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Abstract:   Pose and structure estimation from a single image is a fundamental problem in machine vision and multiple 
sensor fusion and integration. In this paper we propose using rigid constraints described in different coordinate frames to 
iteratively estimate structural and camera pose parameters. Using geometric properties of reflected correspondences we put 
forward a new concept, the reflected pole of a rigid transformation. The reflected pole represents a general analysis of 
transformations that can be applied to both 2D and 3D transformations. We demonstrate how the concept is applied to 
calibration by proposing an iterative method to estimate the structural parameters of objects. The method is based on a 
coarse-to-fine strategy in which initial estimation is obtained through a classical linear algorithm which is then refined by 
iteration. For a comparative study of performance, we also implemented an extended motion estimation algorithm (from 
2D-2D to 3D-2D case) based on epipolar geometry. 
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INTRODUCTION 
 

Pose and structural parameters analysis of 2D 
images sets find application in many areas such as 
object recognition, motion estimation, navigation 
planning, and structural analysis of 3D objects 
(Huang and Netravali, 1994), image communica-
tion, and image coding (Mitiche and Aggarwal, 
1986). Normally, given one set of 3D object point 
data and their corresponding 2D projective image 
point data, the 3D-2D calibration problem is re-
ferred to as the estimation of the camera parameters 
(position and orientation) in relation to the object’s 
coordinate frame and, conversely, the estimation of 

the structure of the object in camera centered co-
ordinate frame.  

To solve the 3D-2D problems, many methods 
had been proposed such as techniques based on 
conservation of distance between feature points 
before and after a rigid motion (Mitiche and Ag-
garwal, 1986), triangular geometry (Linnainmaa et 
al., 1987), iterative least squares method (Haralick 
et al., 1989; Carceroni and Brown, 1997; Lowe, 
1991; Yamane et al., 1996), pose first algorithm 
(Faugeras and Hebert, 1986), model based genetic 
algorithm (Toyama et al., 1998), symmetry plane 
based algorithm (Hattori et al., 1998), iterative 
weak perspective algorithm, iterative weak 
paraperspective algorithm, and non-linear algo-
rithm (Dornaika and Garcia, 1999), among many 
others. Such methods, when applied to real world 
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applications, present a number of common limita-
tions, such as lack of efficiency, high sensitivity to 
noisd (Tsai and Huang, 1984), and multiple solu-
tions (Huang and Netravali, 1994; Quan and Lan, 
1999). Careful analysis of these algorithms indi-
cated that they were mainly based on a number of 
geometric invariants described in a single coordi-
nate frame. There is thus, justification for investi-
gating invariant properties as constraints for cali-
bration when the two sets of data (before and after a 
transformation) are described by two different co-
ordinate frames. 

We investigated this case starting from 
Chasles’ screw motion theory, which says that any 
rigid non-pure translational planar displacement 
can be represented as a single rotation around its 
pole. However, for spatial displacements (the 3D 
case), there is no similar known property. Our in-
vestigation into the geometric properties of re-
flected correspondence vectors resulted in a 
formalisation of constraints based on the concept of 
the reflected pole of a transformation, for both 
planar displacements and spatial displacements. 
This novel and useful concept describes relation-
ships existing between a set of points or feature 
vectors defined in one coordinate frame before the 
motion and their reflected correspondences defined 
in another coordinate frame after the motion. Es-
sentially, for a planar displacement, all points and 
their reflected correspondences must lie on con-
centric circles centered at the reflected pole of that 
planar displacement. For a spatial displacement, all 
points and their reflected correspondences must lie 
on the surface of concentric spheres centered at the 
reflected pole of that spatial displacement. The 
important aspect of such properties is that they 
provide perfect constraints on the corresponding 
points described by different coordinate frames 
before and after the motion and can be used to re-
fine structural estimation as described in this paper.  

