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Abstract:    Tolerance is essential for integration of CAD and CAM. Unfortunately, the meaning of tolerances in the national 
standard is expressed in graphical and language forms and is not adaptable for expression, processing and data transferring 
with computers. How to interpret its semantics is becoming a focus of relevant studies. This work based on the mathematical 
definition of form tolerance in ANSI Y14.5.1M-1994, established the mathematical model of form tolerance for cylindrical 
feature. First, each tolerance in the national standard was established by vector equation. Then on the foundation of toler-
ance’s mathematical definition theory, each tolerance zone’s mathematical model was established by inequality based on 
degrees of feature. At last the variance area of each tolerance zone is derived. This model can interpret the semantics of form 
tolerance exactly and completely. 
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INTRODUCTION 
 

Tolerance is defined by graphic example and 
text description in the national standard and is not 
adaptable for expression, processing and transfer-
ring in computers. Tolerance is essential for inte-
gration of CAD and CAM and how to interpret its 
semantics is becoming a focus (Wu and Yang, 1999; 
Liu et al., 2001). The domain of mathematical 
model of planer feature has been the topic of active 
research in recent years (Cai et al., 2000; 2002). 
Gou et al.(1999) developed a geometric theory 
which unifies the formulation and computation of 
form, profile and orientation tolerances stipulated 
in ANSI Y14.5M standard. Roy and Li (1998; 1999) 
presented a solid modeler scheme for representing 
form tolerances for polyhedral objects, and devel-
oped a complete form tolerance zone definition 

based on rigorous mathematical formulation. Liu et 
al.(2001) gave a generic mathematical model of 
size tolerance for plane feature based on mathe-
matical definition. This work is aimed at develop-
ing a mathematical model of form tolerance for 
cylindrical feature (other than plane feature), which 
consists of circularity, cylindricity and straightness. 
 
 
SPACTIAL MOVEMENT POINT 
 

Tolerance zone means the region or area which 
limits the real feature’s movement. Real feature can 
also be called feature with error, and is composed of 
points in the nominal feature after some ways of 
movement. The spatial movement of a point is 
defined by the product of its transfer and rotation in 
measuring geometry and can be described by a 
homogeneous matrix. Suppose a point in the 
three-dimensional Euclidean space. The translation 
range along the axle is δx, δy, δz and the rotation 
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range round the axle is δθ, δφ, δψ respectively. p is 
the point after the movement. Then the point 
movement in the space expressed by the 4×4 homo- 
 

 
 
 
 
 
 

Suppose δθ, δφ, δψ is very small and these 
trigonometric functions can be linearized as fol-
lows: 
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Regarding Eq.(2), the result is: 
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Tolerance zone is the permittable movement 

range of the nominal point. If p0 is a nominal point 
and ( , , , , , )x y z θ φ ψδ δ δ δ δ δD is the permittable move- 

ment range of the nominal point then p is the point 
in the tolerance zone.   

This work aimed at studying the tolerance of 
the cylindrical feature. Tolerance of cylindrical 
feature divides into the constraint on the cylinder 
surface and constraint on the cylindrical axis. The 
degree of cylinder surface is the same as that of the 
cylindrical axis, so that the spatial movement of the 
cylinder surface and of the cylindrical axis can be 
expressed as follows in unison: 
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DCylinder was abbreviated as D since the main study 

geneous matrix is as follows: 
 

0= ⋅p D p                          (1) 
 

 
 
 
 
 
 

object is cylinder. For the same feature, the matrix 
equation of different tolerance can be the same. But 
the movement ranges of degree variables in the 
equations are generally different. So the most im-
portant thing is to establish the constraint model of 
each degree variable according to tolerance defini-
tion. First, based on the mathematical definition of 
form tolerance in ANSI Y14.5.1M-1994, each of 
the tolerances in the national standard was estab-
lished by vector equations. Then on the foundation 
of tolerance mathematical definition theory, each 
tolerance zone’s mathematical model was estab-
lished by inequalities based on the degree of the 
feature. Because space is limited, this paper gives 
only mathematical modeling of circularity and 
cylindricity. 

