every element 
of GF of order 4 is Л-quasinormal in G. Then G 
belongs to F if and only if <x> lies in the 
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F-hypercenter ZF(G) of G for every element x of GF 
of prime order.  

Following the proof Theorem 4.5 of Wang et al. 
(2003), we have: 
Theorem 7    Let F be a saturated formation such 
that N ⊆ F. Let G be a group such that every element 
of F*(GF) of order 4 is Л-quasinormal in G. Then G 
belongs to F if and only if <x> lies in the 
F-hypercenter ZF(G) of G for every element x of 
F*(GF) of prime order. 

By Lemma 5, the Main Theorem is equivalent 
to the following, so we prove it to end this paper. 
Equivalent form of Main Theorem    Let F be a 
saturated formation such that N⊆F. Let G be a 
group and Z a complete set of Sylow subgroups of 
G. Suppose very element of F*(GF)∩G2 of order 4 
is Z-permutable in G, where G2∈Z. Then G belongs 
to F if and only if <x> lies in the F-hypercenter 
ZF(G) of G for every element x of F*(GF) of prime 
order. 
Proof    If G∈F, then ZF(G)=G  and we are done. So 
we only need to prove that the converse is true. 

Since ZF(G)∩GF≤Z(GF)≤Z∞(GF) (Doerk and 
Hawkes, 1992), by the hypotheses, every element 
of F*(GF) of prime order lies in Z∞(GF). Every 
element of F*(GF)∩G2 of order 4 is Z-permutable in 
G, thus is Z∩GF-permutable in GF by Lemma 4. 
Applying Theorem 3 for GF, we get GF is nilpotent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So F*(GF)=F(GF)=GF. Thus the Sylow 2-subgroup 
GF∩G2 of GF is normal in G. By hypotheses and 
Lemma 5, very element of F*(GF)∩G2 of order 4 is 
Л-quasinormal in G. Since every element of GF of 
prime order lies in ZF(G) by hypotheses, now 
Theorem 7 implies that G∈F. These complete the 
proof of Theorem.  
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