Based on such rigid constraints, we first pro-
pose to estimate structural parameters through an 
iterative method. Once the structure of the object in 
camera centered coordinate frame has been esti-
mated, the original 3D-2D pose estimation is 
transformed into a 3D-3D motion estimation 

problem. As a result, a number of existing accurate 
and robust motion estimation algorithms can be 
used. Given that a number of researchers demon-
strated that the constraint least squares method 
(CLS) (Arun et al., 1987; Umeyama, 1991) is the 
most accurate and robust motion estimation method 
for image data corrupted by noise without outliers 
(Eggert et al., 1997; Matei et al., 1998), we thus, 
adopted this algorithm for camera pose estimation. 

In order to obtain a good initial estimation of 
structural parameters for the iterative algorithm, we 
adopted a classical linear algorithm which is solved 
using the total least squares method (TLS) 
(Chaudhuri and Chatterjee, 1991) rather than the 
least squares method as used in the Pose First 
Linear Algorithm (PFLA) described in (Rodrigues 
and Liu, 1999). Even though the PFLA algorithm is 
sensitive to noise, it had been demonstrated capable 
of providing a good initial estimation, so that we 
expect that the PFLA with TLS will also behave 
well. For a comparative study of performance, we 
also implemented a 3D-2D extended motion esti-
mation algorithm (Extended Tsai and Huang Al-
gorithm, ETHA) based on epipolar geometry that 
was initially proposed in (Tsai and Huang, 1984) to 
solve 2D-2D problems. This algorithm was chosen 
because epipolar geometry represents a unique 
linear solution for all 3D-3D, 3D-2D, and 2D-2D 
motion calibration problems and has the advantage 
of simplicity of implementation. Experimental 
results based on both synthetic data and real images 
have shown that the proposed iterative algorithm is 
more robust and accurate than both the ETHA and 
classical linear algorithms. 

The rest of this paper is organized as follows: 
the theoretical foundations for the proposed algo-
rithm is described in Section 2, the iterative algo-
rithm is proposed in Section 3, and experimental 
results are presented in Section 4. Finally, some 
conclusions are drawn in Section 5. 
 
 
THEORETICAL FOUNDATION 
 

A rigid body transformation can be repre-
sented by the following relationship:  
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p′=Rp+t                              (1) 
 

where R and t represent, respectively, the rigid 
body rotation matrix and translation vector, p is a 
point described in one coordinate frame before the 
transformation and p′ its corresponding point de-
scribed in another coordinate frame after the 
transformation. We can represent this transforma-
tion as (R, t). Given a correspondence pair (p, p′), 
its reflected correspondence (RC) is defined as: 
RC=(p, −p′)=(p, p″), leading to the definition of the 
reflected correspondence vector RCV as: RCV= 
p−p″. Since the field of view normally cannot ex-
ceed 180°, we assume in this paper that the rotation 
angle of the transformation is constrained as 0 
≤θ<π. 

From Chasles’ screw motion theory (Ball, 
1900), the pole e of a rigid non-pure translational 
planar transformation is equidistant to any corre- 
spondence (p, p′) subject to this transformation:  

 

|| p−e || = || p'−e || 
 

since I−R is inversible. This means that any rigid 
non-pure translational planar transformation can be 
represented as a single rotation around the pole e. 
This useful property had been widely used to ana-
lyze non-pure translational planar motions in me-
chanics and kinematics (McCarthy, 1990). How-
ever, there is no similar property for rigid non-pure 
translational spatial transformations since I−R is 
singular. In an earlier work (Rodrigues and Liu, 
1999) we investigated the screw motion concept in 
which any rigid non-pure translational spatial dis-
placement can be effected by a rotation around an 
axis and a translation along this axis. Projecting all 
correspondences (p, p′) on a plane perpendicular to 
the screw axis, a counterpart of the pole e on this 
plane can be found. We have formalized a number 
of geometric properties that can be used as con-
straints to motion estimation. 