Each of the symbols are defined as follows: 
Cd is the direction vector of tolerance zone; CP 

is the position vector of tolerance zone; p is a point 
in the tolerance zone; r is the normal radius of the 
cylinder; es, ei are the upper and lower specifica-
tion limits of the cylinder’s diameter; T is the form 
tolerance; dx, dy, dz are the translation range of the 
coordinate origin along the axle x, y, z respectively; 
dθ, dφ, dψ are the rotation range of the coordinate 
origin round the axle x, y z respectively. 
 
 
MATHEMATICAL MODEL OF CIRCULARITY 
TOLERANCE 
 

In the ANSI Y14.5.1M-1994, circularity tol-
erance specifies that all points of each circular 
element of the surface must lie in some zone 
bounded by two concentric circles whose radii 
differ by the specified tolerance. 
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A circularity tolerance controls the form error 
of a real circle relative to the nominal circle. As 
shown in Fig.1, the circularity tolerance zone con-
sists of an annular area, or the area between two 
concentric circles that are centered on the spine. 
The difference in radius between these circles is the 
circularity tolerance TCir. The zone can be written in 
the following vector form: 

 

d p
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Consider Fig.1 where the origin of the Local 

Coordinate System (LCS) is the center of the circle.  
We have Cp=0 and Cd=[1 0 0]T, then Eq.(5) can be 
rewritten as: 
 

2 2
Cir Cir/ 2 ( ) ( ) / 2y zT y z r Tδ δ− ≤ + + + − ≤         (6) 

 
where: Cir Cir/ 2 / 2yT Tδ− ≤ ≤ , Cir Cir/ 2 / 2zT Tδ− ≤ ≤ . 

Usually, the radius of the circularity tolerance 
zone is not equal to the radius of the size tolerance 
and the only link between the size tolerance and the 
circularity tolerance is the classical equation Ts>Tcir. 

The position and direction of the circularity toler-
ance zone are indefinite and the only restriction is 
that there exists at least one circle in the intersec-
tion area of the size tolerance zone and the circu-
larity tolerance zone. Fig.2 illustrates eight possible  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

extreme configurations of the resultant zone in yoz 
plane. Ts is the size tolerance in Fig.2. Fig.2a−2f 
satisfy the Eq.(5) while Fig.2g and Fig.2h do not. 

Fig.3 shows the situation when the circularity 
tolerance zone has the maximum transfer relative to 
the size tolerance zone along axle y. The circle 
CCir,i(y,z) and circle CCir,o(y,z) shown in Fig.3 are the 
inner and outer boundary of the circularity tolerance 
zone respectively; the circle CS,i(y,z) and circle 
CS,o(y,z) are the intersection lines of the inner/outer 
boundary of the size tolerance zone and the cross 
section. Thus the following equations can be de-
rived: 
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Fig.1  Definition of circularity tolerance zone 
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Fig.2  Some examples of size and circularity tolerance 
zone 
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When dy has the maximum value dy,max, point 
( / 2,0)r ei− − is on the circle CCir,o(y,z), and point 
( / 2,0)r es+ is on the circle CCir,i(y,z). Therefore: 
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2 2 2
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From Eq.(11) and Eq.(12), the maximum 

transfer along axle y is: 
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And the maximum transfer along axle z can 

also be derived following the same procedure as 
above: 
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Thus, the degree variables’ variation zone of 
circularity tolerance zone’s axles is as follows: 
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MATHEMATICAL MODEL OF CYLINDERIC-
ITY TOLERANCE 
 

A cylindricity tolerance controls the form error 
of cylindrically shaped features. The cylindricity 
tolerance zone consists of a set of points between a 
pair of coaxial cylinders. The difference in radii 
equals the cylindricity tolerance TCy. We mathe-
matically define a cylindricity tolerance zone as 
follows.  