In this work, we focus our investigation on the 
analysis of the geometrical properties of reflected 
correspondences (p, p″). We put forward the fol-
lowing theorem on general displacement that can be 
used as rigid constraint to motion estimation prob-
lems both in 2D and in 3D: 

Theorem 1    For any rigid transformation, there 
must exist one and only one point c which is equi-
distant to any reflected correspondence (p, p″) 
subject to this transformation:  
 

|| p−c || = || p″−c ||                       (2) 
 

Proof of sufficiency    Assuming that the rotation 
angle θ is defined as 0≤θ<π, if the rigid body 
transformation (R, t) is known, then the point c can 
be constructed as: 
 

c=−(I+R)−1t                               (3) 
 

which is equivalent to: c+Rc=−t. Thus we have: 
 

||p″−c||=||−Rp−t−c||=||−Rp+Rc||=||p−c||       (4) 
 

This shows that the point c is equidistant to any 
reflected correspondence (p, p″). 
Proof of necessity    If there is another point c′ 
which is equidistant to any reflected correspon-
dence (p, p″), then we have: ||p−c||=||p″−c|| and 
||p−c′||=||p″−c′||. As a result, we have: (p, −p″)T(c− 
c′)=0. Because (p, p″) is an arbitrary reflected 
correspondence, then c' and c must be equal: c'=c. 

The point c is called the reflected pole of a 
rigid transformation. When R=I which corresponds 
to a pure translational transformation where I is the 
identity matrix, we have c=−t/2. The reflected pole 
c synthesises the transformation information rota-
tion matrix R and translation vector t. As a result, it 
bridges the points described in different coordinate 
frames before and after the motion. This is a very 
interesting and useful property which can be used to 
calibrate structural parameters. 

Theorem 1 shows that, for a planar motion, the 
perpendicular bisector lines of all reflected corre-
spondence vectors must intersect at the reflected 
pole c of that planar motion and, for a spatial mo-
tion, the perpendicular bisector planes of all re-
flected correspondence vectors must intersect at the 
reflected pole c of that spatial motion. As a result, 
all reflected correspondences subject to a planar 
displacement must lie on a circle centered at the 
reflected pole c of that planar displacement. Simi-
larly, all reflected correspondences subject to a 
spatial displacement must lie on a sphere centered 
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at the reflected pole c of that spatial displacement. 
This property is more general than the property 
derived from screw motion analysis, since the 
screw motion must be categorized as planar or 
spatial depending on whether I−R is inversible or 
not. In addition, while a pure translational motion is 
a singular case of the screw motion analysis, 
Theorem 1 is true either for pure translational mo-
tion or non-pure translational motion and it does not 
matter whether the motion is described in 2D or 3D.  
 
 
DESCRIPTION OF THE ALGORITHM 
 

From Eq.(1), the relationship between a 3D 
object point p described in the object centered co-
ordinate frame and its corresponding 2D perspec-
tive image point P′=(X′, Y′)T described in camera 
centered coordinate frame can be expressed as:  

 

1
'

z'
 

= + 
 

P
Rp t

 
                      (5) 

 

where the classical pin hole camera model is em-
ployed assuming that the focal length f of the 
camera is equal to 1 for convenience of computa-
tion; without loss of generality, z' represents the 
depth of point p in camera centered coordinate 
frame, (P′T, 1)T represents the homogeneous coor-
dinate of image point P′, and R and t represent the 
orientation and position of the camera in object 
centered coordinate frame. In the rest of this paper, 
we use d to represent the depth z′ for conciseness of 
notation. 

The algorithm described below is called 
Coarse-to-Fine Geometric Algorithm (CFGA). The 
constraint to satisfy is given by Theorem 1: if the 
depth of every point is exactly known, then Eq.(2) 
is exactly right. However, in practice, due to noise 
corrupting image data, the equality in Eq.(2) does 
not hold. Moreover, 3D-2D estimation adds an 
extra layer of uncertainty, as depth information 
from 2D images is not available. The CFGA 
strategy then, is to use a linear algorithm for a first 
approximation of motion parameters. The algo-
rithm then refines the initial structural estimation 
through iteration leading to a refined estimation of 

pose parameters and then back to a refined estima-
tion of structural parameters. Thus, given two sets 
of 3D-2D correspondences (pi, i'P ) where (i=1, 

2, …, n | n ≥6) the steps in the CFGA algorithm are 
described as follows. 
Step 1: Initial estimation of pose, structure, and 
reflected pole 

For a good initial estimation of the depth of 
each point and reflected pole, we use a classical 
linear algorithm, Pose First Linear Algorithm 
(PFLA) (Faugeras and Hebert, 1986; Rodrigues and 
Liu, 1999). The PFLA estimation is solved by the 
total least squares method (TLS) (Chaudhuri and 
Chatterjee, 1991) instead of least squares method. 
Once the pose parameters rotation matrix R̂  and 
translation vector t̂  have been estimated, the initial 
depth of each point is estimated as:  

1 i x
i

i

t
d

X
+

=
R p  

where 1R  is the first row of the estimated rotation 

matrix R̂  and tx is the first component of the esti-
mated translation vector .̂t  Once the depth of every 
point is approximately known, the reflected pole c 
can be initially estimated as defined by Eq.(3). All 
estimates are then refined by iteration. Initialize 
iteration number k=0, set c=c(k), di= di

(k) and set a 
desired accuracy threshold ρ for ||c(k)−c(k−1)||, and 
set the number M of maximum iterations. 
Step 2: Optimise the estimation of the reflected 
pole 

Set iteration number k→k+1. In order to op- 
timise the estimation of the reflected pole c(k−1), we 
know from Eq.(2) that: 

 

( 1) 2 ( 1) T ( 1) T ( 1)( ) 2 2k k k k
i i i i i id L d ' l− − − −+ = −P c P c  

 

where Li=P′TP′ and li= T .i ip p  As a result, we can 
construct the following objective function that 
optimises the estimation of the reflected pole c: 
 

( 1) 2 ( 1) T 2

1

min (( ) 2( ) )
n

k k
i i i i i i

i

F d L d ' l− −

=

= + + −∑c
P p c  (6) 

 

Then the updated reflected pole c(k) can be esti-
mated in the least squares sense as: 
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( ) 1k −=c A b                                (7) 
 

where ( 1) ( 1) T
1

2 ( )( )n k k
i i i i i ii

d ' d '− −
=

= + +∑A P p P p  and 

( 1) 2 ( 1)
1
(( ) )( ).n k k

i i i i i ii
d L l d '− −

=
= − +∑b P p  

Step 3: Refining the estimation of pose and struc-
ture 

Once a calibrated pole c(k) has been obtained, 
the depth of every point can be refined using the 
following procedure. From Eq.(2), it is known that:  

 

2 T ( ) ( ) T ( ) ( ) 22 ( ) ( ) || || 0k k k k
i i i i id L d '+ + − − =P c c c p c  

 

Therefore, we have: 
 

,1i
fd

e
− + ∆

=  and  ,2i
fd

e
− − ∆

=  

 

where e=Li, f= T ( )2 ,k
i'P c g=(c(k))T(c(k))−||pi−c(k)||2  

and ∆=f 2−eg. 
In order to clarify these multiple solutions, 

compute the distances: 
 

1 ,1

2 ,2

|| ||
|| ||

|| ||

i i

i i

i

s d ' '
s d ' '
s

= −

= −

= −

P p
P p

p p
                         (8) 

 

where 'p  and p  are the centroids of the two sets 
of 3D points which can be computed as: 
 

( 1)
1

1 n k
i ii

' d '
n

−
=

= ∑p P  and 
1

1 n
iin =

= ∑p P  

 

If || s1−s ||<|| s2−s || then di
 (k)= di,1. Otherwise  di

 (k)= 
di,2

 . 
Once the depth of every point has been up-

dated, compare the reflected poles: 
If ||c(k)−c(k−1)||<ρ or k>M, then the algorithm 

outputs the depth of every point, otherwise go to 
Step 2. In the experiments described in the next 
Section we used ρ=0.01 and Μ=30. 
Step 4: Pose re-estimation 