 

d p Cy( ) / 2r T× − − ≤C p C                     (14) 
 

If we consider the local coordinate system as il-
lustrated in Fig.4, Cp=0, Cd=[1 0 0]T. Therefore: 
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The position and direction of the cylindricity 
tolerance zone are not determined. And the only 
restriction is that there exist at least one cylinder in 
intersection area of the size tolerance zone and the 
cylindricity tolerance zone. Fig.5 illustrates eight 
possible extreme configurations of the intersection 
zone in the yoz plane. Fig.5a−5f satisfy the Eq.(14) 
while Fig.5g and Fig.5h do not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.4  Cylindricity tolerance zone definition 

Fig.3  Maximum shift of circularity tolerance 
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Fig.6 shows the situation when the cylindricity 
tolerance zone has the maximum orientation angle 
relative to the size tolerance.  The following equa-
tions can be derived from Fig.6: 
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When dφ has the maximum value, point (l/2, r+ 
es/2) is on line lCy,i(x,z), and the point (−l/2, r+ei/2) 
is on line lCy,o(x,z). From Eqs.(12) and (13): 
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Assuming that the variance of dφ,max is small, 

then cosdφ,max≈1. From the above equations,  
 

,max Cy s Cy[( ) 2 ]/ 2 ( 2 ) / 2d es ei T l T T lφ = − − = −  

 
The final variation zone for other cases can be 

obtained in a similar way. Therefore, the variation 
zone of the cylindricity tolerance zone as specified 
in the tolerance specification is as follows: 
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INSTANCE 
 

Fig.7 shows the connecting rod of air com-
pressor brake for automobile. The hole, whose 
diameter is 12 mm, must accommodate the piston 
pin to be inserted into it and the cylindricity error 
should not exceed 0.003 mm. If inappropriate size 
tolerance is selected to control the form error, it will 

 
 
 
 
 
 
 
 
 
 
 Fig.7 Connecting rod of air compressor brake for

automobile 
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Fig. 6  Maximum orientation angle of cylindricity tol-
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Fig.5  Some examples of size and cylindricity tolerance
zone 
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make manufacture more difficult. The automobile 
is a large size product with relatively big size tol-
erance Js7(±0.009), so smaller cylindricity toler-
ance (0.003 mm) should be given according to real 
production experience and assembly in groups to 
meet the function request. Next we are going to 
give the mathematical model of the hole tolerances. 
From the inequality Eq.(15), each degree variables’ 
movement range of cylindricity tolerance can be 
derived as follows: 
 

2 20.0015 ( ) ( ) 6

0.0015 (23)
y zy x z xψ φδ δ δ δ− ≤ + + ⋅ + + + ⋅ −

≤
 
where: 0.0015 0.0015, 0.0015 0.0015,y zδ δ− ≤ ≤ − ≤ ≤

0.00005 0.00005,φδ− ≤ ≤ 0.00005 0.00005.ψδ− ≤ ≤  

 
The inequality in Eq.(23) shows points in the 

cylindricity tolerance zone and determines the size 
and form of the cylindricity tolerance zone. From 
the inequality in Eq.(22), each degree variables’ 
movement range of the cylindricity tolerance 
zone’s coordinates system are as follows:  
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Eq.(24) determines the position and direction 

of the cylindricity tolerance zone. Based on the 
mathematical model above, we can derive the 
simulation cylinder of the hole. 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 

Tolerance is essential for integration of CAD 
and CAM. How to interpret its semantics is be-
coming a focus of relevant study (Srinivasan, 1993). 
In this paper, based on the mathematical definition 
of form tolerance in ANSI Y14.5.1M-1994, the 
mathematical model of form tolerance for cylin-
drical feature was established. This model can in-
terpret the semantics of form tolerance exactly and 
completely. 
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