The result after the structure }ˆ,...,ˆ,ˆ{ 21 nddd of 
the object has been estimated is that the original 
3D-2D camera pose estimation problem has been 
changed into a 3D-3D motion estimation problem 
where a number of accurate and robust algorithms 
can be applied. Because it had been demonstrated 

that the constraint least squares method (CLS) 
(Arun et al., 1987; Umeyama, 1991) is the most 
accurate and robust algorithm (Eggert et al., 1997; 
Matei et al., 1998) when image data are corrupted 
by noise without outliers, this algorithm is adopted 
by the authors for re-estimation of the 3D-2D 
camera pose parameters rotation matrix R̂ and 
translation vector .̂t  
Step 5: Structural re-estimation 

Once the pose parameters rotation matrix 
R̂ and translation vector t̂ are determined, the 
structural parameters can be re-estimated as:  

 

21
3

1
3

i yi x
i i z

i i

tt
d t

X Y

∧ + +
= + + + 

 

R pR p R p  

 

where 2R  and 3R are the second and third rows of 

matrix R̂ and ty and tz are the second and third 
components of translation vector .̂t  
 
 
EXPERIMENTAL RESULTS 
 

In order to validate and provide better under-
standing of the performance of the CFGA and 
PFLA algorithms, they were implemented and 
compared with an algorithm called Extended Tsai 
and Huang Algorithm (ETHA). The ETHA algo-
rithm is an extended version (from 2D-2D to 3D-2D) 
proposed in (Rodrigues and Liu, 1999) a well 
known calibration procedure originally proposed 
by (Tsai and Huang, 1984) for 2D-2D problems 
based on epipolar geometry. Apart from the obvi-
ous reason of comparing algorithms based on fun-
damentally different geometrical concepts, the 
choice of the ETHA algorithm has also been justi-
fied by the fact that epipolar geometry represents a 
unique linear solution for all 3D-3D, 3D-2D, and 
2D-2D motion calibration problems. Furthermore, 
it has the advantage of simplicity of implementa-
tion.  A series of experiments using synthetic data 
and real images were carried out as described be-
low. 

 
Results with synthetic data 

We randomly selected 30 points with uniform 
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distribution from a cube [10,40]×[10,40]×[10,40]. 
A rotation axis h was randomly generated with 
uniform distribution from a cube [1,3]×[1,3]×[1,3]. 
The set of 30 points were then rotated from 3 to 81 
degrees at 3 degree interval around the fixed rota-
tion axis h followed by a constant translation vector 
t randomly generated with uniform distribution 
from a cube [5,25]×[5,25]×[5,25]. We thus, know 
the selected points and their correspondences  

 

(pi, R′)=((xi , yi, zi)T, (xi′, yi′,  zi′)T) 
 

where (i=1,2,…,30), zi>1  and zi′>1 with the object 
being in front of the camera assuming that the focal 
length of the camera is equal to 1 for convenience 
of computation without loss of generality. We also 
know the pose parameters rotation matrix R and 
translation vector t. All points Pi′ are then projected 
on the plane z′=1 and, as a result, we have also 
accurate perspective image data Pi′=(Xi′, Yi′, 1)T. 
Once the data are generated, we can then apply the 
algorithms so that their performances can be ob-
jectively compared. 

In order to simulate real world noise con-
taminated data, Gaussian random noise was added 
to the coordinates of each correspondence with 
mean equal to 0 and standard deviation σ 1=0.002 in 
one series of experiments and σ 2=0.004 in another 
series of experiments. Finally, we applied the 
proposed CFGA algorithm and PFLA and ETHA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

methods to estimate the structure and pose pa-
rameters. The parameters of interest were the depth 
ˆ

id of each point, the rotation axis ˆ,h  the rotation 

angle θ̂ , and the translation vector .̂t  
We define the relative calibration error of the 

rotation axis ĥ  as ˆ
he || ||= −h h , the relative cali-

bration error of rotation angle θ̂  as ˆ( )/eθ θ θ θ= − , 
the relative calibration error of the translation 
vector t̂  as: ˆ ,te || || / || ||= −t t t and the relative 

calibration error of depth ˆ
id  of each point as 

ˆ( ) .d i i ie d z ' /z '= −  Experimental results with syn-
thetic data are described in Figs.1, 2, 3, and 4 and 
Table 1. In all figures, the solid lines correspond to 
lower levels of noise and the dashed lines correspond 
to higher level of noise. In order to provide better 
visualization of calibration errors, we fixed the 
relative calibration error to 25% if its actual value is 
larger than 25%. 

Figs.1, 2, 3, and 4 and Table 1 show that the 
CFGA algorithm is the most accurate and robust of 
the compared algorithms for noisy image data. The 
CFGA’s relative calibration errors of the rotation 
axis, translation vector, and structure are 2.6708%, 
3.1134%, and 0.3542% respectively, while the 
same parameters are 5.8278%, 6.3832%, and 
0.4127% for the PFLA algorithm and 5.0905%, 
15.4135%, and −1.5198% for the ETHA algorithm 
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Fig.1  Relative calibration error of rotation axis over a
range of rotation angles 
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when image data are corrupted by higher level of 
noise as shown in this paper. More importantly, the 
results showed that the accuracy of the CFGA al-
gorithm is at least a factor of 2 better than the ac-
curacy of the PFLA for the calibration of rotation 
axis and translation vector. This shows that the 
refinement of the classical linear algorithm as 
proposed is effective and yields satisfactory cali-
bration results. This improvement in accuracy is 
mainly because the CFGA algorithm makes full use 
of the rigid constraints between points described in 
different coordinate frames before and after the 
motion as described by Theorem 1. In addition, due 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to the good behavior of the constraint least squares 
method in combating noise, the PFLA algorithm 
does not take these rigid constraints into consid-
eration. Similarly, the ETHA algorithm just con-
siders the constraint of co-planarity resulting in a 
significantly inferior accuracy when compared to 
the CFGA algorithm.  

Table 1 shows that the calibration of transla-
tion vector is more sensitive to noise than the 
calibration of the rotation parameters rotation axis 
and rotation angle as pointed out by Tsai and Huang 
(1984). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Comparative errors for synthetic data corrupted by two levels noise (σ1, σ2)* 
Noise Meas. Algorithm ĥ  θ̂  t̂  d̂  

PFLA 2.1361 −0.0782 3.1236 −0.3451 
CFGA 1.3006   0.1426 1.6465 −0.3240 

Meam 

ETHA 2.6464 −2.7757 7.7536 0.2976 

PFLA 1.3380   0.7923 1.2717   0.4547 
CFGA 0.8767   0.3151 0.2225   0.4129 

σ1 
σ 

ETHA 4.5219 3.0074 2.5654   2.3756 

PFLA 5.8278   0.2250 6.3832   0.4127 
CFGA 2.6708   0.3856 3.1134   0.3542 

Meam 

ETHA 5.0905 −5.7341 15.4135 −1.5498 

PFLA 4.4655   1.2120 5.5864   1.2194 
CFGA 2.1759   0.6885 1.5313   1.1022 

σ2 
σ 

ETHA 6.5809   5.4615 5.7271   8.4562 
*The mean and standard deviation σ of the calibration errors in percentage for rotation axis ĥ , rotation angle θ̂ , translation  
vector t̂ , and depth estimation d̂  
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Results with real images 
The image data as depicted in Fig.5 were 

downloaded from the image database of Calibrated 
Imaging Laboratory at Carnegie Mellon University. 
The three algorithms were applied to the data and 
experimental results are summarized in Tables 2 
and 3. 

Tables 2 and 3 show that the CFGA algorithm 
is the most accurate for the calibration of rotation 
angle and translation vector, while the CFGA’s 
accuracy for the calibration of the rotation axis is 
similar to both PFLA and ETHA algorithms. Table 
3 shows that the calibration of rotation parameters 
rotation axis and rotation angle for all algorithms is 
poor. This can be explained as follows. From Table 
2 and real images Fig.5, it is known that the camera 
motion is nearly pure translational which results in 
all off diagonal elements of the reference matrix to 
be small, rendering the estimation of rotation pa-
rameters rotation axis and rotation angle very sen-
sitive to noise. This means that a small difference of 
calibrated parameters can cause large relative 
calibration errors. Therefore, the relative calibra-
tion error of the translation vector is a reasonable 
measurement in this case as a measure of compari- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

son of which algorithm is the most accurate. From 
this viewpoint, it is known that the CFGA algorithm 
is the most accurate among the CFGA, PFLA, and 
ETHA algorithms. 
 
 
SUMMARY AND CONCLUSIONS 
 

In this paper, after our investigation of geo-
metric properties of reflected correspondences, we 
put forward the new concept of reflected pole of a 
rigid transformation. The reflected pole has useful 
geometric properties that can be used as constraint 
for calibration of transformation parameters. For a 
planar transformation (the 2D case) all reflected 
correspondences (p, p″) must lie on concentric cir-
clecentered at the reflected pole of that planar trans- 
formation and, for a spatial transformation (the 3D 
case) all reflected correspondences must lie on the 
surface of concentric spheres centered at the re-
flected pole of that spatial transformation. This 
analysis is thus, more general than the screw mo-
tion analysis as it is also valid for pure translational 
motions. A pure translational motion is a singular 
case of the screw motion analysis where the motion 
 

Table 2  Calibrated rotation matrix R̂ and translation 
vector t̂   

 

Method R̂  t̂  
0.9999 0.0111 0.0076 −566.7595
−0.0111 0.9999 −0.0006 −516.2556

Ref 

−0.0076 0.0005 0.9999 1767.1555

0.9990 0.0111 0.0081 −566.3399
−0.0128 1.0025 −0.0001 −516.9812

PFLA 

0.2268 −0.0901 0.9679 1695.0774

0.9986 −0.0158 −0.0510 −540.2255
0.0157 0.9999 −0.0008 −528.2741

CFGA 

0.0510 0.0000 0.9987 1717.2342
 
 

Table 3  Relative calibration error of rotation axis ĥ , 
rotation angle θ̂ , and the translation vector t̂  

 

Methods Error ĥ (%) Error θ̂ (%) Error t̂ (%)
PFLA 170.4583 1193.6572 3.7421
CFGA 188.8157 295.2693 3.0005
ETHA 196.9993 355.2521 17.4422

(b) 

(a) 

Fig.5  Real castle images: (a) 3D description; (b) pro-
jective image 
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must then be classified as planar or spatial. 
Based on such rigid constraint, we then show 

how it can be applied to the calibration of trans-
formation parameters. We proposed and demon-
strated an iterative method to refine structural es-
timation. The method is based on a coarse-to-fine 
strategy where an initial estimation is obtained 
through a classical linear algorithm. The method 
first transforms the 3D-2D camera pose estimation 
problem to a 3D-3D motion estimation problem and 
the constraint least squares method is then applied 
to camera pose estimation. For a comparative study 
of performance, we also implemented an extended 
3D-2D pose estimation procedure (Rodrigues and 
Liu, 1999) based on a well known 2D-2D motion 
estimation algorithm (Tsai and Huang, 1984). Ex-
perimental results based on both synthetic data and 
real images showed that the overall performance of 
the proposed iterative algorithm is superior to both 
the classical linear algorithm and the extended 
algorithm. This demonstrates that the proposed 
method is accurate and effective for calibration of 
structural and pose parameters and, because of its 
generality, robustness and simplicity, the method is 
useful for real world calibration problems. 
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